1. Field of the Invention
The present invention relates to block wall construction, and more particularly to a method and apparatus for use in the construction of cinder and/or cement masonry block walls.
2. Description of the Prior Art
Cinder, cement, clay and other masonry blocks and bricks are popular in the construction of walls because of their relatively low cost and consistent appearance. However, present techniques for the construction of block walls are cumbersome, labor intensive and suffer from drawbacks because special (“buttered”) mortar is required to be applied between the individual blocks and between the rows or courses of blocks in the wall. It is a time consuming and messy task to mix a batch of the mortar, and to thereafter constantly shuttle back and forth between the block wall and the mortar supply to apply the necessary mortar between each individual block, and between each course of blocks. Additional batches of mortar must often be mixed during the course of block wall construction, particularly with larger walls. Then, when construction is complete, the messy mortar must be cleaned up.
In addition to the labor and cleanup problems associated with applying mortar, any excess mortar that is applied between the individual blocks or courses of blocks in the wall has a tendency to squeeze into the openings or cells inside the blocks. When the mortar hardens, it leaves irregular shapes and blobs of excess material inside the cells. This can be detrimental to structural strength since such excess mortar can displace the structural grout that is ordinarily poured into these cells after the wall is erected, and may even prevent such grout from entering into the cells.
Obtaining consistent spacing between the individual blocks in the wall as well as between the courses of blocks also poses a perennial problem in construction. Different spacing devices have been developed in the prior art for use in the construction of block walls, including the spacer of U.S. Pat. No. 5,231,815 which discloses a support unit having various flanges, legs and tabs, the support unit being designed for placement between blocks to separate them by a constant distance. Mortar is then applied over and around these spacer units which become part of the wall. However, the spacer of the '815 patent is of complicated design, and it does not eliminate the need for mortar to be applied between the blocks and courses of blocks, and the above-described problems associated therewith.
It is therefore desirable to reduce or eliminate the mortar ordinarily used in the construction of block walls while maintaining appropriate wall strength. It is also desirable to provide a way to establish consistent spacing between blocks and courses of blocks in a block wall using a minimum amount of mortar.
The present invention provides a method and apparatus for constructing block walls without the need for mortar between individual blocks or courses of blocks by providing individual bracketed pieces that are used to lock adjacent blocks together. The locking pieces of the present invention are designed for use with blocks of the type having openings or cells inside the individual blocks, with recessed notches between the cells. The blocks may be made of any appropriate masonry material such as cinder, clay, cement or brick.
The locking pieces of the present invention are designed for permanent installation in a block wall to hold adjacent blocks together along a horizontal course or tier of blocks. The locking pieces are preferably made of metal, although any rigid material such as plastic may be used. The adjacent blocks to be attached together may be end-to-end along a course; or they may be perpendicular to each other, such as at a corner. Each locking piece has a generally flat cross section, and includes a cross member having a pair of integral arms attached at both ends. The arms are generally parallel to each other and perpendicular to the cross member, and define a space between them. The arms of each locking piece are designed for generally vertical insertion into the cell spaces of pairs of adjacent wall blocks in a horizontal course or tier of blocks, such that the cross member of each locking piece extends horizontally between the adjacent blocks through their respective recessed notches. Because the cross member fits into the recessed notches of the subject blocks, it does not extend upward and therefore has no effect on or interference with any course of blocks that may be installed on top of the subject blocks in the present course. Installing the locking pieces between every block in the course holds the entire course together. Although it is preferred that two locking pieces be used between each pair of adjacent blocks, a single locking piece may be used. Vertical steel rods are provided at different locations in the block wall to provide vertical stability, and to help properly orient the multiple courses of blocks of the wall in proper spaced relationship to each other. Reinforcing grout is then poured into the open cells of the blocks after the wall is erected.
