The present disclosure relates generally to drilling rigs, and specifically to rig structures for drilling in the petroleum exploration and production industry.
Land-based drilling rigs may be configured to be traveled to different locations to drill multiple wells within the same area, traditionally known as a wellsite. In certain situations, the land-based drilling rigs may travel across an already drilled well for which there is a well-head in place. Further, mast placement on land-drilling rigs may have an effect on drilling activity. For example, depending on mast placement on the drilling rig, an existing well-head may interfere with the location of land-situated equipment such as, for instance, existing wellheads, and may also interfere with raising and lowering of equipment needed for operations.
The present disclosure provides for a drilling rig. The drilling rig may include a right substructure. The right substructure may include a first lower box, at least one strut pivotably coupled to the first lower box, and a first hydraulic cylinder pivotably coupled to the first lower box. The drilling rig may include a left substructure. The left substructure may include a second lower box, at least one strut pivotably coupled to the second lower box, and a second hydraulic cylinder pivotably coupled to the second lower box. The drilling rig may include a drill rig floor mechanically coupled to the struts of the right and left substructures. The drilling rig may include a mast, the mast being mechanically coupled to the drill floor. The first and second hydraulic cylinders are adapted to raise or lower the drill floor and the mast.
The present disclosure also provides for a method. The method may include transporting a drilling rig to a wellsite. The drilling rig may include a right substructure. The right substructure may include a first lower box, at least one strut pivotably coupled to the first lower box, and a first hydraulic cylinder pivotably coupled to the first lower box. The drilling rig may include a left substructure. The left substructure may include a second lower box, at least one strut pivotably coupled to the second lower box, and a second hydraulic cylinder pivotably coupled to the second lower box. The drilling rig may include a drill rig floor mechanically coupled to the struts of the right and left substructures. The method may include mechanically coupling a mast to the drill rig floor. The mast may be pivotably coupled to one or more mast pivot points of the drill rig floor in a horizontal position. The method may include mechanically coupling a distal end of the first hydraulic cylinder and a distal end of the second hydraulic cylinder to one or more corresponding mast lift points of the mast. The method may include extending the hydraulic cylinders to move the mast from the horizontal position to a vertical position. The method may include mechanically coupling the distal ends of the first and second hydraulic cylinders to one or more corresponding rig lift points of the drill rig floor. The method may include extending the hydraulic cylinders to move the drill rig floor from a lowered position to a raised position.
The present disclosure also provides for a method. The method includes transporting a drilling rig to a wellsite. The drill rig includes a right substructure, the right substructure including a first lower box, with at least one strut pivotably coupled to the first lower box. The drill rig also includes a left substructure, the left substructure including a second lower box, with at least one strut pivotably coupled to the second lower box. The drill rig also includes a drill rig floor, the drill rig floor mechanically coupled to the struts of the right and left substructures. The method also includes mechanically coupling a mast to the drill rig floor, the mast pivotably coupled to one or more mast pivot points of the drill rig floor, and the mast is in a horizontal position. The method also includes positioning a hydraulic cylinder skid. The hydraulic cylinder skid includes a skid frame, the skid frame having a rig attachment point, and one or more raising cylinders, the one or more raising cylinders pivotably coupled to the skid frame. The hydraulic cylinder also includes a hydraulic power unit, the hydraulic power unit mechanically coupled to the skid frame and operatively coupled to the one or more raising cylinders. In addition, the method includes mechanically coupling the skid frame to the drilling rig at the rig attachment point and mechanically coupling the one or more raising cylinders to one or more corresponding mast lift points of the mast. The method also includes extending the one or more raising cylinders to move the mast from the horizontal position to a vertical position and mechanically coupling the one or more raising cylinders to one or more corresponding rig lift points of the drill rig floor. The method further includes extending the raising cylinders to move the drill rig floor from a lowered position to a raised position.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In some embodiments, drill rig floor 20 may be movable from a raised position as depicted in
In some embodiments, drill rig floor 20 may include V-door 23. In some embodiments, hydraulic cylinders 150 may be positioned in lower boxes 130 such that hydraulic cylinders 150 mechanically couple to a side of drill rig floor 20 that is opposite the side of drill rig floor 20 that includes V-door 23, defined as V-door side 22 of drill rig floor 20.
