This invention relates to the field of shoes and more particularly to a shoe that provides arch support using a combination of a structural insole and protruding nodules.
The human foot is an incredible biological machine. It is strong enough to support the repeated impacts of running and the constant pressure of standing. But it remains dexterous enough to balance on a tightrope or pick up a marble from the floor.
Feet manage these disparate tasks using a collection of bones and muscles. Only when these bones and muscles are functioning properly can the foot fully perform. In order to properly function, the bones and muscles must be maintained in the optimal positions.
In addition to maintaining position, the feet must also be stimulated. As the lowest point in the body, there is a tendency for blood to settle in the feet and lower legs. This blood pooling causes swelling and reduces the local oxygen concentration, thereby increasing the time required to heal wounds.
Stimulation of the feet pushes blood out of the foot, and thereby out of the lower legs. The stimulation has the added benefit of activating the reflexology zones of the feet, thereby causing therapeutic improvement throughout the body.
What is needed is a shoe that properly supports the bones and muscles of the foot, while simultaneously providing stimulation in the form of varying pressure.
The shoe herein, in the form of a sandal, uses a combination of a midsole of varying thickness and nodules of varying diameters and heights to provide the requisite level of flexibility, support, and stimulation to specific regions of the foot.
Gradients of pressure that generate variations in the laminar flow of the foot bed lead to better circulation and perfusion of the capillary foot bed of the foot transection irrigation, allowing for better circulation and venous return.
Before turning to the invention, an understanding of the foot is helpful.
The human foot is formed from twenty-six bones. The bones are shaped to form three arches within the foot—the medial longitudinal arch, the lateral longitudinal arch, and the transverse arch. The longitudinal arches run from the front region of the foot to the back region of the foot, while the transverse arch runs from side to side.
The medial longitudinal arch and the lateral longitudinal arch are formed between the tarsal bones and the proximal end of the metatarsals.
The medial longitudinal arch is the highest of the two longitudinal arches. It runs along the inside of the foot, along its length. When one says he has a “high arch,” or a “low arch,” it is typically this arch being referenced.
The lateral longitudinal arch is the flatter of the two longitudinal arches. It runs along the outside of the foot, also along its length. The lateral longitudinal arch collapses when the body is in the standing position, and thus is less commonly known.
The transverse arch is just behind the ball of the foot, running from side to side.
Proper support of a foot requires supporting the medial longitudinal arch, the transverse arch, and the lateral longitudinal arch.
In disclosed shoes, support for the arches comes from a combination of a varying midsole thickness and nodules of varying diameter and height.
Varying the nodules' height alters the depth to which each nodule penetrates the bottom of the foot, and thus its ability to create a massaging action. As a related effect, taller nodules flex more from side-to-side than shorter nodules. The diameter of the nodules also affects the amount of flexion. A nodule of greater diameter resists flexion and thus has a greater tendency to resist bending.
No single nodule creates the desired massage effect, but rather the combination of many nodules. While the user walks, applying pressure to the back, middle, then front of the foot, the many nodules work together to create waves of pressure. These waves of pressure massage the bottoms of the feet and foster circulation.
This pressure wave effect is enhanced through the use of flexible nodules that focus the pressure on individual points of the sole of the foot.
The massaging action acts on the nerves, blood vessels, muscles, and connective tissue of the foot. As recognized by the field of reflexology, the application of pressure to the feet can create positive physical changes to areas of the body beyond the feet. For example, application of pressure to the area of the foot referred to as the ball is associated with the treatment of lung disorders.
The result of the supportive nature of the midsole and nodule combination, in conjunction with the massaging action, is that the disclosed shoe can treat a multiplicity of foot conditions. For example, plantar fasciitis. Plantar fasciitis a common cause of heel pain. The pain is caused by inflammation of a thick band of tissue that runs the length of the bottom of the foot, connecting the heel bone to the toes.
The supportive and massaging action of the disclosed shoes acts to treat the inflamed tissue, while supporting the foot to encourage healing.
Turning to the support structure of the shoe: The support structure of the shoe is divided into three regions based on the respective location of each relative to the arches of the human foot.
The transverse arch support is a rectangular support region centered on what, during use, is just behind the ball of the foot.