An alternative form of the present invention includes an additional centrally located arm that is used to create a space between adjacent horizontal blocks of a course. The alternative locking pieces may be used in conjunction with the standard locking pieces to create curved or arcuate walls. To establish a concave curve in the wall, the standard locking pieces (C-shaped) are installed across the notches between adjacent blocks near the fronts of the blocks, and the modified locking pieces (E-shaped) are installed across these same notches near the rears of the blocks such that the additional vertical arm of the E-shaped piece extends between the blocks at the rear. This spaces the rear edges of the blocks apart while compressing the front edges together. The result is a concave or curved wall. Similarly, a wall having a convex curve may be established by installing the modified locking pieces (E-shaped) across the notches between adjacent blocks near the fronts of the blocks, and installing the standard locking pieces (C-shaped) across these same notches near the rears of the blocks. In this way, the additional vertical arms of the E-shaped pieces extend between the blocks at the front, creating a convex curve in the wall.
The degree of the angle between adjacent blocks is determined by the width of the additional central arm of the modified locking piece. A wider central arm will result in a greater angle between blocks, and a more pronounced curve in the wall; a narrower vertical arm will result in a lesser angle between blocks, and a gentler curve in the wall. Modified pieces having central arms of different widths may also be used to provide different angles between adjacent blocks in the same course, or in different courses, for different aesthetic appearances or combinations of curves in the wall.
It is therefore a primary object of the present invention to provide an apparatus for securely attaching adjacent open-celled masonry blocks of a course together in the construction of walls without the need for mortar.
It is also a primary object of the present invention to provide an efficient method for quickly and securely attaching adjacent open-celled masonry blocks of each course together during the construction of a wall without the steps of mixing or applying mortar.
It is also an important object of the present invention to reduce labor time and to avoid unnecessary material costs in the construction of walls using open-celled masonry blocks by eliminating the need for preparation, application and drying of mortar between blocks and between courses during construction.
It is another object of the present invention to provide a method and apparatus for securely attaching adjacent open-celled blocks of a course together at defined angles in the construction of a masonry wall in order to impart curve(s) to the wall.
It is a further object of the present invention to provide a method and apparatus for constructing stronger and more durable walls using open-celled masonry blocks that eliminates the use of mortar thereby eliminating the chance for clogs in the cells of the blocks that could prevent the reinforcing structural grout from filling them in.
It is a further object of the present invention to provide a generally C-shaped bracket with a longitudinal base having a pair of arms that are generally parallel to each other and perpendicular to the base in which the arms are inserted into the end cells of adjacent open-celled masonry blocks for securely holding the adjacent blocks together.
It is a further object of the present invention to provide a generally E-shaped bracket having a longitudinal base with three arms that are generally parallel to each other and perpendicular to the base in which the end arms are inserted into the end cells of adjacent open-celled masonry blocks for securely holding the adjacent blocks together, and the center arm is extended between the blocks defining a space therebetween.
Additional objects of the invention will be apparent from the detailed descriptions and the claims herein.
Referring to the drawings wherein like reference characters designate like or corresponding parts throughout the several views, and referring particularly to
Referring to
In the alternative embodiment shown in
Bracket 19 having the additional arm 18 is used to create a space or gap 31 between masonry blocks 21, as illustrated in
In the installation shown in
It is to be understood that variations and modifications of the present invention may be made without departing from the scope thereof. It is also to be understood that the present invention is not to be limited by the specific embodiments disclosed herein, but only in accordance with the appended claims when read in light of the foregoing specification.
Number | Name | Date | Kind |
---|---|---|---|
1894121 | Pronnecke | Jan 1933 | A |
2543716 | Carini | Feb 1951 | A |
4237670 | De Waele | Dec 1980 | A |
4408398 | Glaze | Oct 1983 | A |
4802318 | Snitovski | Feb 1989 | A |
5056289 | Colen | Oct 1991 | A |
5231815 | Colen | Aug 1993 | A |
5351457 | Colen | Oct 1994 | A |
D354527 | Ryan et al. | Jan 1995 | S |
5481812 | Pedano | Jan 1996 | A |
5649391 | Layne | Jul 1997 | A |
5829217 | Colen | Nov 1998 | A |
6082067 | Bott | Jul 2000 | A |
Number | Date | Country | |
---|---|---|---|
20030221386 A1 | Dec 2003 | US |