1. The Field of the Invention
The present invention relates to mass flow hoppers and their method of manufacture and retrofitting.
2. The Relevant Technology
Bulk materials, such as grains, legumes, salt, and other granulated materials, have historically been stored in large silos prior to shipment for end use. A silo typically comprises: (1) a large storage compartment in which the bulk material is held, (2) a bulky feeder which controls the flow of the bulk material out of the silo, and (3) a substantially funnel shaped hopper which feeds the bulk material from the storage compartment to the bulky feeder. Silos are generally designed in an elevated upstanding configuration such that the bulk material can freely flow from the storage compartment, down through the hopper, and out through the bulky feeder solely under the force of gravity.
One of the critical factors in achieving free flow of bulk material through a silo is the configuration of the hopper. That is, the hopper must be shaped relative to the type of bulk material that is being stored. If the hopper has the wrong slope, curve, or other configuration, the bulk material can become blocked within the hopper. As some silos can hold hundreds of thousands of pounds of bulk material which bears against the material blocked within the hopper, clearing a blocked hopper can be a difficult, dangerous, and time consuming process.
Hoppers are typically made of large sections of prefabricated steel that are assembled within the base of the storage compartment by bolting and/or welding. Hoppers are currently designed using complex computer modeling programs so as to ensure a configuration that provides optimum flow for a given bulk material and is able to withstand the tremendous forces applied by the bulk material. One of the drawbacks of conventional hoppers and their method of manufacture is that it is very expensive and time consuming to fabricate a large steel hopper having the precise contour to optimize flow and then assemble the large heavy sections of the hopper within the storage compartment.
An additional problem with existing silos is that many of them were made prior to the development of the current computer modeling programs which ensure a design that optimizes flow properties. As such, some silos are subject to repeated blocking. In addition, in some situations it is desirable to change the bulk material that is being stored within a silo. In so doing, the hopper may no longer be configured to provide free flow of material. In each of the above situations, to make the silos functional it is necessary to cut out the original hopper and then construct a new hopper having the desired configuration. As with the formation of an original hopper, however, retrofitting a silo with a new hopper formed of prefabricated steel sections is an expensive and time consuming process.
Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.
The present invention is directed towards mass flow hoppers and manufacturing methods thereof in which the mass flow hoppers are configured to promote and optimize the free flow of bulk materials. In addition, the present invention relates to methods for retrofitting mass flow hoppers into preexisting storage facilities.
Depicted in
In the embodiment depicted, storage structure 9 has a ceiling 14, a floor 16, and an annular boundary wall 18 extending therebetween. Boundary wall 18 has an interior surface 19 bounding a chamber 20. Although the storage structure 9 can be any size, by way of example, chamber 20 can have a volume greater than 1,000 cubic meters, greater than 15,000 cubic meters, or greater than 35,000 cubic meters. It is appreciated that storage structure 9 may have a variety of transverse configurations such as, but not limited to, circular, square, oval, polygonal, and the like. In this regard, boundary wall 18 can comprise a single continuous wall or a plurality of interconnected walls. Furthermore, in alternative embodiments, floor 16 and ceiling 14 are not required. For example, boundary wall 18 can have an open top and be supported off the ground by posts or other supporting structures.
Extending through ceiling 14 so as to communicate with chamber 20 is an inlet port 23. Inlet port 23 is configured to allow bulk material to be fed therethrough into chamber 20. In alternative embodiments, inlet port 23 can also be formed through boundary wall 18. As will be discussed below in greater detail, storage structure 9 also has at least one outlet port 21 to allow the bulk materials to be transferred out of chamber 20.
Hopper assembly 10 is installed within chamber 20 of storage structure 9 between ceiling 14 and floor 16. The portion of chamber 20 bounded between hopper assembly 10 and ceiling 14 is a storage compartment 25 configured to house the bulk material. Hopper assembly 10 comprises a hopper 22, a support beam 24, and an outlet assembly 72.
