The present invention relates to a mortar and debris collection device for use within a cavity wall to prevent the blockage of weep holes at the base of the wall, and more particularly, the present invention relates to a masonry cavity wall assembly including a mortar and debris blocker and to a method of assembling a masonry cavity wall with a mortar and debris blocker.
Masonry cavity wall constructions include inner and outer vertical walls with a space or cavity existing therebetween. The inner wall can be made of a wood sheathing or like material, and the outer wall can be made of bricks, stones, blocks or the like held together by mortar. Weep holes are typically located at the base of the outer wall to permit water to drain from the cavity and to permit the cavity to be ventilated to prevent moisture from accumulating therein.
Excess mortar and other building construction debris often fall within the cavity between the inner and outer walls during construction of the cavity wall. The excess mortar and debris drops to the base of the cavity where it can block weep holes. Thus, some masonry cavity walls have been constructed with mortar and debris collection devices, or so-called “blockers”.
Examples of such blockers are provided by U.S. Pat. No. 6,684,579 B2 issued to Brunson et al; U.S. Pat. No. 6,023,892, Re. 36,676, and U.S. Pat. No. 5,230,189 issued to Sourlis; U.S. Pat. No. 5,692,348 issued to Ambrosino; U.S. Pat. No. 6,256,955 issued to Lolley; U.S. Pat. No. 5,598,673 issued to Atkins; and U.S. Pat. No. 5,860,259 issued to Laska, and U.S. Patent Application Nos. 2004/0003558 A1 and 2003/0230035 A1 issued to Collins et al.
While the masonry cavity wall assemblies having mortar and debris blockers and methods of assembling cavity walls disclosed in the above referenced patents may be satisfactory, there continues to be a need for alternatives with respect to the design of such blockers and methods of installation. For instance, the mortar and debris blocker should be capable of being properly installed in a manner requiring only a minimum of skill, effort and time. In addition, the blocker should be capable of efficient manufacture from inexpensive materials and should be of a form permitting efficient storage and shipping.
More specifically, the present invention provides a method of assembling a cavity wall with a debris blocker. A base section of a masonry wall is assembled adjacent an inner wall such that a wall cavity is defined therebetween, and a continuous, elongate strip of material is inserted within the wall cavity such that the strip of material is supported on a bottom surface of the wall cavity and forms a debris collection surface a spaced distance above the bottom surface of the wall cavity. The strip of material is an openwork material that permits moisture to drain therethrough and prevents mortar from passing therethrough. After the strip of material is inserted in the cavity, the assembly of an upper section of the masonry wall is completed. Any excess mortar falling into the cavity during the assembly of the upper section of the masonry wall engages and is supported on the debris collection surface and is thereby prevented from blocking weep holes at the bottom of the cavity.
Preferably, the step of inserting the strip of material includes flexing or compressing the strip of material along creases or the like to enable the strip of material to fit within the cavity. Thereafter, the strip of material is permitted to resiliently flex or expand outwardly into engagement with both the inner and masonry walls to form a debris collection surface that bridges the inner and masonry walls above the bottom surface of the wall cavity. As inserted, the strip of material preferably has an M-shaped or inverted U-shaped transverse cross-section.
According to another aspect of the present invention, a masonry cavity wall assembly is provided. The assembly includes a masonry wall, an adjacent inner wall, and a wall cavity extending therebetween above a base surface. An elongate strip of material is located within the wall cavity such that it is supported in a free-standing position on the base surface of the wall cavity. The strip of material provides a debris collection surface a spaced distance above the base surface for collecting excess mortar and debris that falls within the wall cavity and for preventing the mortar and debris from clogging weep holes that are located adjacent the base surface of the cavity wall. The strip of material is an openwork material that permits moisture to drain therethrough and that prevents mortar from passing therethrough.
