MASS PRODUCTION OF PERSONALIZED HUMAN ENGINEERED HEART TISSUES

Information

  • Research Project
  • 8927657
  • ApplicationId
    8927657
  • Core Project Number
    R43GM109735
  • Full Project Number
    5R43GM109735-02
  • Serial Number
    109735
  • FOA Number
    PA-11-335
  • Sub Project Id
  • Project Start Date
    9/15/2014 - 10 years ago
  • Project End Date
    8/31/2017 - 7 years ago
  • Program Officer Name
    MAAS, STEFAN
  • Budget Start Date
    9/1/2015 - 9 years ago
  • Budget End Date
    8/31/2017 - 7 years ago
  • Fiscal Year
    2015
  • Support Year
    02
  • Suffix
  • Award Notice Date
    9/4/2015 - 9 years ago
Organizations

MASS PRODUCTION OF PERSONALIZED HUMAN ENGINEERED HEART TISSUES

DESCRIPTION (provided by applicant): Cardiomyopathy has various forms including hypertrophic cardiomyopathy (HCM), 1 in 500 prevalence, could cause sudden cardiac death in athletes, Dilated Cardiomyopathy (DCM), 1 in 5000 prevalence, results in an enlarge left ventricle, Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C), 1 in 1000 prevalence, causes cardiac fibrosis. Yearly over $ 200 billion is spent by American healthcare system for cardio- vascular treatment. Inter-individual variability in efficacy and toxicity respone is rather large for cardiovascular treatments. Safe and effective cardiovascular medicine can be achieved by co-development of companion diagnostics and novel drugs. Objective: To develop in vitro disease model that recapitulate individual patient's cardiomyopathy in engineered heart tissues (EHTs) generated using the patient's cells. The automation of cell, tissue culture platform, and novel cardiomyocytes differentiation protocol will reduce cost, increase productivity and reproducibility of generating those disease models for drug screening and diagnostics development. Rationale: The human iPSC technology moved Diseases in a dish idea to reality for personalized medicine. Yet the cost of iPSC technology slowed its progress. Automated stem cell culture with an economic robotics produces patient-specific samples for drug screening cost effectively. Immediate goal: To translate cardiac differentiation protocol developed in the academic labs of Dr. Palecek at University of Wisconsin into a commercially viable format. Feasibility of using the system for EHT fabrication with cells isolated from muscular dystrophy patients will be evaluated in collaboration with Dr. Strande at the Medical College of Wisconsin. Proposed project: Aim 1 is the development of high-throughput human cardiomyocytes differentiation optimization system and their automated mass-production for EHT fabrication. Aim 2 is to demonstrate EHT based muscular dystrophy model development. Measure of Success: It will be measured by 1) reproducible mass-production of ~400 EHT production from a batch of stem cell culture 2) production of physiologically relevant EHTs using mass produced CMs, 3) reconstitution of cardiac disease phenotype in patient. Additional Impact: High-throughput platform for screening stem cell culture conditions can be applied to all projects of stem cell research. A modification of technology could produce enough cardiac cells for cell or engineered tissue transplant in clinic. One billion cells were estimated to be a sufficient number of cells to treat post infarct injury.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R43
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    349446
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
  • Funding ICs
    NIGMS:349446\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    INVIVOSCIENCES, INC.
  • Organization Department
  • Organization DUNS
    610347713
  • Organization City
    MADISON
  • Organization State
    WI
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    537191267
  • Organization District
    UNITED STATES