The present invention relates to the technical field of mass analysis, and particularly to a mass spectrometer, an ion optical device, and a method for ion manipulation in a mass spectrometer.
A quadrupole-orthogonal time-of-flight (TOF) mass spectrometer typically operates in a mode in which ions generated from an ion source pass through a series of vacuum ports and ion guiding devices, and enter a quadrupole mass analyzer for mass selection. The selected parent ions enter a collision cell and are disassociated, to produce many daughter ions. The daughter ions enter a pulsed acceleration region before a flight chamber, and are orthogonally accelerated. Due to different flight times of the ions, a high-resolution and high-precision mass spectrum is generated. Wherein, the quadrupole mass spectrometer generally continuously operates in a scan mode, and the TOF mass spectrometer operates in a pulse mode. If the ions before the TOF mass spectrometer are not modulated in any way, for the pulse voltage in the acceleration region before the flight chamber, a next pulse can be generated only after the ions with the largest m/z ratios reach the detector. However, the ions enter the acceleration region continuously. As a result, the duty cycle that the ions are used by the TOF mass spectrometer is too low, thus causing the ion loss. If the distance from an electrode in the acceleration region to the detector is D, and an effective width of the electrode in the acceleration region is Al (which may be deemed as a width of the ion beam that is accelerated before the acceleration region and forms a mass spectrum finally on the detector, and generally smaller than the actual width of the acceleration electrode), the maximum ion utilization efficiency (or referred to as duty cycle) of the instrument is related with m/z ratio of the ions:
where (m/z)max is an upper limit of the mass range. In most orthogonal TOF mass spectrometers, the duty cycle ranges from about 5% to 30%. If an ion gate or ion trap is used, although the ions can impulsively enter the pulsed acceleration region before the TOF mass spectrometer, the ions experience a flight process before entering the acceleration region, therefore the ions of different m/z ratios are broadly distributed, and only ions of a certain range of m/z ratios can reach the acceleration region substantially at the same time. Therefore, the mass range is greatly limited.
Efforts are made to try to solve the problem in the prior art. For example, in U.S. Pat. No. 6,770,872 or U.S. Pat. No. 7,208,726, a three-dimensional ion trap is positioned before the TOF acceleration region, such that the ion trap and the TOF mass spectrometer operate cooperatively. In U.S. Pat. No. 7,714,279, a radio-frequency guiding device is used to store and release ions, ions with a small m/z ratio are released initially, and the pulse acceleration voltage is synchronized with the released ions by adjusting the parameters of a following device. In Patent No. WO2007/125354, a radio-frequency potential barrier is formed in a stacked-ring electrode array arranged along an axial direction, and the sequential release of ions according to the m/z ratios can be achieved by changing the balance between a traveling wave voltage or DC voltage along the axial direction and the radio-frequency potential barrier. In U.S. Pat. No. 7,208,728 and U.S. Pat. No. 7,329,862, two linear ion traps are disposed along the axial direction, one is for resonant excitation in the axial direction to selectively eject ions out, and the other is only for synchronization with a pulse acceleration voltage, rather than for mass selection. In this way, a duty cycle of more than 60% is obtained. The most effective and simple solution at present may be a device called “Zeno trap” proposed in U.S. Pat. No. 7,456,388, in which ions are sequentially ejected in an order of m/z ratios from largest to smallest by shifting the balance between the radio-frequency potential barrier and the DC potential barrier at the end of the device in an axial direction. The released ions are accelerated along the axial direction to have a low energy (20-50 eV), ions with a large m/z ratio have a low speed, and thus are gradually caught up by ions with a small m/z. By adjusting the speed of the released ions, ions of different m/z ratios can reach the acceleration region before the flight chamber substantially at the same time. In this manner, a duty cycle of nearly 100% can be obtained.
However, the above solutions still have problems. For example, as is known to those skilled in the art, for the Zeno trap, after the ions are released along the axial direction by overcoming the potential barrier, a long period of time is needed to cool in the radial direction, or otherwise, it is difficult to attain a high resolution of the TOF mass spectrometer. Therefore, the scanning frequency of the Zeno trap is generally about 1 kHz, which is much slower than a common pulse acceleration frequency (5-10 kHz). Accordingly, a quite high storage capacity is needed for obtaining a high ion utilization efficiency at a low scanning speed. However, the storage capacity of the Zeno trap is not higher than that of a common linear ion trap, that is, not higher than an order of magnitude of 105. As such, the dynamic range of the instrument is heavily limited. The ion storage capacity can be enhanced to some extent by extending the length of the Zeno trap. However, this will lead to a bulky instrument on one hand, and a large amount of ions are broadly distributed in the axial direction on the other hand. Therefore, an extended period of time is needed for release, whereby the scanning speed of the instrument is further reduced.
