Mast and substructure

Information

  • Patent Grant
  • 10648240
  • Patent Number
    10,648,240
  • Date Filed
    Tuesday, June 6, 2017
    7 years ago
  • Date Issued
    Tuesday, May 12, 2020
    4 years ago
Abstract
A drilling rig may include a right substructure, left substructure, and a drill floor. The drill floor may be pivotably coupled to lower boxes of the left and right substructure by struts. The substructures may include hydraulic cylinders positioned to raise the drill floor and a mast coupled to the drill floor into a raised position.
Description
TECHNICAL FIELD/FIELD OF THE DISCLOSURE

The present disclosure relates generally to drilling rigs, and specifically to rig structures for drilling in the petroleum exploration and production industry.


Background of the Disclosure

Land-based drilling rigs may be configured to be traveled to different locations to drill multiple wells within the same area, traditionally known as a wellsite. In certain situations, the land-based drilling rigs may travel across an already drilled well for which there is a well-head in place. Further, mast placement on land-drilling rigs may have an effect on drilling activity. For example, depending on mast placement on the drilling rig, an existing well-head may interfere with the location of land-situated equipment such as, for instance, existing wellheads, and may also interfere with raising and lowering of equipment needed for operations.


SUMMARY

The present disclosure provides for a drilling rig. The drilling rig may include a right substructure. The right substructure may include a first lower box, at least one strut pivotably coupled to the first lower box, and a first hydraulic cylinder pivotably coupled to the first lower box. The drilling rig may include a left substructure. The left substructure may include a second lower box, at least one strut pivotably coupled to the second lower box, and a second hydraulic cylinder pivotably coupled to the second lower box. The drilling rig may include a drill rig floor mechanically coupled to the struts of the right and left substructures. The drilling rig may include a mast, the mast being mechanically coupled to the drill floor. The first and second hydraulic cylinders are adapted to raise or lower the drill floor and the mast.


The present disclosure also provides for a method. The method may include transporting a drilling rig to a wellsite. The drilling rig may include a right substructure. The right substructure may include a first lower box, at least one strut pivotably coupled to the first lower box, and a first hydraulic cylinder pivotably coupled to the first lower box. The drilling rig may include a left substructure. The left substructure may include a second lower box, at least one strut pivotably coupled to the second lower box, and a second hydraulic cylinder pivotably coupled to the second lower box. The drilling rig may include a drill rig floor mechanically coupled to the struts of the right and left substructures. The method may include mechanically coupling a mast to the drill rig floor. The mast may be pivotably coupled to one or more mast pivot points of the drill rig floor in a horizontal position. The method may include mechanically coupling a distal end of the first hydraulic cylinder and a distal end of the second hydraulic cylinder to one or more corresponding mast lift points of the mast. The method may include extending the hydraulic cylinders to move the mast from the horizontal position to a vertical position. The method may include mechanically coupling the distal ends of the first and second hydraulic cylinders to one or more corresponding rig lift points of the drill rig floor. The method may include extending the hydraulic cylinders to move the drill rig floor from a lowered position to a raised position.


The present disclosure also provides for a method. The method includes transporting a drilling rig to a wellsite. The drill rig includes a right substructure, the right substructure including a first lower box, with at least one strut pivotably coupled to the first lower box. The drill rig also includes a left substructure, the left substructure including a second lower box, with at least one strut pivotably coupled to the second lower box. The drill rig also includes a drill rig floor, the drill rig floor mechanically coupled to the struts of the right and left substructures. The method also includes mechanically coupling a mast to the drill rig floor, the mast pivotably coupled to one or more mast pivot points of the drill rig floor, and the mast is in a horizontal position. The method also includes positioning a hydraulic cylinder skid. The hydraulic cylinder skid includes a skid frame, the skid frame having a rig attachment point, and one or more raising cylinders, the one or more raising cylinders pivotably coupled to the skid frame. The hydraulic cylinder also includes a hydraulic power unit, the hydraulic power unit mechanically coupled to the skid frame and operatively coupled to the one or more raising cylinders. In addition, the method includes mechanically coupling the skid frame to the drilling rig at the rig attachment point and mechanically coupling the one or more raising cylinders to one or more corresponding mast lift points of the mast. The method also includes extending the one or more raising cylinders to move the mast from the horizontal position to a vertical position and mechanically coupling the one or more raising cylinders to one or more corresponding rig lift points of the drill rig floor. The method further includes extending the raising cylinders to move the drill rig floor from a lowered position to a raised position.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1 depicts a perspective view of a drilling rig consistent with at least one embodiment of the present disclosure in a raised position.



FIG. 1A depicts a perspective view of a rig lift point of a drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 2 depicts the drilling rig of FIG. 1 with the drill rig floor in a lowered position.



FIG. 2A depicts a perspective view of a mast lift point of a drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 3 depicts the drilling rig of FIG. 1 with the mast in a lowered position.



FIG. 4 depicts a top view of a disassembled drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 5 depicts a top view of a partially disassembled drilling rig consistent with at least one embodiment of the present disclosure.



FIGS. 6A and 6B depict elevation views of cross braces consistent with at least one embodiment of the present disclosure.



FIG. 7 depicts a top view of a partially disassembled drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 8 depicts a top view of a partially disassembled drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 9A depicts a perspective view of an upper mast subcomponent consistent with at least one embodiment of the present disclosure.



FIG. 9B depicts a perspective view of a middle mast subcomponent consistent with at least one embodiment of the present disclosure.



