Aluminum alloys are important in many industries. Glassy Al-based alloys and their devitrified derivatives are currently being considered for applications in the aerospace industry. These alloys involve the addition of rare earth and transition metal elements. These alloys have high strength and, when processed appropriately, have high ductility.
One of the key requirements for high ductility is control of the uptake of hydrogen. While all Al-based alloys are sensitive to hydrogen, alloys containing rare earth elements are particularly susceptible to the effects of hydrogen during alloy production.
When Al-based alloys are produced in large quantities, they are often direct chill cast into molds that drop into well-like openings in the ground. For reactive materials such as Al—Li—X alloys, care must be exercised to preclude or prevent reaction of the Li with any oxidant such as air or water. For more reactive elements such as Yttrium and other rare earths, even more care is needed because exposure to water that is used to cool direct chill molds could result in fire and/or an explosion.
Al-based alloys such as Al—Y—Ni—Co alloys are devitrified glass-forming aluminum alloys that derive their strength from a nanometer-sized grain structure and nanometer-sized intermetallic phase or phases. The presence of hydrogen destroys the ductility of these alloys. Consequently, it is necessary to produce master alloys with hydrogen contents of 1 ppm or less. Examples of such alloys are disclosed in co-owned U.S. Pat. Nos. 6,974,510 and 7,413,621, the disclosures of which are incorporated herein by reference in their entirety.
It is necessary to find an alternative process for production of these highly reactive Al-based alloys.
It has now been discovered that master alloy for devitrified glass-forming Al-based alloys can be produced in a process that avoids hydrogen pickup. The molten metal is isolated from the environment to a substantial degree. The process includes the use of a bottom-pour or side-pour crucible that is “covered” with an inert gas such as argon. The gas cover includes a physical cover on the top of the crucible into which argon or another inert gas such as nitrogen is bled into the crucible to form a positive pressure. The heavier argon forces out any air to minimize exposure of the melt to air.
The metal is poured out from the side or bottom of the crucible, rather than tipping to pour out the top. It is poured into a launder or pipe that is sealed and attached to the crucible, and is also filled with an inert gas such as argon. The molten metal flows through a launder or launder/tundish combination and is deposited directly into molds, which are also filled with inert gas such as argon.
The alloy in crucible 15 is purged with argon or another inert gas to drive out oxygen and any other reactive gas. Hydrogen from moisture is also driven out. Crucible 15 may be any low moisture/low volatiles alumina crucible, such as those produced by St. Gobain, or a graphite crucible with a spall-free alumina coating. Typical crucibles are ceramic cylinders that are about two feet in diameter and about three feet deep.
The alloy is melted in crucible 15 and exits the bottom of crucible through launder 19, so that the flow of molten alloy is controlled by position-control door 21. Launder may not be needed in some designs of crucible 15. With or without launder 19, the passage out of crucible 15 is also accomplished in an inert atmosphere via inert gas feed 23.
Tundish 25 is a funnel-shaped vessel into which the molten metal is poured. The purpose of a tundish is to allow the molten metal to reach a desired height (with a desired head pressure) so that there is a constant pour rate. It has been discovered that a slower rate precluded bubbles from forming in the melt. The height can be adjusted so there is no splashing of the metal into the molds. Flowing molten alloy 27 pours into waffle ingot molds 29 carried by conveyor belt 31, also in an inert atmosphere.
Allowing the molten alloy to drain down from the bottom of crucible 15 eliminates a major problem in prior art furnaces, in that the dross that accumulates on the top of the molten pool of alloy remains at the top and does not have to be removed until crucible 15 is cleaned prior to recharging with more alloy. Also, the dew point can be monitored, further preventing undesirable gas from contacting the sensitive elements of the alloy, thus preserving the low hydrogen/oxygen content of the master alloy.
For the two embodiments as discussed herein, a hygrometer with a computer can be used for measuring the amount of moisture, and therefore hydrogen, in the gases both at the source for 13 and 23, and within chamber 11 as a function of time. Best results are obtained when the dew point is −110° F. (−78.9° C.) or lower. A commercially available monitor such as an ALSCAN may be connected to a computer so that hydrogen readings in the melt may also be taken in real time. Similar readings in the launder can be used to monitor hydrogen there as well, which is to be as low as possible, i.e., less than 1 ppm.
In an alternative embodiment, a bottom pour furnace 100 generally is shown in
Both bottom and side pouring embodiments have been found to be effective in producing satisfactory ingots. The advantage of the system of
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is related to the following co-pending applications: U.S. patent application Ser. No. 13/169,202, entitled “MASTER ALLOY PRODUCTION FOR GLASSY ALUMINUM-BASED ALLOYS” and filed on Jun. 27, 2011, and these other applications also filed on June 27, 2011 and are assigned to the same assignee: DIFFUSION BONDING OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. 13/169,194, Attorney Docket No. PA0009506U-U73.12-665; EXTRUSION OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. 13/169,204; Attorney Docket No. PA0009510U-U73.12-667KL; PRODUCTION OF ATOMIZED POWDER FOR GLASSY ALUMINUM-BASED ALLOYS, Ser. No. 13/169,207, Attorney Docket No. PA0009512U-U73.12-668KL; and FORGING OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. 13/169,210; Attorney Docket No. PA0009508U-U73.12-671KL. All referenced incorporated herein.
Number | Date | Country | |
---|---|---|---|
Parent | 13169202 | Jun 2011 | US |
Child | 14086540 | US | |
Parent | 13169194 | Jun 2011 | US |
Child | 13169202 | US | |
Parent | 13169204 | Jun 2011 | US |
Child | 13169194 | US | |
Parent | 13169207 | Jun 2011 | US |
Child | 13169204 | US | |
Parent | 13169210 | Jun 2011 | US |
Child | 13169207 | US |