The lateral longitudinal arch support is an arc along the outside of the foot. The support in this region is largely through the use of a thicker midsole, with short nodules. The short nodules resist bending, and thus create a create support effect at the expense of a lessening massage effect. To use longer nodules may create the feeling of a sideways-shifting foot during a step, like walking on a slippery surface. This is an undesirable effect, and thus avoided by using shorter nodules in areas of the shoe where stability is desired.
As compared to the nodules of the rest of the shoe, the nodules of the lateral longitudinal arch support are of an average height.
The medial longitudinal arch support is formed from a trapezoidal section of tall, wide nodules combined with thick midsole, thus creating a higher foot bed. The height of the nodules results in deep tissue pressure, massaging the arch. Their thickness acts to reduce side to side motion, partially compensating for the nodule height.
This arch is where the most support is needed to avoid flattening. Without proper support the foot can turn inwards, which affects the ankle joint, the knee, the hip, and so forth.
While not truly an arch of the foot, the curvature of the toes forms an arc between the ball of the foot and the toe tips. This curvature is supported by the toe arch support region. It is an arch of taller nodules that will contact the foot between the ball of the foot and the tips of the toes.
Other regions of the shoe are load bearing, rather than providing arch support. These load bearing regions include nodules, but of a lesser height than non-load bearing, thus avoiding lateral motion between the foot and the shoe.
The toe contact region is in the front of the shoe. Relatively short nodules are used to minimize bending and allow the toes to stabilize the foot.
The ball contact region is a critical load bearing section of the shoe. It is a section of smaller, consistently-sized nodules that provide support between the toe arch support and the transverse arch.
A single line of taller modules is optionally placed along the inside front of the shoe. These taller nodules form a big toe barrier, helping to keep the big toe from wandering outside the bounds of the shoe.
The load passed through the heel of the foot is critical to stability. The shoe uses a heel cup that lacks nodules to provide the most support without the risk of lateral shifting.
The heel cup is surrounded by short nodules that are higher than the heel cup itself. Thus, there is a self-centering action that maintains the heel within the heel cup.
The total quantity of nodules varies slightly among shoe sizes, but is around 1,390-1,400 total nodules. Reasonable deviation above and below this range is anticipated, and will not affect the function of the shoe or its therapeutic benefits.
The nodules discussed above are but a part of the entire shoe. The shoe is formed from a number of layers.
Starting from the lowermost layer, the first layer is the outer sole. The outer sole is what comes into contact with the surface on which user is walking. The material must create grip, whether through friction or by incorporation of a tread. The preferred tread is a repeating hexagon shape.
The next layer up is the structural mid-sole. The structural midsole creates distance between the outer sole and the foot bed. Varying the structure midsole thickness creates different support for particular portions of the foot. The structural midsole provides stiffness and structure to the shoe, with some degree of cushion.
The structural midsole protrudes outward and forms the sidewall of the shoe.
Nested within the upper section of the structural midsole is the cushioned mid-sole. The cushioned midsole is a softer material than the structure midsole, as it is not intended to create structure but rather to provide cushion.
The cushioned midsole is a consistent thickness across the top of the structural midsole, resulting in even shock absorption across the shoe.
Finally, the upper sole. The upper sole is formed from a combination of a foot bed and nodules. The nodules protrude from the foot bed.
The shoe requires structure to hold itself to the user's foot during the upward motion of a stride. The preferred structure is one or more straps that cross the forefoot and optionally the midfoot.
Straps are preferably adjusted using a removable hook and loop fastener, but can also use buckles, snaps, elastic, or other related forms of fastening or banding.
The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures.
Referring to
The shoe 100 includes an upper sole 104 formed from a combination of a foot bed 105 and nodules 140. The structural midsole 106 (see
The forefoot straps 112 include an upper forefoot strap 114 and lower forefoot strap 116. The midfoot straps 118 are formed from the upper midfoot strap 120 and lower midfoot strap 122.
Referring to
The upper forefoot strap 114 and upper midfoot strap 120 are visible, as is the sidewall 110. The outer sole 102 is shown below the sidewall 110.
Referring to
The upper midfoot strap 120 and lower midfoot strap 122 are visible toward the rear of the shoe 100, with the upper forefoot strap 114 and lower forefoot strap 116 visible toward the front of the shoe 100.
Referring to
The upper forefoot strap 114 and upper midfoot strap 120 are shown affixed to the sidewall 110 formed from the structural midsole 106 (see
Referring to
The lower forefoot strap 116 and the lower midfoot strap 122 are shown, again optionally sandwiched between the structural midsole 106, shown here as the sidewall 110, and the outer sole 102.