FIG. 9C depicts a top view of a lower mast subcomponent in a closed position.



FIG. 9D depicts a top view of the lower mast subcomponent of FIG. 9C in an open position.



FIG. 10 depicts a cross section view of a drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 11 depicts a cross section view of a drilling rig consistent with at least one embodiment of the present disclosure with a blowout preventer and rotary control device.



FIG. 12 depicts a partially transparent view of a drilling rig consistent with at least one embodiment of the present disclosure.



FIG. 13 depicts a hydraulic cylinder skid consistent with at least one embodiment of the present disclosure.



FIG. 14 is a side view of the hydraulic cylinder skid of FIG. 13.



FIG. 15 depicts a top view of the drilling rig with an attached hydraulic cylinder skid consistent with at least one embodiment of the present disclosure.





DETAILED DESCRIPTION

It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.



FIG. 1 depicts a perspective view of drilling rig 10 in a raised position. In some embodiments, drilling rig 10 may include drill rig floor 20, right substructure 30, left substructure 40, and mast 50. Right substructure 30 and left substructure 40 may support drill rig floor 20. Right and left substructures 30, 40 may be generally parallel and spaced apart in the right-left direction. As would be understood by one having ordinary skill in the art with the benefit of this disclosure, the terms “right” and “left” as used herein are only used to refer to each separate substructure to simplify discussion, and are not intended to limit this disclosure in any way. Right and left substructures 30, 40, may each include one or more lower boxes 130 and one or more struts 140. Each lower box 130 may be formed as a single unit or may be formed from one or more mechanically coupled subcomponents. Drill rig floor 20 may be mechanically coupled to lower boxes 130 by struts 140. Struts 140 may be pivotably coupled to drill rig floor 20 and to one or more lower boxes 130. Lower boxes 130 may be generally parallel to each other and spaced apart in the left-right direction. In some embodiments, struts 140 may be coupled to drill rig floor 20 and lower boxes 130 such that struts 140 form a bar linkage between lower boxes 130 and drill rig floor 20, allowing motion of drill rig floor 20 relative to lower boxes 130 while maintaining drill rig floor 20 parallel to lower boxes 130 as further discussed hereinbelow. In some embodiments, right substructure 30 may include a lower box 130 referred to herein as a right lower box. In some embodiments, left substructure 40 may include a lower box 130 referred to herein as a left lower box.


In some embodiments, drill rig floor 20 may be movable from a raised position as depicted in FIG. 1 to a lowered position as depicted in FIG. 2 by pivoting movement of struts 140. In some embodiments, drill rig floor 20 may be movable between the raised position and the lowered position by one or more hydraulic cylinders 150. In some embodiments, hydraulic cylinders 150, shown in FIG. 1 mechanically coupled to drill rig floor 20, may be mechanically and pivotably coupled to lower boxes 130. In some embodiments, hydraulic cylinders 150 may mechanically couple to one or more corresponding rig lift points 152 of drill rig floor 20. In some embodiments, each rig lift point 152 may include one or more members such as bars to which hydraulic cylinders 150 may mechanically couple. In some embodiments, as depicted in FIG. 1A, each rig lift point 152 may include attachment point hydraulic ram 154. Attachment point hydraulic ram 154 may extend or retract attachment bar 156. Attachment bar 156 may, when extended, engage distal end 150′ of hydraulic cylinder 150, mechanically coupling hydraulic cylinder 150 to drill rig floor 20. In some embodiments, when hydraulic cylinder 150 is mechanically coupled to drill rig floor 20, extension or retraction of hydraulic cylinder 150 may move drill rig floor 20 toward the raised position as depicted in FIG. 1 or lowered position as depicted in FIG. 2 respectively.


In some embodiments, drill rig floor 20 may include V-door 23. In some embodiments, hydraulic cylinders 150 may be positioned in lower boxes 130 such that hydraulic cylinders 150 mechanically couple to a side of drill rig floor 20 that is opposite the side of drill rig floor 20 that includes V-door 23, defined as V-door side 22 of drill rig floor 20.


In some embodiments, mast 50 may be pivotably coupled to drill rig floor 20 by one or more mast pivot points 52. In some embodiments, mast pivot points 52 may be positioned on drill rig floor 20 such that mast 50 may pivot from a mast raised position as depicted in FIG. 2 to a mast lowered position as depicted in FIG. 3. In some such embodiments, mast 50 may pivot in a direction away from V-door side 22 of drill rig floor 20 when mast 50 is lowered. In some embodiments, hydraulic cylinders 150 may be used to move mast 50 from the raised position to the lowered position. In some such embodiments, hydraulic cylinders 150, as shown in FIG. 2, may mechanically couple to one or more mast lift points 62. In some embodiments, each mast lift point 62 may include one or more members such as bars to which distal end 150′ of hydraulic cylinders 150 may mechanically couple. In some embodiments, as depicted in FIG. 2A, each mast lift point 62 may include mast attachment point hydraulic ram 154′. Mast attachment point hydraulic ram 154′ may extend or retract mast attachment bar 156′. Mast attachment bar 156′ may, when extended, engage distal end 150′ of hydraulic cylinder 150, mechanically coupling hydraulic cylinder 150 to mast 50.