Hopper 22 comprises a sidewall 30 having a substantially funnel shaped interior surface 36 and an opposing exterior surface 38. Interior surface 36 bounds a progressively constricting flow channel 37 extending between an enlarged first end 26 bounding a first opening 32 and an opposing radially constricted second end 28 bounding a second opening 34. Sidewall 30 thus tapers like a funnel as it progresses from first opening 32 to second opening 34. Although hopper 22 can be any desired size, in one embodiment flow channel 37 has a volume greater than 5 cubic meters, greater than 40 cubic meters, or greater than 90 cubic meters.
In the embodiment shown in
In one embodiment, interior surface 36 of sidewall 30 is a smooth surface that gradually changes in radius of curvature as it extends from first opening 32 to second opening 34. In other embodiments, interior surface 36 can have a substantially constant radius of curvature, can be comprised of two or more discrete radius of curvatures, can comprise combinations of curved and linear sections, can comprise two or more different linear sections, and can comprise combinations of the above. For example, depicted in
With reference to
Support member 24 comprises an annular beam that radially inwardly projects from interior surface 19 of boundary wall 18 so as to encircle storage compartment 25. First end 26 of hopper 22 is integrally formed with support member 24 so that support member 24 structurally supports hopper 22 within chamber 20. In an alternative embodiment, support member 24 need not extend continuously around storage structure 9 but may be comprised of radially spaced apart segments which support hopper 22. If desired, a portion of hopper 22 can also be directly supported by boundary wall 18 of storage structure 9. As will be discussed below in greater detail, support member 24 and hopper 22 are typically comprised of a cementitious material, such as shotcrete, having a reinforcing member, such as conventional rebar, embedded therein.
As discussed below in greater detail, outlet assembly 72 comprises in part a tubular conduit 75 having a first end 71 and an opposing second end 73. Tubular conduit 75 is typically comprised of a metal such as steel. First end 71 of conduit 75 is coupled in fluid communication with second end 28 of hopper 22. As such, bulk material traveling through hopper 22 passes through conduit 75. As will be discussed below in more detail, outlet assembly 72 also functions in part to provide structural support for hopper 22 during the formation thereof. In alternative embodiments, conduit 75 can have the same alternative transverse cross sections as second end 28 of hopper 22. Alternatively, the portion of conduit 75 that is in communication with second opening 34 of hopper 22 may have a different geometric configuration.
Bulky feeder 11 is partially disposed within chamber 20 of storage structure 9 below hopper assembly 10. Bulky feeder 11 comprises a top surface 41 the extends between an inlet end 43 and an opposing outlet end 45. An inlet port 47 is formed on top surface 41 at inlet end 43. Second end 73 of conduit 75 is coupled in fluid communication with inlet port 47 of bulky feeder 11. Outlet end 45 of bulky feeder 11 outwardly projects through access 21 of storage structure 9 and terminates at an end face 49. A discharge port 51 is formed at end face 49. Although not shown, supports extend from floor 16 and/or boundary wall 19 so as to retain bulky feeder 11 in the desired position.
In the above configuration, bulk material stored in storage compartment 25 travels under the force of gravity down through hopper 22 and outlet assembly 72 and into bulky feeder 11. Conventional gates known to those skilled in the art are housed within bulky feeder 11 and can be selectively opened and closed. When the gates are in the open position, the bulk material freely flows through bulky feeder 11 and out discharge port 51. When the gates are closed, the flow of bulk material is stopped. Bulky feeder 11 may also assist urging material out of outlet assembly 72. It will be appreciated that bulky feeder 11 is exemplary of a variety of dispensing devices which may be used to assist in dispensing bulk materials from hopper 22.
The inventive hopper assemblies of the present invention allows for more efficient design and building of hoppers than was previously enabled under the prior art. Described below are examples of methods for manufacturing hopper assembly 10 incorporating features of the present invention.