In some embodiments, mast 50 may be pivotably coupled to drill rig floor 20 by one or more mast pivot points 52. In some embodiments, mast pivot points 52 may be positioned on drill rig floor 20 such that mast 50 may pivot from a mast raised position as depicted in
In some embodiments, each hydraulic cylinder 150 may be extended or retracted by hydraulic pressure. In some embodiments, each hydraulic cylinder 150 may, when detached from rig lift points 152 and mast lift points 62, be pivoted relative to the respective lower box 130 by one or more cylinder positioning hydraulic cylinders 151 as shown in
In some embodiments, drilling rig 10 may be formed from multiple subunits. For example and without limitation, in some embodiments as depicted in
When drilling rig 10 is transported, each drilling rig subunit 10a-c may be transported separately. In some embodiments, each drilling rig subunit 10a-c may be sized such that each drilling rig subunit 10a-c complies with one or more transportation regulations. In some embodiments, one or more of drilling rig subunits 10a-c may include tail rolls 107. Tail rolls 107 may be one or more bars or other mounting points for allowing each drilling rig subunit 10a-c to be loaded onto a winch truck. In some embodiments, one or more of drilling rig subunits 10a-c may include one or more D-rings (not shown) to, for example and without limitation, allow the attachment of winch lines to move drilling rig subunits 10a-c.
In some embodiments, to assembly drilling rig 10, left drilling rig subunit 10a, center drilling rig subunit 10b, and right drilling rig subunit 10c may be transported to the drill site. Left drilling rig subunit 10a and right drilling rig subunit 10c may be positioned substantially parallel and spaced apart as depicted in
When drilling rig 10 is to be assembled and drilling rig subunits 10a and 10c are positioned in the drill site, cross braces 12 may be pivoted outward and may be mechanically coupled to the other drilling rig subunit 10c or 10a as depicted in
In some embodiments, cross braces 12 may be formed as extended beams. In some embodiments, each cross brace 12 may include one or more subunits which may be mechanically coupled to a respective drilling rig subunit 10a or 10c and may me mechanically coupled in the middle of cross brace 12. In some embodiments, cross braces 12 may be narrower in height toward a middle of the respective cross brace 12, defined as narrowed portion 12′. In some such embodiments, cross brace 12 may be selectively decoupleable from drilling rig subunits 10a and 10c and may be repositioned. For example and without limitation, as depicted in
When left and right drilling rig subunits 10a, 10c are mechanically coupled, center drilling rig subunit 10b may be positioned between left drilling rig subunit 10a and right drilling rig subunit 10c as depicted in
In some embodiments, as depicted in
In some embodiments, once left, center, and right drilling rig subcomponents 10a-10c are mechanically coupled, mast 50 may be moved and mechanically coupled to drill rig floor 20 at mast pivot points 52 as depicted in
In some embodiments, as depicted in
In some embodiments, as depicted in
In some embodiments, as depicted in
In some embodiments, as depicted from below in
In some embodiments, as depicted in
In some embodiments, one or more lower boxes 130 may include one or more hydraulic walkers 131 as depicted in
Raising cylinders 203 may be pivotably coupled to skid frame 201 at lower end 203a of raising cylinders 203. In some embodiments, hydraulic cylinder skid 200 may include cylinder positioning hydraulic cylinders 205. Each cylinder positioning hydraulic cylinder 205 may mechanically couple between skid frame 201 and a respective raising cylinder 203. Extension or retraction of cylinder positioning hydraulic cylinders 205 may allow the angle at which raising cylinders 203 extend from hydraulic cylinder skid 200 to be controlled. By modulating the extension of raising cylinders 203 and cylinder positioning hydraulic cylinders 205, upper end 203b of raising cylinders 203 may be positioned in space to, for example and without limitation, align with rig lift points 152, mast lift points 62 or any other desired position as described further herein below.
In some embodiments, hydraulic cylinder skid 200 may include hydraulic power unit 207. Hydraulic power unit 207 may be mechanically coupled to skid frame 201. Hydraulic power unit 207 may generate hydraulic pressure that may be used, for example and without limitation, to extend or retract raising cylinders 203 and cylinder positioning hydraulic cylinders 205. In some embodiments, hydraulic power unit 207 may include hydraulic pump 209. Hydraulic pump 209 may be used to pressurize hydraulic fluid. In some embodiments, hydraulic pump 209 may be powered mechanically by pump engine 211. Pump engine 211 may be, for example and without limitation, a combustion engine or electric motor.