In some embodiments, each hydraulic cylinder 150 may be extended or retracted by hydraulic pressure. In some embodiments, each hydraulic cylinder 150 may, when detached from rig lift points 152 and mast lift points 62, be pivoted relative to the respective lower box 130 by one or more cylinder positioning hydraulic cylinders 151 as shown in FIG. 3. Cylinder positioning hydraulic cylinder 151 may, for example and without limitation, raise distal end 150′ of hydraulic cylinder 151 relative to lower box 130. By modulating the extension of hydraulic cylinders 150 and cylinder positioning hydraulic cylinders 151, distal end 150′ of hydraulic cylinders 150 may be positioned in space to, for example and without limitation, align with rig lift points 152, mast lift points 62, or any other desired position.


In some embodiments, drilling rig 10 may be formed from multiple subunits. For example and without limitation, in some embodiments as depicted in FIG. 4, drilling rig 10 may be separable into three drilling rig subunits: left drilling rig subunit 10a, center drilling rig subunit 10b, and right drilling rig subunit 10c. In some embodiments, drill rig floor 20 may be separable into three corresponding rig floor subunits: left rig floor subunit 20a, center rig floor subunit 20b, and right rig floor subunit 20c. Each drilling rig subunit 10a-c may include a corresponding rig floor subunit 20a-c. In some embodiments, left drilling rig subunit 10a may include left substructure 40. In some embodiments, right drilling rig subunit 10c may include right substructure 30. In some embodiments, center rig floor subunit 20b may include V-door 23 and rotary table 24. In some embodiments, left rig floor subunit 20a and right rig floor subunit 20c may include mast pivot points 52.


When drilling rig 10 is transported, each drilling rig subunit 10a-c may be transported separately. In some embodiments, each drilling rig subunit 10a-c may be sized such that each drilling rig subunit 10a-c complies with one or more transportation regulations. In some embodiments, one or more of drilling rig subunits 10a-c may include tail rolls 107. Tail rolls 107 may be one or more bars or other mounting points for allowing each drilling rig subunit 10a-c to be loaded onto a winch truck. In some embodiments, one or more of drilling rig subunits 10a-c may include one or more D-rings (not shown) to, for example and without limitation, allow the attachment of winch lines to move drilling rig subunits 10a-c.


In some embodiments, to assembly drilling rig 10, left drilling rig subunit 10a, center drilling rig subunit 10b, and right drilling rig subunit 10c may be transported to the drill site. Left drilling rig subunit 10a and right drilling rig subunit 10c may be positioned substantially parallel and spaced apart as depicted in FIG. 4. As shown in FIG. 5, in some embodiments, one or more cross braces 12 may be extended between left drilling rig subunit 10a and right drilling rig subunit 10c. In some embodiments, each cross brace 12 may be pivotably coupled to one of left drilling rig subunit 10a or right drilling rig subunit 10c. During transportation as depicted in FIG. 4, cross braces 12 may be pivoted to be close to lower box 130 of the respective drilling rig subunit 10a or 10c.


When drilling rig 10 is to be assembled and drilling rig subunits 10a and 10c are positioned in the drill site, cross braces 12 may be pivoted outward and may be mechanically coupled to the other drilling rig subunit 10c or 10a as depicted in FIG. 5. Cross braces 12 may mechanically couple drilling rig subunits 10a and 10c.


In some embodiments, cross braces 12 may be formed as extended beams. In some embodiments, each cross brace 12 may include one or more subunits which may be mechanically coupled to a respective drilling rig subunit 10a or 10c and may me mechanically coupled in the middle of cross brace 12. In some embodiments, cross braces 12 may be narrower in height toward a middle of the respective cross brace 12, defined as narrowed portion 12′. In some such embodiments, cross brace 12 may be selectively decoupleable from drilling rig subunits 10a and 10c and may be repositioned. For example and without limitation, as depicted in FIG. 6A, cross brace 12 may be positionable such that the distance between the top of cross brace 12 and a surface such as the ground is reduced by positioning narrowed portion 12′ of cross brace 12 in a lower position. In the reversed position as depicted in FIG. 6B, the clearance between the ground and cross brace 12 may be increased by positioning narrowed portion 12′ of cross brace 12 in a higher position.


When left and right drilling rig subunits 10a, 10c are mechanically coupled, center drilling rig subunit 10b may be positioned between left drilling rig subunit 10a and right drilling rig subunit 10c as depicted in FIG. 7. Center drilling rig subunit 10b may mechanically couple to each of left drilling rig subunit 10a and right drilling rig subunit 10c. In some embodiments, left drilling rig subunit 10a and right drilling rig subunit 10c may include one or more supports 14 as shown in FIG. 5 positioned to support center drilling rig subunit 10b.


In some embodiments, as depicted in FIG. 5, one or both of left and right drilling rig subunits 10a, 10c may include one or more equipment support cantilever beams 16. Equipment support cantilever beams 16 may be pivotably coupled to a respective lower box 130 of drilling rig subunit 10a or 10c. In some embodiments, equipment support cantilever beams 16 may be pivoted to be close to lower box 130 of the respective drilling rig subunit 10a or 10c. Equipment support cantilever beams 16 may, when extended as depicted in FIG. 5, be used to support one or more pieces of drilling rig equipment, including, for example and without limitation, hydraulic pressure unit skid 70. Hydraulic pressure unit skid 70 may be positioned atop one or more equipment support cantilever beams 16. In some embodiments, one or more of a hoist skid, drill line spooler skid, mud gas separator skid, stair tower, accumulator skid, hydraulic pressure unit skid, mud tank skid, generator skid, or any other piece of rig equipment may be positioned atop and mechanically coupled to one or more equipment support cantilever beams 16. In some embodiments, hydraulic pressure unit skid 70 may provide hydraulic power to hydraulic cylinders 150 as previously described. In some embodiments, hydraulic pressure unit skid 70 may couple to one or more hydraulic lines built into one or more of drilling rig subunits 10a-c and may provide hydraulic power to drilling rig 10 therethrough.


