This invention relates to switch mats. Specifically, this invention relates to switch mats for use in determining the presence or absence of a person, object, etc.
Presence-sensing mats are useful, for instance, to trigger automatic doors to open or close when stepped upon. Such devices can be found at doors to buildings, such as stores, airports, and hotels, for instance. Presence-sensing mats are also useful in other situations, such as industrial safety applications in which mats can sense whether a person or object is within a safe zone or, alternatively, an unsafe zone during operation of a machine. Such mats can be configured to enable the machine if the person or object is within the safe zone or disable the machine so as to not operate while a person or object are within the unsafe zone.
Such mats typically include electrodes within the mat but control and other electronics contained separately outside of the mat and connected to the electrodes with one or more wires exiting from the mat. Such a configuration requires not only the mat, but also the separate electronics, to be protected in a resilient, moisture-resistant manner. Several disadvantages are associated with this configuration, including excess cost in manufacturing, increased susceptibility to moisture and other environmental hazards, decreased reliability, increased trip hazard and distance limitations due to wires connecting various components, and the like.
Other devices, such as sensor systems, are used to sense the presence of a person or object, for instance, to automatically open a door or the like. However, such systems have many disadvantages. For instance, such systems are costly to install and maintain; are subject to improper functioning if the sensors become misaligned, mis-calibrated, or otherwise malfunctioning; and are subject to phantom activations, such as activations from blowing debris or people or objects passing by within the sensed zone.
What is needed is an improved mat system. For example, a mat system and method that provides a relatively self-contained, moisture-resistant, reliable, presence-sensing mat.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are also referred to herein as “examples.” In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, or logical changes, etc. may be made without departing from the scope of the present invention.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
Referring to
Referring again to
Referring now to
In one example, the mat 110 can be tuned to have a particular activation load L by placing the spacing structures 118 on the electrodes 114, 116 with a particular distance between the spacing structures 118. In one example, the spacing structures 118, such as silicone dots, are metered out onto one of the electrodes 114, 116 and the other of the electrodes 116, 114 is then placed on top of the spacing structures 118 to essentially sandwich the spacing structures 118 between the electrodes 114, 116. In one example, different activation loads L are attained by altering the distance between the spacing structures 118. For instance, in one example, a smaller distance between spacing structures 118 generally increases the necessary activation load L, and a larger distance between spacing structures 118 generally decreases the necessary activation load L. In one example, the spacing structures 118 are spaced apart from one another by a distance of about 85 mm from center to center. Dispensing and spacing of the spacing structures 118, in one example, is accomplished using a dispensing machine having an electromechanical metered dispensing head to relatively accurately dispense or otherwise place the spacing structures 118 on the electrode at the desired locations therealong.
In one example, the spacing structures 118 are formed from a resilient material. In a further example, the spacing structures 118 are formed entirely from a single resilient material. That is, each of the spacing structures 118 of this example are single component resilient structures and include no other components or elements formed from a different material. In one example, the spacing structures 118 are formed from silicone. In another example, the spacing structures 118 comprise silicone rubber dots. In still another example, the spacing structures 118 are formed from an adhesive such as room temperature vulcanizing (RTV) silicone or some other RTV adhesive. In other examples, the spacing structures 118 are formed from polyurethane or some other such compressible material. In one embodiment, spacing structures 118 are formed from a resilient material to reduce a size or possibility of a dead spot. In one embodiment, spacing structures 118 are placed in a pattern such as an array between electrodes 114, 116. In one example, the spacing structures 118 are generally equally spaced from each other in an array.
The spacing structures 118 are configured to maintain a spacing distance X between the electrodes 114, 116 when unloaded and allow the electrodes 114, 116 to contact each other when loaded. In one example, the spacing structures 118 are configured to substantially decrease in height and, in some circumstances, generally flatten when the electrodes are loaded, as depicted in
Each of the pair of electrodes 114, 116 is separately electrically connected to the electronics module 130. As described above, the electrodes 114, 116 are separated by the distance X in an open position when unloaded. However, when loaded, such as by a load L, the electrodes 114, 116 are configured to contact each other in a closed position, as depicted in phantom in
In one example, the electronics module 130 is configured to derive, develop, or otherwise obtain electrode position data by determining whether the electrodes 114, 116 are in the open or closed position. In one example, contacting of the first and second electrodes 114, 116 effectively closes a circuit, which signals to the electronics module 130 that the electrodes 114, 116 are in the closed position and that an object is on the mat 110. Other examples of configurations to obtain electrode positions include but are not limited to detecting a capacitance difference between electrodes, detecting a piezo-electric sensor deflections, etc.
The electronics module 130 is configured to remotely communicate the electrode position data. In one example, the electronics module 130 includes a transmitter to enable the electronics module 130 to transmit data, including the electrode position data, to a remote device. In another example, the electronics module 130 includes a receiver to enable the electronics module 130 to receive data from a remote device. In yet another example, the electronics module 130 includes both a transmitter and a receiver to enable the electronics module 130 to both transmit data to and receive data from a remote device.