Referring to
Referring to
Referring to
The foot 1 is generally divided into the forefoot 18, midfoot 20, and heel 22. Within the forefoot 18, the foot 1 includes the ball 10, or region behind the toes. The ball 10 is divided into the inner ball 12, middle ball 14, and outer ball 16.
The portion of the foot 1 that faces toward its matching foot is referred to as the inner foot 24. Its opposite is the outer foot 26.
The toes include the hallux or big toe 30, second toe or index toe 32, third toe or middle toe 34, fourth toe or ring toe 36, and fifth toe or little toe 38.
The arches of the foot 1 include the medial longitudinal arch 40, lateral longitudinal arch 42, and transverse arch 44.
Referring to
The distal phalanges 50, middle phalanges 52, proximal phalanges 54, and metatarsals 56 make up the forefoot 18 (see
The medial cuneiform 58, middle cuneiform 60, lateral cuneiform 62, navicular 64, and cuboid 66 make up the midfoot 20.
Finally, the talus 68 and calcaneus 70 make up the heel 22.
Referring to
The toe contact region 142 is formed from a multiplicity of shorter nodules 140 that provide a lesser amount of massaging action, instead focusing on support. The similarly-structured ball contact region 144 also uses shorter nodules 140.
An optional big toe barrier 152 is formed from a series of taller nodules 140 that retain the big toe 30 (see
The heel cup 154 is shown with its associated nodules 140 that surround a section without nodules. The result is firm support for the heel with minimal lateral shifting.
The toe arch support 156 is placed between the toe contact region 142 and ball contact region 144.
Transverse arch support 146 is placed to the rear of the ball contact region 144. It is shown formed from twelve nodules 140 of a diameter and height greater than the surrounding nodules 140. But a range of quantity of nodules is acceptable. For example, the use of between ten and forty nodules to form the transverse arch support 146 is anticipated.
Lateral longitudinal arch support 148 uses smaller nodules 140, but with increased height of the structural midsole 106 (see
The most significant arch support, the medial longitudinal arch support 150, is shown with a trapezoidal shape. The nodules 140 increase in height and diameter moving from the center of the shoe 100 (see
Referring to
The greater height is visible of the nodules 140 used for the transverse arch support 146 and medial longitudinal arch support 150. The toe arch support 156 is also shown with its greater nodule 140 diameter and height.
The big toe barrier 152 is visible, with the increased nodule 140 height.
Referring to
The base layer is outer sole 102 with its hex sole protrusion 124. The next layer is the structural midsole 106, which is the full width and length of the shoe 100 (see
The thickness of the structural midsole 106 varies by location within the shoe 100 (see
For example, an exemplary shoe 100 will have a maximum ta of 18 millimeters, corresponding to a tb of 6 millimeters. Thus, thickness ta may be three times thickness tb.
The cushioned midsole 107 is a consistent thickness across the shoe 100 (see
The upper sole 104 is the uppermost layer, formed from the foot bed 105 and nodules 140. The upper sole 104 has an upper sole overlap section 188 that overlaps the structural midsole 106 at the midsole shelf 186.
Equivalent elements can be substituted for the ones set forth above such that they perform in substantially the same manner in substantially the same way for achieving substantially the same results.
It is believed that the system and method as described and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction, and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely exemplary and explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.
This application is a continuation in part of U.S. patent application Ser. No. 15/961,243 filed Apr. 24, 2018, titled Massage shoes with combination arch support, and a continuation in part of U.S. patent application Ser. No. 15/961,300 filed Apr. 24, 2018, titled Massage insole with multiple support regions, which are both continuations in part of both U.S. design patent application No. 29/623,223 filed Oct. 24, 2017, titled Massage Sandal and U.S. design patent application No. 29/623,224 filed Oct. 24, 2017, titled Massage Insole.
Number | Date | Country | |
---|---|---|---|
Parent | 15961243 | Apr 2018 | US |
Child | 16194622 | US | |
Parent | 29623223 | Oct 2017 | US |
Child | 15961243 | US | |
Parent | 29623224 | Oct 2017 | US |
Child | 29623223 | US | |
Parent | 15961300 | Apr 2018 | US |
Child | 29623224 | US |