In some embodiments, once left, center, and right drilling rig subcomponents 10a-10c are mechanically coupled, mast 50 may be moved and mechanically coupled to drill rig floor 20 at mast pivot points 52 as depicted in FIG. 8. Mast 50 may be transported in a horizontal position. In some embodiments, mast 50 may be transported in a horizontal position such that the open side of mast 50, defining a mast V-door side, is at the top of mast 50 in the horizontal position.


In some embodiments, as depicted in FIG. 8 and FIGS. 9A-9D, mast 50 may include one or more mast subcomponents, here depicted as upper mast subcomponent 50a, middle mast subcomponent 50b, and lower mast subcomponent 50c. In some embodiments, mast subcomponents 50a-50c may be mechanically coupled in the horizontal position before installation to drill rig floor 20. In some embodiments, top drive 53 and traveling block 54 may be transported within mast 50 when in the horizontal position without additional bracing. In some embodiments, traveling block 54 may be positioned within upper mast subcomponent 50a and top drive 53 may be positioned within middle mast subcomponent 50b during transportation. In some embodiments, during a mast lifting operation as previously described, traveling block 54 and top drive 53 may be positioned within upper mast subcomponent 50a. In some embodiments, traveling block 54 and top drive 53 may be positioned within middle mast subcomponent 50b during a mast lift operation. In some embodiments, traveling block 54 may be strung up during transportation.


In some embodiments, as depicted in FIGS. 9C, 9D, lower mast subcomponent 50c may include mast lower extremities 51a, 51b and lower mast body 51c. Mast lower extremities 51a and 51b may be pivotably coupled to lower mast body 51c such that when in the horizontal position and for transportation, mast lower extremities 51a and 51b do not extend beyond the dimensions of lower mast body 51c as depicted in a retracted position in FIG. 9C. As depicted in FIG. 9D, mast lower extremities 51a and 51b may be pivoted outward into an extended position before mast 50 is mechanically coupled to drill rig floor 20. As depicted in FIG. 8, in some embodiments, one or more spreader beams 51d may be mechanically coupled between mast lower extremities 51a and 51b to, for example and without limitation, maintain the position of mast lower extremities 51a and 51b.


In some embodiments, as depicted in FIG. 7, left and right rig floor subunits 20a, 20c may include one or more drill floor cantilever beams 17. Drill floor cantilever beams 17 may be extended and may be used to support one or more pieces of drilling rig equipment including, for example and without limitation, driller's cabin skid 18 and choke house 19 as depicted in FIG. 8. Driller's cabin skid 18 and choke house 19 may move with drill rig floor 20 as drill rig floor 20 is raised. In some embodiments, drill floor cantilever beams 17 may be extended and receive driller's cabin skid 18 and choke house 19 after drill rig floor 20 is raised.


In some embodiments, as depicted from below in FIG. 10, center drilling rig subunit 10b may include support beams 15. In some embodiments, support beams 15 may be parallel or substantially parallel. In some embodiments, support beams 15 may, for example and without limitation, support the weight of center rig floor subunit 20b. In some embodiments, support beams 15 may be spaced apart a distance suitable for placement on a trailer. In some embodiments, when drilling rig 10 is in the raised position, support beams 15 may include one or more trolleys 15a. Trolleys 15a may roll along support beams 15, and may be used to hoist and move one or more components beneath drill rig floor 20. For example and without limitation, trolleys 15a may be used to hoist and move a blowout preventer or rotary control device (depicted as rotary control device 80 in FIG. 11).


In some embodiments, as depicted in FIG. 11, center drilling rig subunit 10b may include catch basin 81. Catch basin 81 may be positioned beneath rotary table 24. In some embodiments, catch basin 81 may, for example and without limitation, collect fluid which flows through drill rig floor 20 at or around rotary table 24. In some embodiments, as depicted in FIG. 11, catch basin 81 may be mechanically coupled to containment riser 83. Containment riser 83 may extend between catch basin 81 and rotary control device 80. In some embodiments, containment riser 83 may collect fluid from catch basin 81 about a length of drill pipe (not shown). In some embodiments, containment riser 83 may include outlet 85, positioned to allow fluids within containment riser 83 to be removed from containment riser 83.


In some embodiments, one or more lower boxes 130 may include one or more hydraulic walkers 131 as depicted in FIG. 12. In some embodiments, hydraulic walkers 131 may be hydraulically actuatable to move or walk drilling rig 10 to a different location in the wellsite. In some embodiments, hydraulic walkers 131 may be operable to move or walk drilling rig 10 in any direction. In some embodiments, equipment positioned on equipment support cantilever beams 16 may be moved with drilling rig 10 as it is moved or walked. In some embodiments, the drilling rig may be skidded.



