The present application is based on and claims priority to Japanese Application No. 2020-153807, filed Sep. 14, 2020, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a mass flow controller using a differential pressure flow meter, such as a laminar flow meter.
Laminar-flow differential-pressure mass flow controllers are fluid control devices that measure reductions in pressure when fluids pass through laminar elements, convert the measured values into the flow rates of the fluids, and control the flow rates so as to be equal to setting values (for example, refer to Japanese Patent No. 4987977 and Japanese Unexamined Patent Application Publication No. 2015-34762). The laminar-flow differential-pressure mass flow controllers are widely used in industrial fields as control devices of gas or liquid. For example, in the semiconductor industry, the downstream side of the mass flow controller is connected to a vacuum chamber to be used for control of the flow rate of etching gas or the like.
In addition, since the non-linearity of the flow rate-differential pressure characteristics is increased as the pressure at the downstream side is decreased, a measurement error of the pressure at the downstream side has a great influence on the conversion accuracy of the flow rate. In other words, an absolute pressure sensor that measures the pressure at the downstream side is required to have a high measurement accuracy over the wide measurement range. Since the downstream side of the mass flow controller can be connected to apparatuses in various environments, the pressure at the downstream side is varied depending on the usage environment. Accordingly, in the usage environment in which the pressure at the downstream side is greatly varied, there are cases in which it is difficult to accurately measure the flow rate from the differential pressure.
In order to resolve the above problem, it is an object of the present disclosure to provide a mass flow controller capable of accurately measuring the flow rate to enable accurate flow rate control.
A mass flow controller according to an embodiment of the present disclosure includes a pipe through which fluid to be subjected to flow rate control flows, a differential pressure generation mechanism that is arranged in the pipe and that generates differential pressure between the fluid at an upstream side and the fluid at a downstream side, a first valve that is provided in the pipe at the downstream side of the differential pressure generation mechanism, a second valve that is provided in the pipe at the upstream side of the differential pressure generation mechanism, a differential pressure sensor that measures differential pressure between first absolute pressure of the fluid at the upstream side of the differential pressure generation mechanism and second absolute pressure of the fluid at the downstream side of the differential pressure generation mechanism, an absolute pressure sensor that measures the second absolute pressure, a pressure controller that controls a valve opening of the first valve so that the second absolute pressure measured by the absolute pressure sensor has a constant value, a flow rate calculator that calculates a flow rate of the fluid based on the differential pressure measured by the differential pressure sensor and the second absolute pressure measured by the absolute pressure sensor, and a flow rate controller that controls a valve opening of the second valve so that the value of the flow rate calculated by the flow rate calculator is equal to a flow rate setting value.
In the mass flow controller, the differential pressure generation mechanism may be a laminar element.
According to the present disclosure, since the pressure measurement range of the absolute pressure sensor is capable of being narrowed by controlling the valve opening of the first valve so that the second absolute pressure measured by the absolute pressure sensor has a constant value to perform the measurement with high resolution, it is possible to accurately measure the second absolute pressure. In addition, since the pressure measurement range of the differential pressure sensor is capable of being narrowed by setting the second absolute pressure to a constant value to perform the measurement with high resolution in the present disclosure, it is also possible to accurately measure the differential pressure. As a result, it is possible accurately measure the flow rate to enable accurate flow rate control in the present disclosure.
An embodiment of the present disclosure will herein be described with reference to the drawings.
For example, a semiconductor piezoresistive pressure sensor or an electrostatic pressure sensor may be used as each of the differential pressure sensor 5 and the absolute pressure sensor 6.
The laminar element 2 may have a configuration in which metal thin films are laminated. In the laminar element 2 having this configuration, a flow channel having a rectangular cross section is capable of being formed by laminating other metal thin films on and under the metal thin film in which an opening for the flow channel is formed through etching processing or the like. Since the height of the flow channel is dependent on the thicknesses of the metal thin films in the laminar element, the laminar element is characterized in that the flow channel having a uniform height is easily manufactured, compared with a case in which common processing is used. In addition, the flow rate range is easily adjusted by varying the number of the laminated films of the flow channel formed of the metal thin films. However, another laminar element may be used in the embodiment of the present disclosure.
The pressure controller 10 controls the valve opening of the valve 3 so that the absolute pressure P2 measured by the absolute pressure sensor 6 is equal to a predetermined pressure setting value. The downstream pressure between the laminar element 2 and the valve 3 is controlled so as to have a constant value.
The flow rate calculator 11 calculates a flow rate Q of the fluid based on the differential pressure ΔP measured by the differential pressure sensor 5 and the absolute pressure P2 measured by the absolute pressure sensor 6 according to Equation (1):
Q=K×(ΔP+2×P2)×ΔP (1)
In Equation (1), K denotes the constant concerning the physical property of the fluid and the shape of the flow channel. Equation (1) is based on the premise that the laminar element 2 is used as the differential pressure generation mechanism.
The flow rate controller 12 controls the valve opening of the valve 4 so that the value of the flow rate Q calculated by the flow rate calculator 11 is equal to a predetermined flow rate setting value.
In the present embodiment, the provision of the valve 3 for pressure control at the downstream side enables the flow rate control while controlling the pressure at the downstream side so as to have an arbitrary value in disregard of the influence of the variation in pressure at the downstream side of the mass flow controller. Accordingly, the measurement range of the absolute pressure sensor 6 is capable of being designed to an appropriate range within the control range of the pressure at the downstream side in the present embodiment. Consequently, since the pressure measurement range of the absolute pressure sensor 6 is capable of being narrowed to perform the measurement with high resolution, it is possible to accurately measure the absolute pressure P2 without using an accurate pressure sensor.
As apparent from the relationship of the flow rate-differential pressure characteristics illustrated in
Accordingly, since the differential pressure ΔP and the absolute pressure P2 are capable of being accurately measured in the present embodiment, it is possible to accurately measure the flow rate to enable accurate flow rate control.
The pressure controller 10, the flow rate calculator 11, and the flow rate controller 12 described in the present embodiment are capable of being realized by a computer including a central processing unit (CPU), a storage unit, and an interface and a program that controls these hardware resources. An example of the configuration of the computer is illustrated in
The computer includes a CPU 200, a storage unit 201, and an interface unit (I/F) 202. The valves 3 and 4, the differential pressure sensor 5, the absolute pressure sensor 6, and so on are connected to the I/F 202. The program for realizing a flow rate controlling method of an embodiment of the present disclosure in such a computer is stored in the storage unit 201. The CPU 200 performs the processing described in the present embodiment in accordance with the program stored in the storage unit 201.
The present disclosure is applicable to a mass flow controller.
Number | Date | Country | Kind |
---|---|---|---|
2020-153807 | Sep 2020 | JP | national |