Before manufacturing hopper assembly 10, a certain amount of preparatory work is helpful in order to ensure that an optimum design is achieved. For example, the engineers designing the hopper assembly should determine (1) the location of first end 26 of hopper 22 along boundary wall 18 of storage structure 9; (2) the configuration for hopper 22 to achieve optimal free flow of bulk material therethrough, the configuration being based largely on the properties of the bulk material being stored; and (3) based on the configuration of hopper 22 and the location of first end 26 of hopper 22, the location of second end 73 of outlet assembly 72.
With reference to
In one embodiment, form 42 comprises a plurality of flexible, sheet-like panels that have been sewn, seamed, welded, crimped, or otherwise secured together so as to achieve the desired shape. In one embodiment, form 42 is comprised of a flexible sheet which is comprised of a polymeric material; fabric; a woven material comprised of natural, synthetic, and/or metallic fibers; mesh; chain link; a composite material with reinforcing; or combinations thereof. For example, the sheet can be formed from a cross laminate plastic, a reinforced plastic coated fabric, such as a polyvinyl chloride impregnated Dacron, or any other suitable material. Although not required, form 42 can be comprised of a lightweight gas and liquid impermeable flexible sheet. Furthermore, form 42 can be formed of one or more layers of material that are overlapping and/or secured together. In yet other embodiments, form 42 can be comprised of a single sheet or layer of material that is selectively seamed, sewn, or otherwise contoured to obtain the desired configuration.
Once form 42 is created, first end 44 of form 42 is secured to boundary wall 18 of storage structure 9 by an anchoring assembly 54. Anchoring assembly 54 is one means for removably securing form 42 to boundary wall 18 of storage structure 9. As best shown in
Once bolts 60 are secured, clamps 58 are mounted thereon. Each clamp 58 has a substantially C-shaped transverse cross section and comprises a back 61 having a first leg 62 and a spaced apart second leg 64 projecting therefrom. A plurality of longitudinally spaced part apertures 66 extend through back 61. Apertures 66 are configured such that clamps 58 can be received over bolts 60 so that bolts 60 pass through corresponding apertures 66. Once clamps 58 are received on bolts 60, a nut 70 is threaded onto each bolt 60 so as to selectively advance clamps 58 toward boundary wall 18.
First end 44 of form 42 is disposed between second leg 64 of clamps 58 and boundary wall 18. Similarly, plates 56 are positioned between first end 44 of form 42 and second leg 64 of clamps 58. In this position, nuts 70 are tightened on bolts 60 so that second leg 64 of clamps 58 bias first end 44 of form 42 against boundary wall 18. As a result, first end 44 of form 42 is removably secured to boundary wall under frictional engagement. Plates 56 provide a large gripping surface and more uniformly distribute the biasing force over first end 44 of form 42. In alternative embodiments, however, plates 56 are not required. For example, in contrast to using plates 56, a retention member, such as a rod, can be secured to first end 44 of form 42. In one embodiment the retention member is received within a loop formed at first end 44 of form 42. The retention member can then be received between legs 62 and 64 of clamps 58. By biasing clamps 58 against boundary wall 18, the retention member and thus first end 44 of form 42 is captured between legs 62 and 64 of clamps 58. In yet other embodiments, it is appreciated that form 42 can be secured to boundary wall 18 by being directly connected to bolts 60 or by using other conventional clamps, fasteners, and the like.
Returning to
Radially outwardly projecting from conduit 75 at first end 71 are a plurality of spaced apart stud anchors 74. An annular upper flange 84 encircles and radially outwardly projects from conduit 75 below stud anchors 74. An annular lower flange 86 encircles and radially outwardly projects from conduit 75 at or toward second end 73 of conduit 75. In one embodiment, upper flange 84 is rigidly fixed to conduit 75 while lower flange 86 can be selectively adjusted along the length of conduit 75.