FIGS. 13 and 14 depict hydraulic cylinder skid 200. Hydraulic cylinder skid 200 may include skid frame 201. Skid frame 201 may support other components of hydraulic cylinder skid 200 and allow for transportation of hydraulic cylinder skid 200 as a single unit. In some embodiments, hydraulic cylinder skid 200 may include one or more raising cylinders 203. Raising cylinders 203 may be pivotably coupled to skid frame 201 at lower end 203a of raising cylinders 203. In some embodiments, hydraulic cylinder skid 200 may include cylinder positioning hydraulic cylinders 205. Each cylinder positioning hydraulic cylinder 205 may mechanically couple between skid frame 201 and a respective raising cylinder 203. Extension or retraction of cylinder positioning hydraulic cylinders 205 may allow the angle at which raising cylinders 203 extend from hydraulic cylinder skid 200 to be controlled. By modulating the extension of raising cylinders 203 and cylinder positioning hydraulic cylinders 205, upper end 203b of raising cylinders 203 may be positioned in space to, for example and without limitation, align with rig lift points 152, mast lift points 62 or any other desired position as described further herein below.


In some embodiments, hydraulic cylinder skid 200 may include hydraulic power unit 207. Hydraulic power unit 207 may be mechanically coupled to skid frame 201. Hydraulic power unit 207 may generate hydraulic pressure that may be used, for example and without limitation, to extend or retract raising cylinders 203 and cylinder positioning hydraulic cylinders 205. In some embodiments, hydraulic power unit 207 may include hydraulic pump 209. Hydraulic pump 209 may be used to pressurize hydraulic fluid. In some embodiments, hydraulic pump 209 may be powered mechanically by pump engine 211. Pump engine 211 may be, for example and without limitation, a combustion engine or electric motor.


In some embodiments, hydraulic power unit 207 may operatively couple to raising cylinders 203 and cylinder positioning hydraulic cylinders 205 through hydraulic cylinder skid controls 213. Hydraulic cylinder skid controls 213 may include one or more manifolds and valves positioned to control the flow of hydraulic fluid to raising cylinders 203 and cylinder positioning hydraulic cylinders 205 in order to control the extension or retraction of raising cylinders 203 and cylinder positioning hydraulic cylinders 205. In some embodiments, hydraulic cylinder skid controls 213 may be manually operated. In some embodiments, hydraulic cylinder skid controls 213 may be at least partially automated. In such an embodiment, hydraulic cylinder skid controls 213 may include programmable logic controller (PLC) 215 adapted to control the operation of raising cylinders 203 and cylinder positioning hydraulic cylinders 205.


In some embodiments, hydraulic cylinder skid 200 may include other components of a hydraulic system including, for example and without limitation, hydraulic reservoir 217 and hydraulic lines 219. In some embodiments, by including all components of a hydraulic system, hydraulic cylinder skid 200 may be transportable and usable without the need to disassemble or reassembly components of hydraulic cylinder skid 200.


In some embodiments, skid frame 201 may include rig attachment points 221. Rig attachment points 221 may be adapted to allow skid frame 201 to be mechanically coupled to a drilling rig in order to use raising cylinders 203 to interact with components of the drilling rig as discussed further below. Rig attachment points 221 may include, for example and without limitation, one or more holes that correspond to holes formed on the drilling rig to allow a pin-connection to be made to temporarily mechanically couple hydraulic cylinder skid 200 to the drilling rig.


For example, FIG. 15 depicts hydraulic cylinder skid 200 mechanically coupled to drilling rig 10′. In some embodiments, hydraulic cylinder skid 200 may be mechanically coupled to drilling rig 10′ at an end of lower boxes 130′ corresponding with the direction in which drill rig floor 20 moves when moved to the lowered position as discussed herein above. In some embodiments rig attachment points 221 may mechanically couple to corresponding attachment points formed on one or both of lower boxes 130′. In some embodiments, hydraulic cylinder skid 200 may be used to move drill rig floor 20 between the raised and the lowered position using raising cylinders 203 substantially as described with respect to hydraulic cylinders 150 as described herein above. For example, in some embodiments, upper end 203b of raising cylinders 203 may mechanically couple to one or more corresponding rig lift points 152 of drill rig floor 20. Raising cylinders 203 may then be extended to move drill rig floor 20 from the lowered position to the raised position, or may be retracted to move drill rig floor 20 from the raised position to the lowered position. Once drill rig floor is in the desired position, raising cylinders 203 may be decoupled from rig lift points 152.


In some embodiments, hydraulic cylinder skid 200 may be used to move mast 50 between the raised and lowered positions while mechanically coupled to drilling rig 10′ at an end of lower boxes 130′. In such an embodiment, upper end 203b of raising cylinders 203 may mechanically couple to one or more corresponding mast lift points 62 of mast 50. Raising cylinders 203 may then be extended to move mast 50 from the lowered position to the raised position, or may be retracted to move mast 50 from the raised position to the lowered position. Once mast 50 is in the desired position, raising cylinders 203 may be decoupled from mast lift points 62.


One having ordinary skill in the art with the benefit of this disclosure will understand that the present disclosure does not limit the order of raising or lowering of mast 50 and drill rig floor 20.


Once drill rig floor 20 and mast 50 are in the desired raised or lowered positions, upper end 203b of raising cylinders 203 may be mechanically decoupled from rig lift points 152 and mast lift points 62, raising cylinders 203 may be fully retracted for storage, and hydraulic cylinder skid 200 may be mechanically decoupled from drilling rig 10′. During operation or transportation of drilling rig 10′, hydraulic cylinder skid 200 needs not remain mechanically coupled to drilling rig 10′. In some embodiments, hydraulic cylinder skid 200 may be removed from drilling rig 10′ to, for example and without limitation, reduce the weight of, footprint of, and number of components carried by drilling rig 10′ during operation or transportation of drilling rig 10′. In some embodiments, hydraulic cylinder skid 200 may be transported to a second drilling rig on the same or another wellsite to raise or lower the respective drill floor or mast of the second drilling rig.