In some embodiments, hydraulic power unit 207 may operatively couple to raising cylinders 203 and cylinder positioning hydraulic cylinders 205 through hydraulic cylinder skid controls 213. Hydraulic cylinder skid controls 213 may include one or more manifolds and valves positioned to control the flow of hydraulic fluid to raising cylinders 203 and cylinder positioning hydraulic cylinders 205 in order to control the extension or retraction of raising cylinders 203 and cylinder positioning hydraulic cylinders 205. In some embodiments, hydraulic cylinder skid controls 213 may be manually operated. In some embodiments, hydraulic cylinder skid controls 213 may be at least partially automated. In such an embodiment, hydraulic cylinder skid controls 213 may include programmable logic controller (PLC) 215 adapted to control the operation of raising cylinders 203 and cylinder positioning hydraulic cylinders 205.
In some embodiments, hydraulic cylinder skid 200 may include other components of a hydraulic system including, for example and without limitation, hydraulic reservoir 217 and hydraulic lines 219. In some embodiments, by including all components of a hydraulic system, hydraulic cylinder skid 200 may be transportable and usable without the need to disassemble or reassembly components of hydraulic cylinder skid 200.
In some embodiments, skid frame 201 may include rig attachment points 221. Rig attachment points 221 may be adapted to allow skid frame 201 to be mechanically coupled to a drilling rig in order to use raising cylinders 203 to interact with components of the drilling rig as discussed further below. Rig attachment points 221 may include, for example and without limitation, one or more holes that correspond to holes formed on the drilling rig to allow a pin-connection to be made to temporarily mechanically couple hydraulic cylinder skid 200 to the drilling rig.
For example,
In some embodiments, hydraulic cylinder skid 200 may be used to move mast 50 between the raised and lowered positions while mechanically coupled to drilling rig 10′ at an end of lower boxes 130′. In such an embodiment, upper end 203b of raising cylinders 203 may mechanically couple to one or more corresponding mast lift points 62 of mast 50. Raising cylinders 203 may then be extended to move mast 50 from the lowered position to the raised position, or may be retracted to move mast 50 from the raised position to the lowered position. Once mast 50 is in the desired position, raising cylinders 203 may be decoupled from mast lift points 62.
One having ordinary skill in the art with the benefit of this disclosure will understand that the present disclosure does not limit the order of raising or lowering of mast 50 and drill rig floor 20.
Once drill rig floor 20 and mast 50 are in the desired raised or lowered positions, upper end 203b of raising cylinders 203 may be mechanically decoupled from rig lift points 152 and mast lift points 62, raising cylinders 203 may be fully retracted for storage, and hydraulic cylinder skid 200 may be mechanically decoupled from drilling rig 10′. During operation or transportation of drilling rig 10′, hydraulic cylinder skid 200 needs not remain mechanically coupled to drilling rig 10′. In some embodiments, hydraulic cylinder skid 200 may be removed from drilling rig 10′ to, for example and without limitation, reduce the weight of, footprint of, and number of components carried by drilling rig 10′ during operation or transportation of drilling rig 10′. In some embodiments, hydraulic cylinder skid 200 may be transported to a second drilling rig on the same or another wellsite to raise or lower the respective drill floor or mast of the second drilling rig.
In some embodiments, because hydraulic cylinder skid 200 includes raising cylinders 203, cylinder positioning hydraulic cylinders 205, hydraulic power unit 207, hydraulic pump 209, pump engine 211, hydraulic cylinder skid controls 213, hydraulic reservoir 217, and hydraulic lines 219 all mechanically coupled to skid frame 201, hydraulic cylinder skid 200 may be transported as a single unit without the need to disconnect any operative couplings between the components of hydraulic cylinder skid 200. In some embodiments, such as where pump engine 211 is a combustion engine, hydraulic cylinder skid 200 may operate independently without any additional connections to external equipment required.
Although described with respect to drilling rig 10′ as described herein, one having ordinary skill in the art with the benefit of this disclosure will understand that hydraulic cylinder skid 200 may be used with any drilling rig with a pivoting drilling floor, pivoting mast, or both, including, for example and without limitation, a sidesaddle drilling rig
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a U.S. non-provisional application which claims priority from U.S. provisional application No. 62/361,827, filed Jul. 13, 2016, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62361827 | Jul 2016 | US |