Preferably, the strip of material has opposite longitudinally-extending side sections, or legs, and a longitudinally-extending central section. One of the side sections extends upright and engages the masonry wall, while the other extends upright and engages the inner wall. The central section extends therebetween and forms the debris collection surface. Preferably, when located within the cavity, the strip of material has an “M”-shaped or inverted “U”-shaped transverse cross-section.
The features and advantages of the present invention should become apparent from the following description when taken in conjunction with the accompanying drawings, in which:
A mortar and debris blocker according to the present invention is made of an elongate strip of openwork material that is sufficiently dense to support mortar and other construction debris thereon and that has sufficient openings therein to permit liquid, moisture vapor, and air to flow, or drain, therethrough. For example, see the direction of flow shown by arrows 90 in the assembly illustrated in
In a first embodiment of the present invention illustrated in
The blocker 10 possesses a degree of resiliency such that, when flexed or folded along its longitudinally-extending central section 12, the strip exerts a force to expand to its normal relatively-flat condition. In this way, when flexed and positioned within a wall cavity, the strip 10 automatically expands into engagement with the opposed wall surfaces defining the cavity to ensure that the blocker engages the opposed walls and bridges across the entire width of the cavity throughout the length of the blocker.
A specific example of an openwork material for the blocker 10 is a porous, closed-cell composite 10 as illustrated in
By way of example, and not be way of limitation, the blocker 10 can be provided in strips of any length and is preferably stored and shipped in a spiral roll 18 as illustrated in
As shown in
A continuous length of the blocker 10 is positioned in a free-standing condition on the bottom 30 of the cavity 26 in an upwardly-bowed or inverted U-shaped, configuration. In this position, the blocker 10 provides an upwardly-projecting canopy 32 that extends to an elevation above the weep holes 28 and that prevents excess mortar and like debris from reaching the location of the weep holes 28. As best illustrated in
During assembly of the cavity wall 20, the inner wall 22 and a base portion 38 of the outer wall 24 are constructed. The base portion 38 can include, for instance, the lowermost course or lowermost several courses of bricks or the like which is of a height enabling the blocker 10 to be readily positioned by hand in the bottom 28 of the cavity 26. A continuous, elongate strip of blocker 10 is inserted within the cavity 26 to form an upwardly-projecting, hollow canopy 32 therein. The strip 10 can be of a length equal to the length of the cavity 26, and the method of assembly can include providing an elongate strip of blocker 10 in a spiral roll 18, unrolling the blocker 10, and cutting it to the length of the cavity 26.
Preferably, the step of inserting the blocker 10 in the cavity 26 is accomplished by flexing, or folding, the relatively flat strip of blocker 10 along its longitudinally-extending central section 12 so that the blocker 10 fits within the cavity 26. Thereafter, the blocker 10 is permitted to flex into engagement with the inner wall 22 and outer wall 24 due to its resilient nature. Thus, an upwardly projecting canopy 32 is formed in the cavity and extends the length of the cavity. Thereafter, the cavity wall assembly 20 is completed by constructing an upper section 40 of the outer masonry wall 24. Any excess mortar 42 falling into the cavity 26 falls on and is supported by the canopy 32.
Preferably, the blocker 50 possesses a degree of resiliency such that, when flexed or folded along its creases, 54, 56 and/or 58, into a compressed M-shape, the blocker 50 exerts a force to expand outwardly in an accordion manner. For example, see the dashed lines 94 illustrated in
The openwork material 52 for the blocker 50 can be perforated sheet metal, a perforated polymer sheet, a stiff porous foam, a mat of fibers, or the like. By way of example, and not be way of limitation, the material 52 can be a perforated sheet of aluminum that is 4 feet in length by 3 feet in width and that has three serrated fold lines formed along its length. The fold lines can also be formed at desired radius of curvatures to permit ready flexing, or hinging, of the material along the fold lines. The legs 60 and 62 can extend to a height “A” of about 10 inches, and the spacing “B” between creases 54 and 56, and 56 and 58, can be about 8 inches.