In some embodiments, because hydraulic cylinder skid 200 includes raising cylinders 203, cylinder positioning hydraulic cylinders 205, hydraulic power unit 207, hydraulic pump 209, pump engine 211, hydraulic cylinder skid controls 213, hydraulic reservoir 217, and hydraulic lines 219 all mechanically coupled to skid frame 201, hydraulic cylinder skid 200 may be transported as a single unit without the need to disconnect any operative couplings between the components of hydraulic cylinder skid 200. In some embodiments, such as where pump engine 211 is a combustion engine, hydraulic cylinder skid 200 may operate independently without any additional connections to external equipment required.


Although described with respect to drilling rig 10′ as described herein, one having ordinary skill in the art with the benefit of this disclosure will understand that hydraulic cylinder skid 200 may be used with any drilling rig with a pivoting drilling floor, pivoting mast, or both, including, for example and without limitation, a sidesaddle drilling rig


The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A drilling rig comprising: a right substructure, the right substructure including a first lower box, at least one strut pivotably coupled to the first lower box, and a first hydraulic cylinder pivotably coupled to the first lower box;a left substructure, the left substructure including a second lower box, at least one strut pivotably coupled to the second lower box, and a second hydraulic cylinder pivotably coupled to the second lower box;a drill rig floor, the drill rig floor mechanically coupled to the struts of the right and left substructures, the drill rig floor including a left drilling floor subunit, a center drill rig floor subunit, and a right drilling floor subunit, the left drilling floor subunit mechanically coupled to the left substructure, the left drilling floor subunit and left substructure defining a left drilling rig subunit, the right drilling floor subunit mechanically coupled to the right substructure, the right drilling floor subunit and right substructure defining a right drilling rig subunit, and the center drill rig floor subunit including a V-door and a rotary table, the center drill rig floor subunit including a catch basin positioned beneath the rotary table, the center drill rig floor subunit including a containment riser, the containment riser mechanically coupled to the catch basin and extending between the catch basin and a rotating control device; anda mast, the mast mechanically coupled to the drill floor, the first and second hydraulic cylinders adapted to raise or lower the drill floor and the mast.
  • 2. The drilling rig of claim 1, wherein the hydraulic cylinders are mechanically coupled to one or more rig lift points of the drill rig floor.
  • 3. The drilling rig of claim 2, wherein each rig lift point of the drill rig floor comprises an attachment point hydraulic ram and an attachment bar, the attachment bar engaging a distal end of the hydraulic cylinder mechanically coupled to the rig lift point.
  • 4. The drilling rig of claim 1, wherein the mast is mechanically coupled to the drill rig floor at one or more mast pivot points.
  • 5. The drilling rig of claim 4, wherein the hydraulic cylinders are mechanically coupled to one or more mast lift points of the mast.
  • 6. The drilling rig of claim 5, wherein each mast lift point of the mast comprises a mast attachment point hydraulic ram and a mast attachment bar, the mast attachment bar engaging a distal end of the hydraulic cylinder mechanically coupled to the mast lift point.
  • 7. The drilling rig of claim 4, wherein the mast comprises an open side defining a V-door side of the mast.
  • 8. The drilling rig of claim 7, wherein the V-door side of the mast is at the top of the mast when the mast is in a horizontal position.
  • 9. The drilling rig of claim 8, wherein the mast comprises a top drive and a traveling block, and the top drive and traveling block are positioned within the mast when the mast is in the horizontal position.
  • 10. The drilling rig of claim 4, wherein the mast comprises an upper mast subcomponent, a middle mast subcomponent, and a lower mast subcomponent.
  • 11. The drilling rig of claim 10, wherein the upper mast subcomponent comprises a traveling block.
  • 12. The drilling rig of claim 10, wherein the middle mast subcomponent comprises a top drive.
  • 13. The drilling rig of claim 10, wherein the lower mast subcomponent comprises a lower mast body and two lower extremities, the lower extremities pivotably coupled to the lower mast body.
  • 14. The drilling rig of claim 13, wherein the lower mast subcomponent includes one or more spreader beams mechanically coupled between the lower extremities.
  • 15. The drilling rig of claim 1, wherein the left drilling rig subunit and the right drilling rig subunit are mechanically coupled by one or more cross braces, the cross braces mechanically coupled to the first and second lower boxes.
  • 16. The drilling rig of claim 15, wherein the cross braces are pivotably coupled to the first and second lower boxes.
  • 17. The drilling rig of claim 15, wherein at least one cross brace includes a narrowed portion.
  • 18. The drilling rig of claim 1, wherein the center drill rig floor subunit is mechanically coupled to the left drill rig floor subunit and the right drill rig floor subunit by one or more supports positioned on the left drill rig floor subunit and the right drill rig floor subunit.
  • 19. The drilling rig of claim 1, wherein the center drill rig floor subunit comprises one or more support beams, the support beams being parallel or substantially parallel.
  • 20. The drilling rig of claim 19, further comprising a trolley mechanically coupled to a support beam.
  • 21. The drilling rig of claim 1, wherein at least one of the first and second lower boxes includes a hydraulic walker.
  • 22. The drilling rig of claim 1, wherein at least one of the first and second lower boxes includes one or more equipment support cantilever beams, each equipment support cantilever beam mechanically and pivotably coupled to the respective lower box.
  • 23. The drilling rig of claim 22, further comprising one or more of a hoist skid, drill line spooler skid, mud gas separator skid, stair tower, accumulator skid, hydraulic pressure unit skid, mud tank skid, or generator skid positioned atop the equipment support cantilever beams.
  • 24. The drilling rig of claim 1, further comprising one or more drill floor cantilever beams mechanically coupled to one or both of the left and right drilling floor subunits, each drill floor cantilever beam mechanically and pivotably coupled to the respective drilling floor subunit.
  • 25. The drilling rig of claim 24, further comprising one or more of a driller's cabin skid and choke house positioned atop the drill floor cantilever beams.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a U.S. non-provisional application which claims priority from U.S. provisional application No. 62/361,827, filed Jul. 13, 2016, which is incorporated by reference herein in its entirety.