Therefore, there is a need for an improved technical solution to solve the above problems.
In view of the disadvantages existing in the prior art, an objective of the present invention is to provide a mass spectrometer, an ion optical device, and a method for ion manipulation in a mass spectrometer, to solve the problem of incompatibility between the ion utilization efficiency and the volume of the mass spectrometer existing in the prior art.
To achieve the above and other relevant objectives, the present invention provides a mass spectrometer, including a mass analyzer. The mass spectrometer includes an ion guiding device, including two ring electrode arrays that are positioned in parallel with each other, each of the ring electrode arrays consisting of at least two sets of ring electrodes that are concentrically disposed, a direction pointing from the ring electrode to a ring center being defined as a radial direction, and a direction perpendicular to a plane of the ring electrode being defined as an axial direction; and a power supply means, configured to apply a voltage on at least a part of the ring electrodes to form a radio-frequency electric field and a DC electric field. By means of the radio-frequency electric field and the DC electric field, ions are allowed to implement in sequence, in a region between the two arrays, the motions of (1) the ions being guided to enter the region along the axial direction and stored in the region; (2) the ions in the region being driven to move along the radial direction by the DC electric field, and the radio-frequency electric field generating a radio-frequency potential barrier to block the ions moving along the radial direction; (3) the ions being sequentially released along the radial direction in an order of the mass-to-charge ratios from largest to smallest, by scanning the amplitude of the radio-frequency electric field or the DC electric field; and (4) the released ions being allowed to exit the ion guiding device along the axial direction, and to enter the mass analyzer for mass analysis.
In an embodiment of the present invention, each of the ring electrode arrays consists of at least three ring electrodes that are concentrically disposed.
In an embodiment of the present invention, the mass analyzer operates in a pulse mode, and an ion extraction region is disposed at a stage before the mass analyzer; and the released ions of different mass-to-charge ratios have substantially the same kinetic energy along the axial direction, and reach the ion extraction region substantially at the same time.
In an embodiment of the present invention, the mass analyzer is a TOF mass analyzer, and an ion optical lens is disposed at a stage after the ion guiding device for adjusting the ion beam of the ions of different mass-to-charge ratios exiting the ion guiding device.
In an embodiment of the present invention, the type of the mass analyzer includes quadrupole; and the released ions of different mass-to-charge ratios enter the mass analyzer along the axial direction, and a scanning voltage of the mass analyzer is synchronized according to the mass-to-charge ratios of the released ions.
In an embodiment of the present invention, the gas pressure in the ion guiding device is 0.002-0.05Pa, 0.02-0.5 Pa, 0.2-5 Pa, 2-50Pa, or 20-500 Pa.
In an embodiment of the present invention, the mass spectrometer includes a quadrupole mass analyzer and a collision cell located at a stage before the ion guiding device.
In an embodiment of the present invention, the ions enter or exit the ion guiding device along the axial direction at a position that is the center of the ring electrodes in one set of the ring electrode arrays.
In an embodiment of the present invention, the ions enter or exit the ion guiding device along the axial direction at a position that is between two adjacent ring electrodes in one set of the ring electrode arrays.
In an embodiment of the present invention, the region where the ions are stored is located between the two ring electrode arrays, and the stored ions are distributed annularly.
To achieve the above and other relevant objectives, the present invention provides a mass spectrometer, including a mass analyzer. The mass spectrometer includes an ion guiding device, including two ring electrode arrays that are positioned in parallel with each other, each of the ring electrode arrays consisting of at least two ring electrodes that are concentrically disposed, a direction pointing from the ring electrode to a ring center being defined as a radial direction, and a direction perpendicular to a plane of the ring electrode being defined as an axial direction; and a power supply means, configured to apply a voltage on at least a part of the ring electrodes, to form a radio-frequency electric field and a DC electric field. By means of the radio-frequency electric field and the DC electric field, ions are allowed to implement in sequence, in a region between the two arrays, the motions of (1) the ions being guided to enter the region along the axial direction and stored in the region; (2) the ions of different mass-to-charge ratios being selectively excited along the radial direction under the action of an alternating voltage, or being sequentially excited along the radial direction according to the mass-to-charge ratios, and the excited ions being allowed to approach a position at the center of the ring electrode along the radial direction; and (3) the excited ions being allowed to exit the ion guiding device along the axial direction and to enter the mass analyzer for mass analysis.
