Preferred embodiments of the invention will now be described in further details. Other features and advantages of the present invention will become better understood with regard to the following detailed description and accompanying drawings where:
The backrest 13 is located at the back of the base 10 and can be reclined to different sloping positions such as sitting position, full reclining position and so on through the electric reclining mechanism 15 constructed of a motor 151 and a link mechanism 152 in the same way as conventional massage chairs. In this embodiment, the backrest 13 can be reclined to any of eight sloping positions equally divided in the reclining direction. The massage mechanism 14 is an elevating massage mechanism located in the backrest 13, and has left and right massage heads (e.g., kneading balls) 141 and 142 that simulate massage movement (e.g., kneading and tapping) to give a user a massage in accordance with control of the drive system 100. In general, the massage mechanism 14 is driven after the backrest 13 is moved into a desired sloping position through a sloping-position adjusting key (not shown).
As shown in
Similarly, the right holding mechanism 19 includes a right cover 191, upper and lower airbags (second airbags) 192 and 193, electronic valves 194 and 195, and the air supply pump 186. However, not limited to this, the right holding mechanism 19 may comprise another air supply pump instead of the pump 186. Each airbag of the left and right holding mechanisms 18 and 19 is formed from flexible materials and has airtightness. The cover 191 is formed so as to cover at least right forearm of a user. In the embodiment, the cover 191 is formed to cover the user's right hand and forearm, and is supported by an axis 171 fixed to the front of the right armrest 17 to move upward and downward in the upside of the armrest 17 by rotating about the axis 171. In addition, for example, by an electric mechanism (not shown), the cover 191 can be moved into a predetermined angle in a specified range and then be locked. However, not limited to these, the covers 181 and 191 may be fixed to the left and right armrests 16 and 17 at a predetermined angle, respectively. The airbag 192 is installed on the bottom face of the cover 191 and is coupled to the pump 186 or the atmosphere through the electronic valve 194, while the airbag 193 is installed on the top face of the armrest 17 and is coupled to the pump 186 or the atmosphere through the electronic valve 195. The electronic valve 194 is driven by the drive system 100 to couple the airbag 192 to the pump 186 and the atmosphere in case of air supply and exhaust, respectively. The electronic valve 195 is also driven by the drive system 100 to couple the airbag 193 to the pump 186 and the atmosphere in case of air supply and exhaust, respectively.
The drive system 100 comprises a keypad 101 as an input means, an angle sensor 102, a controller 103 and so on. As shown in
In addition to various controls executed in the same way as conventional massage chairs, the controller 103 provides the control for stretching the user's arms and shoulders according to an aspect of the embodiment when the key 101b is pressed after switch-on by pressing the key 101a. That is, the controller 103 controls to move the covers 181 and 191 into the predetermined angle to lock the covers 181 and 191 through the electric mechanisms of the left and right holding mechanisms 18 and 19, respectively. Afterwards, the controller 103 provides the control for stretching the user's left arm and shoulder and the control for stretching the right arm and shoulder separately (e.g., alternately). The both controls constitute a stretching operation of the arms and shoulders.
Expanding on this stretching operation, for example, the controller 103 controls to swell the airbags 182 and 183 through the electronic valves 184 and 185 and the pump 186 to hold the left hand and forearm elastically with the airbags 182 and 183. That is, the controller 103 controls to allow the left holding mechanism 18 to hold the left hand and forearm. The controller 103 then controls to allow the electric reclining mechanism 15 to recline the backrest 13 from a start position to an end position based on detection result of the angle sensor 102. At this point, the controller 103 dives the motor 151 so that the detection result agrees with the angle of an objective sloping position stored in the storage device of the controller 103. The start and end positions are included in the above different sloping positions, and the end position has an inclination larger than the start position with respect to the vertical direction. The controller 103 also controls to increase holding force by the first airbags as allowing the electric reclining mechanism 15 to move the backrest 13 from the start position to the end position. The controller 103 then controls to allow the electric reclining mechanism 15 to raise the backrest 13 from the end position to a return position based on detection result of the angle sensor 102. The return position is included in the different sloping positions, and has an inclination smaller than the end position with respect to the vertical direction. In the embodiment, the return position is same as the start position. The controller 103 controls to shrink the airbags 182 and 183 through the electronic valves 184 and 185 and the pump 186 to release the left hand and forearm. That is, the controller 103 controls to allow the left holding mechanism 18 to release the left hand and forearm.
Similarly, the controller 103 controls to allow the right holding mechanism 19 to hold the right hand and forearm. The controller 103 then controls to allow the electric reclining mechanism 15 to move the backrest 13 from a start position to an end position and afterwards from the end position to a return position based on detection result of the angle sensor 102. The controller 103 also controls to increase holding force by the second airbags as allowing the electric reclining mechanism 15 to move the backrest 13 from the start position to the end position. The controller 103 then controls to allow the right holding mechanism 19 to release the right hand and forearm.
The controller 103 also utilizes the airbags 182, 183, 192 and 193 as massage means. In this case, the controller 103 swells and shrinks at least one of the airbags 182, 183, 192 and 193 while driving the pump 186.