US Referenced Citations (179)
Number Name Date Kind
1733484 Davis Oct 1929 A
2332479 Woolslayer et al. Oct 1943 A
2345253 Funk Mar 1944 A
2347115 Lewis Apr 1944 A
2594847 Bates et al. Apr 1952 A
3028881 Koomey et al. Apr 1962 A
3228151 Woolslayer et al. Jan 1966 A
3255836 Hoppmann et al. Jun 1966 A
3433268 Greer Mar 1969 A
3483933 Dyer et al. Dec 1969 A
3576225 Chambers Apr 1971 A
3676984 Clark Jul 1972 A
3716149 Scaggs Feb 1973 A
3739853 Wales Jun 1973 A
3754361 Branham et al. Aug 1973 A
3802137 Armstrong Apr 1974 A
3851770 Jenkins et al. Dec 1974 A
3922825 Eddy et al. Dec 1975 A
3937334 Bleyl et al. Feb 1976 A
3942593 Reeve, Jr. et al. Mar 1976 A
3991887 Trout Nov 1976 A
4021978 Busse et al. May 1977 A
4029165 Miller et al. Jun 1977 A
RE29541 Russell Feb 1978 E
4117941 McCleskey et al. Oct 1978 A
4221088 Patterson Sep 1980 A
4235566 Beeman et al. Nov 1980 A
4267675 Cochran May 1981 A
4290495 Elliston Sep 1981 A
4375892 Jenkins et al. Mar 1983 A
4403898 Thompson Sep 1983 A
4407629 Willis Oct 1983 A
4421179 Boyadjieff Dec 1983 A
4473977 Reed Oct 1984 A
4474254 Etter et al. Oct 1984 A
4478015 Lawrence Oct 1984 A
4478291 Futros Oct 1984 A
4488708 Frye Dec 1984 A
4493382 Collins et al. Jan 1985 A
4587778 Woolslayer et al. May 1986 A
4744710 Reed May 1988 A
4757592 Reed Jul 1988 A
4759414 Willis Jul 1988 A
4823870 Sorokan Apr 1989 A
4834604 Brittain et al. May 1989 A
4837992 Hashimoto Jun 1989 A
4850439 Lund Jul 1989 A
4899832 Bierscheid, Jr. Feb 1990 A
4979578 Landry Dec 1990 A
5107940 Berry Apr 1992 A
5248005 Mochizuki Sep 1993 A
5305833 Collins Apr 1994 A
5375667 Trevisani Dec 1994 A
5492436 Suksumake Feb 1996 A
5921336 Reed Jul 1999 A
6161358 Mochizuki et al. Dec 2000 A
6343892 Kristiansen Feb 2002 B1
6491477 Bennett, Jr. et al. Dec 2002 B2
6581525 Smith Jun 2003 B2
6634436 Desai Oct 2003 B1
6779614 Oser Aug 2004 B2
6848515 Orr Feb 2005 B2
6955223 Orr et al. Oct 2005 B2
6962030 Conn Nov 2005 B2
6976540 Berry Dec 2005 B2
7228919 Fehres et al. Jun 2007 B2
7249629 Cunningham et al. Jul 2007 B2
7255180 Beato et al. Aug 2007 B2
7306055 Barnes Dec 2007 B2
7308953 Barnes Dec 2007 B2
7357616 Andrews et al. Apr 2008 B2
7401656 Wood et al. Jul 2008 B2
7404697 Thompson Jul 2008 B2
7600585 Patton et al. Oct 2009 B2
7628229 Wood et al. Dec 2009 B2
7765749 Palidis Aug 2010 B2
7819207 Cowan Oct 2010 B2
7832974 Fikowski et al. Nov 2010 B2
7878254 Abdollahi et al. Feb 2011 B2
7931076 Ditta et al. Apr 2011 B2
7967540 Wright et al. Jun 2011 B2
7992646 Wright et al. Aug 2011 B2
8051930 Barnes et al. Nov 2011 B1
8181698 Springett et al. May 2012 B2
8250816 Donnally et al. Aug 2012 B2
8297362 Strider et al. Oct 2012 B1
8316588 Cicognani Nov 2012 B2
8468753 Donnally et al. Jun 2013 B2
8474216 Goemer Jul 2013 B1
8516751 Konduc Aug 2013 B2
8549815 Donnally et al. Oct 2013 B2
8555564 Wasterval Oct 2013 B2
8561685 Rodgers Oct 2013 B2
8573334 Smith et al. Nov 2013 B2
8661743 Flusche Mar 2014 B2
8720128 Vogt May 2014 B2
8813436 Donnally et al. Aug 2014 B2
8863449 Donnally et al. Oct 2014 B2
8904716 Donnally et al. Dec 2014 B2
8936424 Barnes et al. Jan 2015 B1
8985238 Sorokan et al. Mar 2015 B2
8985928 Flusche Mar 2015 B2
8997435 Reddy et al. Apr 2015 B2
9016004 Vogt Apr 2015 B2
9091126 Thiessen et al. Jul 2015 B2
9091128 Orgeron et al. Jul 2015 B1
9132871 Crisp et al. Sep 2015 B2
9140080 Flusche Sep 2015 B2
9151412 Trevithick et al. Oct 2015 B2
9157286 Richardson et al. Oct 2015 B2
9163462 Donnally et al. Oct 2015 B2
9212481 Stramandinoli Dec 2015 B2
9228394 Wijning et al. Jan 2016 B2
