This invention relates generally to locks, lock systems and methods of operating locks. More particularly, this invention relates to a master key lock and a master keying system that allows the lock to be unlocked with an original key as well as with a master key. Further, this invention particularly relates to a method for operating such a master key lock and system.
In the art of locks, wafer tumbler locks are well known. A wafer tumbler lock is a type of lock that uses a set of flat tumblers or “wafers” to prevent the lock from opening unless the correct key is used in combination with the lock. In such locks, the tumblers are typically rectangularly-shaped single piece structures that fit into, and are movable within, slots that are defined within a lock cylinder. Each tumbler is spring-loaded which biases the tumbler in one direction or another which, in turn, causes it to protrude from the cylinder and into longitudinally-formed, or axially-formed, grooves defined within an outer casing of the lock. As long as one end of one of the tumblers protrudes into one of the grooves, rotation of the cylinder is prevented and the lock remains locked. A rectangular hole or “window” is formed in the center of each tumbler to allow passage of a key through the hole. The vertical position of the hole is intentionally varied between tumblers so that a key must have notches that correspond to the height of the hole in each tumbler such that each tumbler is pulled inwardly to the point where the tumbler edges are flush with the outer surface of the lock cylinder and clear the way for the cylinder to rotate within the casing. If any tumbler is insufficiently raised, or raised too much, a tumbler edge will be situated within the groove of the casing thereby preventing rotation of the cylinder within the casing. Such would be the case where no key is inserted into the lock or where the use of an improperly profiled key is inserted.
These inventors are aware of the need to provide such a wafer tumbler lock with a master key capability for the purpose of allowing locks to use multiple keys and master keys without requiring the lock to be fabricated through the coordination of a large number of different part numbers used in the lock. These inventors are also aware of the need to provide such a lock that is “backwards compatible” with existing locks. Accordingly, it is an object of the present invention to provide a new and useful master keying lock, system and method that would provide a lock that can be unlocked with an original key provided for the lock as well as with one or more master keys. It is another object of the present invention to provide such a lock that utilizes existing tumblers and lock keys to accomplish that functionality. It is still another object of the present invention to provide such a lock which is also more secure and less prone to being “picked” because the sleeve within the system cannot be pushed back into the lock case without use of a master key.
The master keying lock, system and method of the present invention has obtained these objects. It provides for a master keying system that allows the lock to be unlocked with the original key provided for the lock as well as with a master key. The system and method of the present invention utilizes the existing tumblers and key of the lock. The fundamental principle behind the present invention is that the master keying feature is accomplished by use of a movable sleeve that shifts the locking surface within the casing relative to the wafer tumblers used within the lock.
The foregoing and other features of the present invention will be apparent from the detailed description that follows.
Referring now to the drawings in detail wherein like numbers represent like elements throughout,
As shown, the system 10 includes a case 20 and a sleeve 30, the sleeve 30 being dimensioned to be slidably received within the case 20. Means for axially moving the sleeve 30 within the case 20 is also provided. Specifically, the sleeve 30 is spring-loaded and can move axially within the case 20 thereby changing positions depending on the specific key that is inserted into the lock cylinder 40. Springs 2 are disposed to either side of the sleeve 30 and are effectively captured and retained within grooves 32 formed within the sleeve 30 and complementary grooves 22 that are defined within the case 20. A stop member 34 is provided to one end of each of the sleeve grooves 32 which provides a surface against which a spring 2 can seat. A similar structure (not shown) is formed within the case 20. Circumferential rotation of the sleeve 30 within the case 20 is prevented by engagement between axial ribs 38 of the sleeve 30 and complementary slots 26 within the case 20. See also
The system 10 of the first preferred embodiment also comprises a lock cylinder 40 of the type that can be used to effect movement of a latch element (not shown) that is operatively connected to the lock cylinder 40. In this first preferred embodiment, the lock cylinder 40 includes three different types of “wafers” or tumblers within the cylinder 40. Specifically, the tumblers comprise a drive tumbler 50, two master tumblers 60 and five locking/unlocking tumblers 70. See also
The locking/unlocking tumblers 70 and the master tumblers 60 are spring-loaded (not shown) in the same direction. The drive tumbler 50 is spring-loaded (also not shown) on the opposite side. It should also be noted that the drive tumbler 50 includes a protrusion 54 within the key window 52, the purpose and function of which will be discussed later in this detailed description. Again, see
Referring now to
Referring now to
In this first preferred embodiment, a master key 90 having an edge profile 92 as shown in
Relative to the operation of the master key 90, it will be noted in
In summary, it will be seen that the master keying arrangement in this first preferred embodiment of the present invention is accomplished is by use of the axially-movable sleeve 30. The sleeve 30 shifts the locking surface engaging either the locking/unlocking tumblers 70 or the master tumblers 60. Sleeve 30 shifts can only be accomplished by use of the master key 90. Standard keys 80 do not contact the drive tumbler 50 which shifts position of the sleeve 30 when inserted as described above. In the standard operation, the correct key profile 82 and key notching 84 must be present to rotate the lock cylinder 40 within the sleeve 30. In the master key operation, the correct key notching for the master tumblers 60 as well as the drive surface for the drive tumbler 50 must be present to rotate the cylinder 40. Again, see
Referring now to
The system 210 of the second preferred embodiment also comprises a cap 204 and a keyway shutter assembly 206, both of which are preferred but not essential to the present invention. More importantly, the system further comprises a lock cylinder 240 and a shim 250. The lock cylinder 240 includes two different types of tumblers within it. Specifically, the tumblers comprise a plurality of “master” tumblers 260 and a plurality of “standard” locking/unlocking tumblers 270, the precise number of tumblers 260, 270 not being a limitation of the present invention. In point of fact, one added benefit of using the tumblers 260, 270 of the second preferred embodiment is that each is simply an inverted version of the other, which is a manufacturing expediency. As before, the master tumblers 260 and the standard locking/unlocking tumblers 270 are spring-loaded (not shown) but are biased in opposite directions.
Referring now to
As shown in
A third preferred embodiment is also contemplated within the scope of the present invention. Referring now to
In summary, it will be seen that the master keying arrangement in the second and third embodiments of the present invention is likewise accomplished by use of an axially-movable sleeve 230, 330. The sleeves 230, 330 shift the locking surface engaging either the locking/unlocking tumblers 270, 370 or the master tumblers 260, 360. Sleeve 230, 330 shifts can only be accomplished by use of the master key 290. The standard key 280 does not contact the shims 250, 350 which shift position of the sleeves 230, 330 when inserted as described above. In the standard operation, the correct key notching 284 must be present to rotate the lock cylinders 240, 340 within the sleeves 230, 330, respectively. In the master key operation, the correct key notching for the master tumblers 260, 360 as well as the surface 298 of the master key 290 must be present to contact the shims 250, 350 thus allowing rotation of the cylinders 240, 340.
Based upon the foregoing, it will be seen that there has been provided a new and useful master keying lock, system and method that provides for a master keying system which allows the lock to be unlocked with the original key provided for the lock as well as with a master key. It further provides use of existing tumblers and key of the lock and also allows for “backwards compatibility” of those elements. All of this is accomplished by use of a master keying feature that uses a moveable sleeve that shifts the locking surface within the lock casing relative to wafer tumblers that are used within the lock.
This application claims the benefit and priority of U.S. Provisional Patent Application No. 61/153,513 filed Feb. 18, 2009.
Number | Date | Country | |
---|---|---|---|
61153513 | Feb 2009 | US |