In an embodiment of the present invention, each of the ring electrode arrays consists of at least three ring electrodes that are concentrically disposed.
In an embodiment of the present invention, during exciting the ions, the radio-frequency electric field formed with a radio-frequency voltage is an approximate quadrupole field.
In an embodiment of the present invention, during the process of exciting the ions, the DC electric field formed by a DC voltage has a quadratic field distribution along the radial direction.
To achieve the above and other relevant objectives, the present invention provides a mass spectrometer, including a mass analyzer. The mass spectrometer includes an ion guiding device ion guiding device, including two sets of electrode arrays that are positioned in parallel with each other, each set of the electrode arrays consisting of at least three linear electrode assemblies that have a radial distribution, a direction of extension of the linear electrode assembly being defined as a radial direction, a direction perpendicular to a plane of each electrode array being defined as an axial direction, and each of the electrode assemblies consisting of multiple segmented electrodes along the radial direction; and a power supply means, configured to apply a voltage on at least a part of the segmented electrodes to form a radio-frequency electric field and a DC electric field. By means of the radio-frequency electric field and the DC electric field, ions are allowed to implement in sequence, in a region between the two arrays, the motions of: (1) the ions being guided to enter the region along the axial direction and stored in the region; (2) the ions being selectively released according to the mass-to-charge ratios or being sequentially released along the radial direction in an order of the mass-to-charge ratios from largest to smallest, by scanning the amplitude of a radio-frequency voltage or a DC voltage; and (3) the released ions being allowed to exit the ion guiding device along the axial direction at a position approaching the center of the electrode array having a radial distribution and to enter the mass analyzer.
To achieve the above and other relevant objectives, the present invention provides an ion optical device, configured to implement at least transport, storage, cooling, ejection, mass analysis, and ion beam compression of ions. The ion optical device includes two sets of ring electrode arrays that are positioned in parallel with each other, each set of the ring electrode arrays consisting of at least two ring electrodes that are concentrically disposed, a direction pointing from the ring electrode to a ring center being defined as a radial direction, and a direction perpendicular to a plane of the ring electrode being defined as an axial direction. A DC voltage is applied to the ring electrodes of the two sets of ring electrode arrays to form a DC electric field, a radio-frequency voltage is applied to at least a part of the ring electrodes in at least one set of the ring electrode arrays, and the radio-frequency voltages on adjacent ring electrodes have equal amplitudes and reverse phases to form a radio-frequency electric field.
In an embodiment of the present invention, by means of the radio-frequency electric field and the DC electric field, the ion optical device allows ions to implement in sequence, in a region between the two arrays, the motions of: (1) the ions being guided to enter the region between the two arrays along the axial direction and stored in the region; (2) the ions in the region being driven to move along the radial direction by the DC electric field, and the radio-frequency electric field generating a radio-frequency potential barrier to block the ions moving along the radial direction; (3) the ions being sequentially released along the radial direction in an order of the mass-to-charge ratios from largest to smallest, by scanning the amplitude of the radio-frequency electric field or the DC electric field; and (4) the released ions being allowed to exit the ion guiding device along the axial direction, and to enter the mass analyzer for mass analysis.
In an embodiment of the present invention, each of the ring electrode arrays consists of at least three ring electrodes that are concentrically disposed.
In an embodiment of the present invention, at least one ring electrode in each set of the ring electrode arrays provides a DC potential barrier to confine the ions in the radial direction, and the radio-frequency electric field provides a radio-frequency potential barrier to confine the ions in the axial direction.
In an embodiment of the present invention, a DC voltage bias is applied between the two ring electrode arrays, to drive the ions to approach a surface of one of the ring electrode arrays, and a radio-frequency potential barrier is provided at the surface of the array, to offset the DC voltage bias, thus confining the ions.