9249626 Flusche Feb 2016 B2
9260929 Mark Feb 2016 B2
9267328 Flusche Feb 2016 B2
9309728 Reddy et al. Apr 2016 B2
9291012 Wells, Sr. May 2016 B2
9334668 Wijning et al. May 2016 B2
9353601 Hause May 2016 B2
9382766 Flusche Jul 2016 B2
9399890 Mark Jul 2016 B2
9441423 Donnally et al. Sep 2016 B2
9366053 Thiessen et al. Oct 2016 B2
9464488 Thiessen Oct 2016 B2
9476267 Orgeron et al. Oct 2016 B2
9488014 Sparkman Nov 2016 B2
9562407 Magnuson Feb 2017 B2
9631443 Folk Apr 2017 B2
9650840 Cheng et al. May 2017 B2
9677298 Konduc et al. Jun 2017 B2
9708861 Reddy et al. Jul 2017 B2
9739098 Fox Aug 2017 B2
9790751 Reddy et al. Oct 2017 B2
9797196 Taggart et al. Oct 2017 B2
9879442 Magnuson et al. Jan 2018 B2
9926719 Reddy et al. Mar 2018 B2
10214936 Reddy Feb 2019 B2
20020001255 Flood et al. Jan 2002 A1
20030172599 Frink Sep 2003 A1
20040211598 Palidis Oct 2004 A1
20080237170 Altman et al. Oct 2008 A1
20090000218 Lee et al. Jan 2009 A1
20090025980 Callander et al. Jan 2009 A1
20090053013 Maltby Feb 2009 A1
20090200856 Chehade et al. Aug 2009 A1
20090272540 Rodgers Nov 2009 A1
20100186960 Reitsma et al. Jul 2010 A1
20100329823 Baumler et al. Dec 2010 A1
20110072737 Wasterval Mar 2011 A1
20110174545 Hartke et al. Jul 2011 A1
20120167485 Trevithick Jul 2012 A1
20120168179 Having et al. Jul 2012 A1
20120304553 Konduc et al. Dec 2012 A1
20130180186 Konduc et al. Jul 2013 A1
20130305632 Rivera, Sr. et al. Nov 2013 A1
20140014417 Smith et al. Jan 2014 A1
20140054097 Bryant Feb 2014 A1
20140158342 Smith Jun 2014 A1
20140224541 Hause Aug 2014 A1
20140224543 Padira et al. Aug 2014 A1
20150114717 Fortson Apr 2015 A1
20150135697 Shimizu et al. May 2015 A1
20150315861 Zachariasen et al. Nov 2015 A1
20160010323 Konduc Jan 2016 A1
20160060893 Roodenburg Mar 2016 A1
20160186495 Flusche Jun 2016 A1
20160215592 Helms et al. Jul 2016 A1
20160258178 Holst Sep 2016 A1
20160280524 Crisp et al. Sep 2016 A1
20160312543 Cheng Oct 2016 A1
20160369570 Reddy et al. Dec 2016 A1
20170081924 Smith Mar 2017 A1
20170106925 Gupta et al. Apr 2017 A1
20170292334 Reddy et al. Oct 2017 A1
20170350153 Reddy et al. Dec 2017 A1
20180030788 Reddy et al. Feb 2018 A1
20180119496 Reddy et al. May 2018 A1
20180128056 Gupta et al. May 2018 A1
Foreign Referenced Citations (8)
Number Date Country
2755483 Nov 2010 CA
2753417 Feb 2011 CA
201778661 Mar 2011 CN
849533 Sep 1952 DE
2751370 Jul 2014 EP
2556042 Jun 1985 FR
2016025521 Feb 2016 WO
2016048458 Mar 2016 WO
Non-Patent Literature Citations (6)
Entry
International Search Report and Written Opinion issued in PCT/US17/36196, dated Nov. 2, 2017 ( pages).
Nabors 990 Proyecto Llanos.WMV; https://www.youtube.com/watch?v=6BgfgWumRIU, Nabors Rig 990 Chichimene, Colombia; Youtube.com; Aug. 10, 2011 (231 pages).
Drilling Contractor; “Nabors modular Rig 702 in Papua New Guinea-bound for Exxon Mobil”; Drilling Contractor, in Drilling Rigs & Automation, News, Jul. 6, 2011; 2 pages; www.drillingcontractor.org.
Drilling Contractor; “Nabors to base all future land rigs on Minimum Area AC rig concept”; Drilling Contractor, in News, Aug. 22, 2011; 2 pages; www.drillingcontractor.org.
Sebastion, Simone; “Big drill soon begins long commute to work”; Houston Chronicle, Sunday, Jul. 3, 2011; 3 pages; www.chron.com.
Gaddy, Dean E., “Critical path analysis improves rig-moving procedures”, Oil & Gas Journal, Nov. 16, 1998 (5 pages).
Related Publications (1)
Number Date Country
20180016851 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
62361827 Jul 2016 US