The invention proceeds from a mast device for a submarine according to the introductory part of claim 1.
Such a known mast device for submarines is provided such that at the upper end of the mast which is vertically traversable in a guiding means there is provided an information means which is in interactive connection with the control station in the inside of the submarine for receiving and emitting information. The information means is rigidly connected to the upper end of the mast and itself may be extended out by a certain amount so that it projects from the mast. If information is to be emitted and received, the submarine travels to the observation depth which corresponds to the height of the extended mast so that the information means is located above the water surface.
Furthermore it is known, e.g. by way of the DE patent document 758 461 and by way of DE 28 37 123 A1 to provide a buoyant unit in the form of a buoy which comprises an optical observation means. The buoy is releasably fastened to the body of the submarine, but via a cable which also transmits information signals to the command location, remains connected to this when the buoy is released from the submarine and on account of its intrinsic buoyancy has reached the surface of the water. The submarine is provided with a winch in order again to draw in the buoy after the end of its operation. The provision of an information buoy permits the submarine, in contrast to submarines with extending masts carrying information means, to assume a deeper observation depth position, in order to be able to carry out observations above the water surface. With these known buoy designs it is however disadvantageous that the main body of the submarine must additionally be specifically designed for the installation or accommodation of the buoyant buoy, which entails corresponding manufacturing costs and a larger space requirement.
The object of the invention lies in further developing a mast device of the initially mentioned type such that in comparison to its extended condition, it permits a greater observation diving depth of the submarine for the information exchange above the water.
The solution of this object is specified in claim 1.
By way of the inventive design of the mast device it is possible for the submarine to be able to assume such a i.e. deeper observation diving depth which is greater than that of the merely extended mast device. A further advantage lies in the fact that a separate buoyant information unit additional to the mast device is done away with, from which there leads the further advantage that no special space or place on or in the submarine need be provided for a floatable information unit and thus also the manufacturing costs for a separate information unit and the design of a space for its positioning in the retracted condition are done away with. A further advantage of the inventive mast device lies in the fact that its information unit may also be used in a conventional manner for emitting and/or receiving information above the water surface, i.e., that the mast is extended but that the buoyant unit with the information means remains on the upper end of the mast.
In an advantageous embodiment of the inventive mast device the buoyant unit with the help of a seat formation in the upper mast region and with the help of the coupling medium is held secure in its position in the region of the upper end of the mast.
A further advantageous feature of the mast device lies in the fact that the mast upper end comprises a removable mast wall part for simplifying the release and repositioning of the buoyant unit from or on the mast upper end. Preferably the mast wall part is designed laterally pivotable, e.g. with the help of a piston-cylinder unit.
According to a further advantageous feature the coupling means which connects the buoyant unit to the mast consists of a cable, e.g. a wire cable or a carbon fibre cable. The coupling means may also contain for example the electrical signal leads for the signal transmission. Furthermore the coupling means by way of the winch may be let out of the mast and pulled in again.
Further advantageous embodiment forms of the mast device according to the invention are specified in the dependent claims.
The invention is hereinafter described in more detail by way of two embodiment examples schematically represented in the accompanying\drawings. There are shown:
a-e a representation of the mast device in various positions of extension,
According to
The buoyant unit 4 has an elongate floating body 10 which in the floating condition stands vertically, which effects a buoyancy force and which on its upper end comprises a platform 11 which with the unit 4 retracted closes the upper end of the mast 2. The information means 5, for example radar means, radio means and/or optical means are accommodated in the known manner in a housing 12 which in the operational position of the unit 4 is located above the platform 11. The housing 12 passes through the platform 11 roughly in the middle and is rigidly connected to the float body 10. In the case shown (
The vertical movement of the float body 10 with the housing 12 of the buoyant unit 4 within the mast 2 is effected by way of a receiving means 15 which accommodates and grips the buoyant body 10, wherein the receiving means 15 is vertically traversable by way of a piston-cylinder unit 16.
As is indicated in
In the region of the upper end of the mast 2 there is provided a seat formation which apart from the seat surface 13 comprises two further seat surfaces 18 and 19 in order to position the buoyant unit 4 securely in the mast when it is retracted. In this condition it is held secure in position by way of the flexible coupling means 7 and the seat surfaces 13, 18 and 19.
In order to simplify the release of the buoyant unit and thus its floating to the surface of the water 6 when the flexible coupling means 7 is let out by way of the winch 8, i.e. is let out of the mast 2, and in order to simplify the repositioning of the unit 4 on the upper end of the mast when the coupling means 7 is pulled in by way of the winch 8, a mast wall part 20 at the upper end of the mast is designed removably replaceable again, preferably laterally pivotable, as
From the above description it results that the buoyant unit 4 which is equipped with the usual information means for emitting and/or receiving information, is held free of connection on the mast upper end when it is located in the retracted condition. For raising the unit to the water surface 6 it is merely necessary to pivot away the mast wall part 20 and to let out the coupling part 7. On account of its intrinsic buoyancy the buoyant unit 4 then moves upwards to the surface of the water 6. The coupling means 7 is let out of the mast 2 according to the desired observation depth for the submarine desired in each case.
The mast device 2 may be provided with a cut-off means 23 in order to be able to sever the coupling means 7 in an emergency. In this case the unit 4 which has been let out and floats on the surface of the water 6 serves as an emergency buoy in order to draw attention to an emergency of the submarine. In the shown case the cut-off means 23 is provided outside the shaft-like guiding means 3 in the vicinity of the winch 8. However also other locations in the mast device 1 are considered.
a to 7e show the retraction procedure for the buoyant unit 4. According to
In order to ensure that the buoyant unit 4 in the water assumes a stabilised vertical attitude when the submarine is travelling during the emitting and/or receiving of information, the section 7a of the flexible coupling means 7, said section bordering the unit 4, is provided with at least one buoyancy means 23. This buoyancy means may consist of a hollow body or of a solid body of a buoyant material, e.g. foam. In place of a single buoyancy body 23 which may have a certain distance to the float body 10 of the unit 4, as
A second embodiment example of the mast device according to the invention is shown in
The mast 2 in the region of its upper end is designed with a tubular receiver 30 for the cylindrical, buoyant unit 4.
In
In both embodiment examples 1 and 25 the coupling means 7 has a total length which essentially corresponds to the maximum desired observation depth of the submarine.
Number | Date | Country | Kind |
---|---|---|---|
101 29 696.7 | Jun 2001 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10176229 | Jun 2002 | US |
Child | 10866324 | Jun 2004 | US |