The operation of the massage chair 1 is now explained with reference to
In each stretching operation, first, the controller 103 provides the control for stretching the user's left arm and shoulder or the control for stretching the right arm and shoulder. For example, the controller 103 swells the airbags 182 and 183 through the electronic valves 184 and 185 and the pump 186. At this point, the controller 103 drives the electronic valves 184 and 185 to couple the airbags 182 and 183 to the pump 186, and also drives the pump 186. After a waiting time T1, the controller 103 moves the backrest 13 into an end position from a start position at a constant speed through the electric reclining mechanism 15. The time T1 is set to a time necessary to hold one hand and forearm surely with the corresponding airbags. After few seconds from a point in time at which the backrest 13 reaches the end position, the controller 103 shrinks the airbags 182 and 183 through the electronic valves 184 and 185 and the pump 186. At this point, the controller 103 drives the electronic valves 184 and 185 to couple the airbags 182 and 183 to the atmosphere, and also stops the pump 186. The controller 103 also starts moving the backrest 13 into a return position from the end position at a constant speed through the electric reclining mechanism 15.
After (or immediately after) the backrest 13 reaches the return position, the controller 103 swells the airbags 192 and 193 through the electronic valves 194 and 195 and the pump 186. At this point, the controller 103 drives the electronic valves 194 and 195 to couple the airbags 192 and 193 to the pump 186, and also drives the pump 186. After a waiting time T1, the controller 103 moves the backrest 13 into an end position from a start position at a constant speed through the electric reclining mechanism 15. After few seconds from a point in time at which the backrest 13 reaches the end position, the controller 103 shrinks the airbags 192 and 193 through the electronic valves 194 and 195 and the pump 186. At this point, the controller 103 drives the electronic valves 194 and 195 to couple the airbags 192 and 193 to the atmosphere, and also stops the pump 186. The controller 103 also starts moving the backrest 13 into a return position from the end position at a constant speed through the electric reclining mechanism 15. When the backrest 13 reaches the return position, one stretching operation of the user's arms and shoulders is completed. However, not limited to this stretching operation, the controller of the present invention may control to stretch the user's left (or right) arm and shoulder once or more, and then stretch the right (or left) arm and shoulder once or more.
In this embodiment, one side of the user's arms and shoulders is stretched and then released, and afterwards the other side is stretched and then released. Accordingly, it is possible to use reclining movement of a backrest for stretching the user's arms not to restrain the arms simultaneously, without adjusting holding strength by one of left and right holding mechanisms so that the user can take the corresponding arm off the one of left and right holding mechanisms. In addition, since one of the user's arms is always free, the user can operate the keypad 101 during a stretching operation. Also, since the backrest 13 is kept at an end position for few seconds, a preferable stretch effect can be obtained. Moreover, after holding one hand and forearm of the user surely with the corresponding airbags, the controller 103 controls to increase holding force by the corresponding airbags as allowing the electric reclining mechanism 15 to move the backrest 13 into an end position from a start position. Accordingly, the left and right hands and forearms can be held properly with the first and second airbags, respectively, without applying excessive force during a stretching operation.
Expanding on other advantages of this embodiment, the massage chair 1 can be prevented from pulling the user's arms strongly in a stretching operation. In case that the user's arms are comparatively long as shown in
In addition, the left and right holding mechanisms 18 and 19 can be prevented from putting stress on the user's left and right forearms in a stretching operation, respectively. For example, a massage machine described in Japanese Patent Application Publication No. 2005-013463 issued Jan. 20, 2005 comprises left and right holding mechanisms located at left and right armrests, respectively. As shown in
In a modified embodiment, the controller 103 is configured to swell one of the airbags 182 and 183 when holding the user's left hand and forearm, and also swell one of the airbags 192 and 193 when holding the right hand and forearm. However, not limited to this, the left mechanism 18 may be provided with an upper or lower airbag and a lower or upper cushion instead of the airbags 182 and 183, and also the right mechanism 19 may be provided with an upper or lower airbag and a lower or upper cushion instead of the airbags 192 and 193. In short, the left holding mechanism of the present invention may comprise: a left cover that is located above the left armrest 16 and covers at least the left forearm of a user; at least one first airbag located at the left armrest and/or the left cover; and an air supply pump for swelling the first airbag. Similarly, the right holding mechanism of the present invention may comprise: a right cover that is located above the right armrest 17 and covers at least the right forearm of the user; at least one second airbag located at the right armrest and/or the right cover; and said or another air supply pump for swelling the second airbag.
In a preferred embodiment, when a sloping position of the backrest 13 has an inclination larger than a reference sloping position of the above different sloping positions with respect to the vertical direction, the controller 103 controls to allow the electric reclining mechanism 15 to raise the backrest 13 to the reference sloping position before allowing any of the left and right holding mechanisms 18 and 19 to hold the corresponding at least forearm of the user. The operation of this control is hereinafter referred to as a “preliminary operation” (see
The operation of this preferred embodiment is now explained. In each stretching operation, when a sloping position of the backrest 13 has an inclination larger than the reference sloping position, the controller 103 performs the control for the preliminary operation based on detection result of the angle sensor 102 as shown in
In another modified embodiment, the controller 103 is configured to stop the pump 186 immediately after the backrest 13 reaches an end position and, after few seconds, drive the corresponding electronic valves to couple the corresponding airbags to the atmosphere. In this construction, immediately after the backrest 13 reaches an end position, increase of holding force by the corresponding airbags can be stopped, and holding force when the backrest 13 reaches the end position can be kept for few seconds.
Although the present invention has been described with reference to certain preferred embodiments, numerous modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-147390 | May 2006 | JP | national |