The present invention includes means for removably securing conduit 75 to second end 46 of form 42. By way of example and not by limitation, a plurality of spaced apart bolts 110 are mounted to first end 71 of conduit 75 so as to radially project inward therefrom. Second end 46 of form 42 is received within first end 71 of conduit 75. The free end of bolts 110 are then passed through corresponding holes formed in second end 46 of form 42. Large gaskets 112 are received over bolts 110 following which nuts 114 are threaded onto bolts 110. As nuts 114 are tightened, second end 46 of form 42 is compressed between gaskets 112 and the interior surface of conduit 75, thereby securing conduit 75 to form 42. In alternative embodiments, it is appreciated that there are a number of other conventional clamps, fasteners, and the like that can be used to removably secure conduit 75 to form 42.
Outlet assembly 72 assists in a number of different functions. For example, outlet assembly 72 function as a weight holding down second end 46 of form 42. That is, as a result of the weight of outlet assembly 72, form 42 is securely held in the desired configuration for forming hopper 22. Outlet assembly 72 also functions as the mechanism for coupling hopper 22 to bulky feeder 11. In one embodiment, conduit 75 is purposely configured longer than is necessarily. Once hopper 22 is fully formed, conduit 75 can be easily cut to the desired length by way of a torch or other cutting tool.
As also shown in
As best shown in
Extending through central openings 95 of torsion rings 90 are a plurality of strands of reinforcing rod 92. In one embodiment, reinforcing rod 92 comprises conventional steel rebar formed in a loop so as to circle through torsion rings 90. The plurality of reinforcing rods 92 are secured within torsion rings 90 by ties or other fasteners extending from torsion rings 90. It is appreciated that torsion rings 90 and reinforcing rod 92 can be attached to boundary wall 19 in discrete sections and then tied together.
Turning to
Support layer 94 is typically comprised of a cementitious material. As used in the specification and appended claims, the term “cementitious material” is intended to include any material that includes cement. Cementitious materials typically include graded sand and/or any number of conventional additives such as fillers, gravel, fibers, hardeners, chemical additives or others which function to improve properties relating to strength, finishing, spraying, curing, and the like. In one embodiment, the cementitious material comprises sprayable, commercially available cementitious material such as “Gunite” or “Shotcrete”.
For efficiency, it is desirable that the cementitious material be sprayable. For example, the cementitious material can be applied through a hose at high velocity which results in dense material having a cured compressive strength in a range between about 5,000 psi (3,500 Pa) to about 10,000 psi (7,000 Pa). Alternatively, support layer 94 can be applied by hand, such as by use of a trowel, or other techniques.
Although support layer 94 can be formed as a single application layer, support layer 94 is typically comprised of multiple overlapping sub-layers. For example, support layer 94 comprises a first sub-layer 94a and a second sub-layer 94b applied over the top thereof. The various sub-layers 94a, 94b of support layer 94 can be comprised of the same or different materials. Likewise, cementitious materials of different grade or properties can be used. Although not required, each successive sub-layer 94a, 94b of support layer 94 is typically applied before the previous sub-layer is allowed to cure completely so as to effect maximum bonding between the successive sub-layers.
As depicted in
Reinforcing mat 97 also comprises vertically spaced apart horizontal rebar 98 that encircle vertical rebar 96 and form 42. In one embodiment, horizontal rebar 98 form discrete loops which are held in place by conventional ties or other fasteners connecting horizontal rebar 98 to vertical rebar 96. In this embodiment, horizontal rebar 98 function to radially draw in vertical rebar 96 so that both vertical rebar 96 and horizontal rebar 98 contour with form 42.
It is appreciated that depending on the size, configuration, and other engineering requirements of hopper 22, reinforcing mat 97 can be comprised of members of one or more different sizes and can be used at different locations within support layer 94. Furthermore, reinforcing mat 97 can be positioned at one or more different spacings at different locations within support layer 94. For example, since the first end 26 of hopper 22 carries more weight, reinforcing mat 97 is typically larger and/or closer together at first end 26 of hopper 22 than at second end 28. In yet other embodiments, it is appreciated that reinforcing mat 97 can be placed in two or more outwardly spaced apart layers. It is appreciated that the type and/or size of reinforcing mat 97 may differ between different layers. The type and number of reinforcing mat 97 and sub-layers 94 will vary depending on the engineering requirements of a particular hopper assembly 10.