To achieve the above and other relevant objectives, the present invention provides a method for ion manipulation in a mass spectrometer, including: providing an ion guiding device, including two ring electrode arrays that are positioned in parallel with each other, each of the ring electrode arrays consisting of at least two ring electrodes that are concentrically disposed, a direction pointing from the ring electrode to a ring center being defined as a radial direction, and a direction perpendicular to a plane of the ring electrode being defined as an axial direction; and providing a power supply means, configured to apply a voltage on at least a part of the ring electrodes to form a radio-frequency electric field and a DC electric field. By means of the radio-frequency electric field and the DC electric field, ions are allowed to undergo in sequence, in a region between the two arrays, the motions of (1) the ions being guided to enter the region along the axial direction and stored in the region; (2) the ions being selectively released according to the mass-to-charge ratios or being sequentially released along the radial direction in an order of the mass-to-charge ratios from largest to smallest, by scanning the amplitude of the radio-frequency electric field or the DC electric field; and (3) the released ions being allowed to exit the ion guiding device along the axial direction and to enter the mass analyzer for mass analysis.
In an embodiment of the present invention, each of the ring electrode arrays consists of at least three ring electrodes that are concentrically disposed.
In an embodiment of the present invention, the mass analyzer operates in a pulse mode, and an ion extraction region is disposed at a stage before the mass analyzer; and the released ions of different mass-to-charge ratios have substantially the same kinetic energy along the axial direction, and reach the ion extraction region substantially at the same time.
In an embodiment of the present invention, the type of the mass analyzer includes quadrupole; and the released ions of different mass-to-charge ratios enter the mass analyzer along the axial direction, and a scanning voltage of the mass analyzer is synchronized according to the mass-to-charge ratios of the released ions.
In an embodiment of the present invention, the mass analyzer is a TOF mass analyzer, and an ion optical lens is disposed at a stage after the ion guiding device for adjusting the ion beam of the ions of different mass-to-charge ratios exiting the ion guiding device.
As described above, the present invention provides a mass spectrometer, including a mass analyzer. The mass spectrometer further includes an ion guiding device, including two sets of electrode arrays that are positioned in parallel with each other, each of the ring electrode arrays consisting of at least two ring electrodes that are concentrically disposed or at least three linear electrode assemblies that have a radial distribution; and a power supply means, configured to apply a voltage on at least a part of the ring electrodes, to form a radio-frequency electric field and a DC electric field. By means of the radio-frequency electric field and the DC electric field, ions are allowed to be stored in a region of between the two arrays, and controlled to be sequentially released along the radial direction according to a preset mass-to-charge ratio requirement, and then exit the ion guiding device and enter the mass analyzer for mass analysis.
Compared with the prior art, the present invention has the following advantages. (1) Nearly 100% ion utilization efficiency (duty cycle) can be provided over a wide mass range in tandem mass spectrometry, thus increasing the sensitivity of the instrument. (2) The ion guiding device of the present invention has a large ion storage capacity, thus ensuring a wide dynamic range of the instrument. (3) The electrodes in the ion guiding device of the present invention are distributed along the radial direction, and cause substantially no increase in the length along a major axis of the instrument, thus facilitating the miniaturization of the instrument.
Hereinafter, embodiments of the present invention are described by way of specific examples. Other advantages and effects of the present invention are apparent to those skilled in the art from the disclosure herein.
Referring to accompanying drawings of the present invention, it should be known that the structures, scales, and dimensions etc depicted therein are provided merely for ease of understanding and reading the disclosure herein by persons of skill in the art, and are not restrictions to embodiment of the present invention, thus having no technically substantive significance. Any modifications to the structure, changes of the proportional relations, or adjustment of the dimensions fall within the scope covered by the disclosure herein, without affecting the efficacy and objectives that can be achieved in the present invention. Further, the terms “on”, “under”, “left”, “right”, “middle”, and “a/an” as used herein are presented merely for ease of description, instead of limiting the scope of the present invention. The change or adjustment of relative position relations made without essentially altering the technical solution is contemplated in the scope of the present invention.
A process for ion manipulation will be described below with positive ions as an example.