In one example, the end device 150 of the system 100 is communicatively coupled to the electronics module 130 of the mat 110. The electronics module 130 is configured to communicate the electrode position data to the end device 190. In one example, the electronics module 130 wirelessly transmits data to or receives data from a remote module 150. In various examples, the remote module 150 can include a receiver, a transmitter, or both. In one example, the remote module 150 is coupled to the end device 190. In one example, the remote module 150 is a wireless receiver/transmitter device connected to the end device 190 using a cable. For instance, the remote module 150 can be connected to the end device 190, such as a computer, using a USB cable. In another example, the remote module 150 includes an interface to connect directly into the end device 190. For instance, the remote module 150 can include a plug or socket that can be engaged with a mating socket or plug of the end device 190, thereby eliminating the cable connection. In yet another example, the remote module 150 is included with the end device 190 as a component thereof. In still another example, the remote module 150 is a wireless receiver/transmitter device wirelessly connected to the end device 190. That is, the remote module 150 can be remote from and in wireless communication with both the mat 110 and the end device 190.
Referring specifically to
Referring again to
Referring now to
One difference between the examples is the presence of the cable 220 to connect the electronics module 230 with the end device 290, rather than having a connection such as the wireless connection 120 discussed above. In one example, the electronics module 230 is configured to remotely communicate using a Universal Serial Bus (USB) cable 220. The electronics module 230 in this example includes USB circuitry to enable communication directly through the USB cable 220 exiting a protective covering 212. In this way, no intermediate circuit is needed in the mat system 200 to convert switch activation to a USB compatible signal. In one example, the mat 210 is connected to an external power source using the cable 220. In this way, no internal power source is needed in the mat 210, such as the battery 140 discussed above in some examples of the mat 110. However, in other examples, the mat 210 can include internal power sources such as batteries.
Referring specifically to
Referring to
Referring to
With the above discussion in mind, the following is a non-exhaustive list of possible examples of applications for the mat system.
In one example, the mat may control a door. For instance, stepping on the mat can signal a door controller to open the door. Stepping off the mat can alert the door controller that the mat is clear, to allow the door to then close with a decreased chance of hitting something or someone.
In another example, the mat may be used to control a kiosk or similar application. Stepping on the mat will signal the kiosk to start a log-on or will initiate some application. Stepping off the mat will terminate the application or will send out a log-out signal. The mat may be wirelessly connected to the end device, or it may be hard-wired to the end device with a USB cable. In either case the transmitter or the USB device can be embedded into the molded switch mat.
In another example, the mat may be used for determining how long a person is waiting for an attendant or how long they are standing at a teller, etc. by transmitting a start signal when the person steps onto the mat and a stop signal when the person leaves the mat area. The receiver may be attached to a computer or other device that will record the start time and stop time for each event for later analysis.
In other examples, the mat may be used for machine safety to successfully reduce hazards in a number of industries in machine point-of-operation, area and perimeter guarding applications, including:
In still other examples, the mat may be used in the following applications:
Wireless configurations enable simple mat installation without the need for routing wires around a doorframe, or other objects. Embodiments with battery power further facilitate installation and improve reliability by keeping all components embedded within a protective covering. USB configurations enable easy mat installation and control by reducing a number of components necessary to interface with a controller or computer. Other benefits of configurations shown include, but are not limited to:
The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Combinations of the above embodiments, and other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. While a number of advantages of embodiments described herein are listed above, the list is not exhaustive. Other advantages of embodiments described above will be apparent to one of ordinary skill in the art, having read the present disclosure. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention.
The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention includes any other applications in which the above structures and fabrication methods are used. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application claims priority under 35 U.S.C. 119(e) from U.S. Provisional Application Ser. No. 60/971,808, filed Sep. 12, 2007, entitled “MAT SYSTEM AND METHOD THEREFOR”, and U.S. Provisional Application Ser. No. 60/980,295, filed Oct. 16, 2007, entitled “MAT SYSTEM AND METHOD THEREFOR”, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3136833 | Wikkerink | Jun 1964 | A |
3323197 | Millard | Jun 1967 | A |
4006392 | Catlett et al. | Feb 1977 | A |
4220815 | Gibson et al. | Sep 1980 | A |
4525606 | Sado | Jun 1985 | A |
4801771 | Mizuguchi et al. | Jan 1989 | A |
4965421 | Epperson | Oct 1990 | A |
5210528 | Schulman et al. | May 1993 | A |
5401922 | Asta | Mar 1995 | A |
5911460 | Hawkins et al. | Jun 1999 | A |
6072130 | Burgess | Jun 2000 | A |
6420974 | Baker et al. | Jul 2002 | B1 |
6677542 | Katakami | Jan 2004 | B2 |
6707386 | Pruisner | Mar 2004 | B1 |
6777626 | Takabatake et al. | Aug 2004 | B2 |
6894682 | Nakajima et al. | May 2005 | B2 |
6917293 | Beggs | Jul 2005 | B2 |
6965311 | Kamer | Nov 2005 | B1 |
6987232 | Smith et al. | Jan 2006 | B2 |
7378975 | Smith et al. | May 2008 | B1 |
7397466 | Bourdelais et al. | Jul 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20090065344 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60971808 | Sep 2007 | US | |
60980295 | Oct 2007 | US |