As shown in
A continuous length of the M-shaped blocker 50 is positioned in a free-standing condition on the bottom 76 of the cavity 72. In this position, the blocker 50 provides a debris collection surface 64 that extends at an elevation above the weep holes 74 and that prevents excess mortar and like debris from reaching the weep holes 74. As best illustrated in
During assembly of the cavity wall 66, the inner wall 68 and a base portion 82 of the outer wall 70 are constructed. The base portion 82 can include, for instance, the lowermost course or lowermost several courses of bricks or the like which is of a height enabling the blocker 50 to be readily positioned by hand in the bottom 76 of the cavity 72. A continuous, elongate strip of blocker 50 is inserted within the cavity 72 to form a debris collection surface 64. Preferably, the step of inserting the blocker 50 in the cavity 72 is accomplished by compressing the M-shaped blocker 50 in an accordion manner so that the blocker 50 easily fits within the cavity 72. Thereafter, the blocker 50 is manually or automatically expanded into engagement with the inner wall 68 and outer wall 70. Thus, a debris collection surface, or trough 64 can be formed in the cavity 72 throughout the length of the cavity. Thereafter, the cavity wall assembly 66 is completed by constructing an upper section 84 of the outer masonry wall 70. Any excess mortar 86 falling into the cavity 72 falls onto and is supported by the debris collection surface 64.
The above-described mortar and debris blockers are easy to install, inexpensive to manufacture, and provide the required mortar blocking function while permitting fluids to drain or flow therethrough.
While preferred blockers, assemblies and methods have been described in detail, various modifications, alterations, and changes may be made without departing from the spirit and scope of the blockers, assemblies and methods according to the present invention as defined in the appended claims.
This application is a divisional of U.S. application Ser. No. 11/274,685, filed Nov. 15, 2005, which claims the benefit under 35 USC §119(e) of U.S. Provisional Patent Application No. 60/630,390, filed Nov. 23, 2004.
Number | Name | Date | Kind |
---|---|---|---|
4178715 | Greenbaum | Dec 1979 | A |
4331542 | Emrie | May 1982 | A |
4381630 | Koester | May 1983 | A |
4852320 | Ballantyne | Aug 1989 | A |
5230189 | Sourlis | Jul 1993 | A |
5284027 | Martin, Sr. | Feb 1994 | A |
5343661 | Sourlis | Sep 1994 | A |
5598673 | Atkins | Feb 1997 | A |
5692348 | Ambrosino | Dec 1997 | A |
5713696 | Horvath et al. | Feb 1998 | A |
5860259 | Laska | Jan 1999 | A |
5937594 | Sourlis | Aug 1999 | A |
6023892 | Sourlis | Feb 2000 | A |
RE36676 | Sourlis | May 2000 | E |
6105323 | Paulle | Aug 2000 | A |
6112476 | Schulenburg | Sep 2000 | A |
6202366 | Snyder et al. | Mar 2001 | B1 |
6256955 | Lolley et al. | Jul 2001 | B1 |
6684579 | Brunson et al. | Feb 2004 | B2 |
6688059 | Walker | Feb 2004 | B1 |
6883284 | Burgunder et al. | Apr 2005 | B1 |
6912820 | Sourlis | Jul 2005 | B2 |
6990775 | Koester | Jan 2006 | B2 |
7216460 | Sourlis | May 2007 | B2 |
7380374 | Pratt | Jun 2008 | B1 |
7386956 | Argila | Jun 2008 | B2 |
20020174954 | Busseuil et al. | Nov 2002 | A1 |
20030037499 | Coulton | Feb 2003 | A1 |
20030230035 | Collins et al. | Dec 2003 | A1 |
20040003558 | Collins et al. | Jan 2004 | A1 |
20040035069 | Jackson | Feb 2004 | A1 |
20040055245 | Fitch | Mar 2004 | A1 |
20040231259 | Sourlis | Nov 2004 | A1 |
20050138876 | Sourlis | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090126290 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60630390 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11274685 | Nov 2005 | US |
Child | 12357599 | US |