(1) Ion introduction and storage—Upon introduction, the ions enter the region between the ring electrode arrays 5 and 6 along the axial direction. This situation is simple, and can be achieved by applying a voltage that is set at a low DC potential to the whole ion guiding device 1 and applying a radio-frequency voltage. After introduction, the ions need to be stored in the region between 5 and 6. To realize high-capacity ion storage, the DC potential in the regions 7 and 8 may be elevated during ion introduction, the DC potential in a region between 7 and 8 is lowered, and the region 9 may have a DC potential equivalent to or slightly higher than that in the region 8, such that a DC potential trap is formed between the regions 7 and 8 for storing the ions. In this case, the ion guiding device 1 has a DC potential surface as shown in
where m is a mass number of the ions, K is the ion mobility, VRF is an amplitude of the radio-frequency voltage, and d is a distance between adjacent ring electrodes. It can be seen from Formula (2) that the radio-frequency potential barrier formed with the “RF repelling force” correlates with the mass number (or m/z) of the ions.
(2) The ions are sequentially released according to the m/z ratios. As shown in
It should be noted that the arrow 12 in the figure is a broken line, that is to say, the ions are deflected after being released along the radial direction, and then exit the device 1 along the axial direction. The deflection can be realized simply by adjusting the distribution of the DC electric field in the region 9, as is known to those skilled in the art.
In the two sets of ring electrode arrays constituting the ion guiding device 1, each array contains at least two electrodes, to form the radio-frequency potential barrier or DC drive. In this case, the device may be regarded as a linear ion trap connected head to tail. The existing technical solutions of all the linear ion traps are applicable to this device. However, the preferred solution is one formed with three or more electrodes, to obtain an additional ion storage region, thereby effectively overcoming the space charge effect.
In the ion guiding device 1, gas of a certain pressure is preferably filled, to rapidly cooling the ejected ions through collision with the background gas molecules in the device 1. The cooling process can be accomplished under the action of the radio-frequency electric field. However, the cooling process may also take place outside of the ion guiding device 1. Therefore, the ion guiding device 1 is suitable for use under various gas pressures, ranging from 0.002-0.05 Pa, 0.02-0.5 Pa, 0.2-5 Pa, 2-50 Pa, or 20-500 Pa.
Preferably, the ions enter the ion guiding device 1 along the axial direction at a position at the center of the ring electrode array 5, and exit at a position at the center of the ring electrode array 6. However, the present invention is not limited thereto. For example, the ions may enter the ion guiding device 1 at a position located between two adjacent ring electrodes in the ring electrode array 5, and exit the ion guiding device 1 at a position located between two adjacent ring electrodes in the ring electrode array 6. The entering or exiting ion beam may be a single or multiple beams, and may have an arrangement along the radial direction.
Through the present invention, the problem of low ion utilization efficiency in the quadrupole-orthogonal TOF mass spectrometry as described in the background can be addressed. As shown in
Through the present invention, the problem of low duty cycle in the quadrupole mass analyzer as described in the background can also be addressed.
In the present invention, the method for mass selection by using the ion guiding device 1 is not limited to one as described above, and other methods may also be used. For example, excitation with an alternating voltage can be used. As shown in
Embodiment 2 differs from Embodiment 1 in that segmented electrodes along the radial direction are used (or it can be understood as the ring electrode in the embodiment 1 being segmented). This has the advantage that the voltage can be applied more flexibly. For example, the radio-frequency electric field may be formed to have a distribution similar to that in Embodiment 1 or have a multipole-type distribution.
Compared with the prior art, the present invention has the following advantages: (1) nearly 100% ion utilization efficiency (duty cycle) can be provided in a wide mass range in tandem mass spectrometry, thus increasing the sensitivity of the instrument; (2) the ion guiding device of the present invention has a large ion storage capacity, thus ensuring a wide dynamic range of the instrument; (3) the electrodes in the ion guiding device of the present invention are distributed along the radial direction, and cause substantially no increase in the length along a major axis of the instrument, thus facilitating the miniaturization of the instrument.
The present invention is of a high industrial applicability by effectively overcoming the disadvantages existing in the prior art.
The embodiments above can be modified and changed by those skilled in the art without departing from the spirit and scope of the present invention. Therefore, equivalent modifications or changes made by persons of ordinary skill in the art without departing from the spirit and technical idea disclosed herein are covered by the claims of the present invention. The foregoing embodiments have been presented merely for purposes of exemplarily illustrating the principle and effects of the present invention, and they are not intended to limit the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201610602789.7 | Jul 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/004612 | 2/8/2017 | WO | 00 |