In one method of formation, first sub-layer 94a is applied over form 42 prior to placement of reinforcing mat 97. Reinforcing mat 97 is then placed adjacent to the exposed surface of first sub-layer 94a. Second sub-layer 94b is then applied over reinforcing mat 97. It is appreciated that reinforcing mat 97 and the various sub-layers of support layer 94 can be applied in a variety of different steps. For example, reinforcing mat 97 can be placed prior to the application of first and second sub-layers 94a and 94b.
Although not required, in one embodiment to help ensure that support layer 94 initially secures to exterior surface 52 of form 42 as support layer 94 is initially applied thereto, a bonding agent 99 (
In one embodiment, the combination of reinforcing mat 97 and support layer 94 form sidewall 30 of hopper 22. Likewise, frame assembly 88 and the cementitious material formed thereon form support beam 24. Hopper 22 is integrally formed with and supported by support beam 24. Bolts 91 which secure frame assembly 88 to boundary wall 18 of storage structure 9 transfer loads from hopper 22 to boundary wall 18 of storage structure 9.
With reference to
The above discussed method for manufacturing hopper 22 comprises using a form 42 which is flexible. The present invention also envisions that form 42 can be rigid. For example, form 42 can be comprised of conventional concrete form materials such as plywood, chipboard, metal sheets, or other substantially rigid forms that can be either prefabricated or constructed on site. In either event, once form 42 is created, support layer 94 is applied to the exterior or bottom surface of form 42 so as to produce hopper 22 as discussed above. Thus, in one embodiment form 42 can comprise a one-sided form wherein a cementitious support layer 94 can be sprayed on form 42 without producing any significant hydrostatic pressure on form 42. It is appreciated that where form 42 is made of a hard material such as metal, form 42 can be retained as the interior surface of hopper 22 on which the bulk material flows.
Once hopper 22 is formed, outlet assembly 72 is coupled with bulky feeder 11. Specifically, as discussed above, conduit 75 is cut to the desired length so that it matches with the intended placement of bulky feeder 11. One of the benefits of having conduit 75 is that it is significantly easier to cut than hopper 22 and it allows for some tolerance in the manufacture of hopper assembly 10. In alternative embodiments, it is also appreciated that hopper assembly 10 can be manufactured without outlet assembly 72. In this embodiment, hopper 22 would couple directly with bulky feeder 11.
Once conduit 75 is cut to the desired length, bulky feeder 11 is positioned within storage structure 9. Lower flange 86 of outlet assembly 72 is then selectively positioned along the length of conduit 75 so as to couple with inlet port 47 of bulky feeder 11. In alternative embodiments it is appreciated that bulky feeder 11 and hopper 22 need not be disposed within storage structure 9 but can be freely exposed.
It is appreciated from the foregoing that hopper assembly 10 can be manufactured quickly and efficiently compared to the prior art. Hopper assembly 10 can also be designed in any configuration optimal for the free flow of bulk material therethrough.
In addition to forming hopper assembly 10 in a new storage facility, hopper assembly 10 is ideally suited for being retrofitted into an existing storage facility having an inefficient or problematic hopper. For example, depicted in
Once the optimal design is determined for hopper assembly 10, the location is determined for the placement on boundary wall 126 of first end 26 of hopper 22. The process is then repeated as discussed above with regard to
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/410,528, filed Sep. 13, 2002 which is incorporated herein by specific reference.
Number | Name | Date | Kind |
---|---|---|---|
2155587 | Fairbank | Apr 1939 | A |
3071297 | Lee | Jan 1963 | A |
3622656 | Dewey et al. | Nov 1971 | A |
4125970 | Vidal | Nov 1978 | A |
4282988 | Hulbert, Jr. | Aug 1981 | A |
5782524 | Heider et al. | Jul 1998 | A |
6055781 | Johanson | May 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040052590 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60410528 | Sep 2002 | US |