Matching a resonant frequency of a resonant cavity to a frequency of an input voltage

Information

  • Patent Grant
  • 8933650
  • Patent Number
    8,933,650
  • Date Filed
    Friday, November 30, 2007
    16 years ago
  • Date Issued
    Tuesday, January 13, 2015
    9 years ago
Abstract
A synchrocyclotron includes magnetic structures that define a resonant cavity, a source to provide particles to the resonant cavity, a voltage source to provide radio frequency (RF) voltage to the resonant cavity, a phase detector to detect a difference in phase between the RF voltage and a resonant frequency of the resonant cavity that changes over time, and a control circuit, responsive to the difference in phase, to control the voltage source so that a frequency of the RF voltage substantially matches the resonant frequency of the resonant cavity.
Description
TECHNICAL FIELD

This patent application describes matching a resonant frequency of a resonant cavity to a frequency of a voltage input to the resonant cavity.


BACKGROUND

In order to accelerate charged particles to high energies, many types of particle accelerators have been developed. One type of particle accelerator is a cyclotron. A cyclotron accelerates charged particles in an axial magnetic field by applying an alternating voltage to one or more dees in a vacuum chamber. The name dee is descriptive of the shape of the electrodes in early cyclotrons, although they may not resemble the letter D in some cyclotrons. The spiral path produced by the accelerating particles is normal to the magnetic field. As the particles spiral out, an accelerating electric field is applied at the gap between the dees. The radio frequency (RF) voltage creates an alternating electric field across the gap between the dees. The RF voltage, and thus the field, is synchronized to the orbital period of the charged particles in the magnetic field so that the particles are accelerated by the radio frequency waveform as they repeatedly cross the gap. The energy of the particles increases to an energy level in excess of the peak voltage of the applied RF voltage. As the charged particles accelerate, their masses grow due to relativistic effects. Consequently, the acceleration of the particles becomes non-uniform and the particles arrive at the gap asynchronously with the peaks of the applied voltage.


Two types of cyclotrons presently employed, an isochronous cyclotron and a synchrocyclotron, overcome the challenge of increase in relativistic mass of the accelerated particles in different ways. The isochronous cyclotron uses a constant frequency of the voltage with a magnetic field that increases with radius to maintain proper acceleration. The synchrocyclotron uses a decreasing magnetic field with increasing radius and varies the frequency of the accelerating voltage to match the mass increase caused by the relativistic velocity of the charged particles.


SUMMARY

Described herein is synchrocyclotron comprising: magnetic yokes that define a resonant cavity, a source to provide input voltage to the resonant cavity, and feedback circuitry to control the source so that a frequency of the input voltage substantially matches a resonant frequency of the resonant cavity. The synchrocyclotron may also include one or more of the following features, either alone or in combination.


The source may comprise a voltage controlled oscillator (VCO). The feedback circuitry may comprise a phase detector to detect a phase difference between the frequency of the input voltage and the resonant frequency. The VCO may be configured to change the frequency of the input voltage when the phase difference deviates from a predetermined value. The phase detector may be configured to detect the phase difference by comparing the frequency of the input voltage to a resonant frequency of a voltage or a current in the resonant cavity.


The synchrocyclotron may comprise circuitry to present the phase detector with substantially constant frequencies over a swept frequency range. The substantially constant frequencies may be derived from a frequency of the input voltage and the resonant frequency. The resonant frequency may sweep between about 30 megahertz (MHz) and 300 MHz (VHF) over time, e.g., over about 1 millisecond (ms). In one example, the frequency may sweep between 95 MHz and about 135 MHz in about 1 ms.


The synchrocyclotron may comprise an integrator to receive an output of the phase detector, and a filter to generate a control signal for the VCO based on the output of the phase detector. The control signal may be for causing the VCO to change the frequency of the input voltage when the phase difference deviates from the predetermined value. The filter may comprise a low-pass filter having a cutoff frequency that is inversely proportional to a sweep time of the resonant frequency.


The synchrocyclotron may comprise a tuning circuit to change the resonant frequency of the resonant cavity. The tuning circuit may comprise a variable capacitive circuit that is rotatable and/or a variable inductive circuit. The synchrocyclotron may comprise an ion source to provide particles to the resonant cavity. The input voltage may comprise a radio frequency (RF) voltage to draw particles from the resonant cavity. A combination of the RF voltage and a magnetic field caused by the magnetic yokes may cause particles drawn from the resonant cavity to accelerate.


Also described herein is an apparatus comprising magnetic structures that define a resonant cavity, a source to provide particles to the resonant cavity, a voltage source to provide radio frequency (RF) voltage to the resonant cavity, a phase detector to detect a difference in phase between the RF voltage and a resonant frequency of the resonant cavity that changes over time, and a control circuit, responsive to the difference in phase, to control the voltage source so that a frequency of the RF voltage substantially matches the resonant frequency of the resonant cavity. The apparatus may also include one or more of the following features, either alone or in combination.


The control circuit may comprise an integrator to generate a current control signal in response to the phase difference and a low-pass filter to generate, in response to the current signal, a voltage control signal for the voltage source.


The resonant cavity may comprise a first dee to receive the RF voltage and a second dee that is electrically connected to ground. A space between the first dee and the second dee forms a gap. The first dee and the second dee define a tunable resonant circuit configured to create an oscillating electric field across the gap in response to the RF voltage. A voltage/current pickup element may be associated with the resonant cavity, which may be used for obtaining the instantaneous frequency of the resonant cavity and for providing a voltage/current sample to the phase detector.


Also described herein is circuitry to substantially match a resonant frequency of a resonant cavity to a frequency of an input voltage to the resonant cavity. The resonant frequency changes over time. The circuitry comprises a phase detector to detect a difference in phase between the resonant frequency and the input voltage. The phase detector is for outputting a first signal that corresponds to the difference. An integrator and filter circuit are configured to generate a control signal in response to the first signal. A voltage controlled oscillator is configured to regulate the input voltage in response to the control signal. The circuitry may also include one or more of the following features, either alone or in combination.


The phase detector may be configured to obtain the resonance frequency from a voltage of the resonant cavity or from a current of the resonant cavity. The resonant frequency may sweep over a frequency range of about 30 MHz and 300 MHz in a predefined time. In one example, the sweep may be between about 95 MHz and about 135 MHz. The integrator and filter circuit may comprise a low-pass filter having a cutoff frequency that is inversely proportional to the predefined time. The resonant cavity may be part of a synchrocyclotron that is configured to accelerate protons from the resonant cavity.


The circuitry may comprise a pickup element associated with the resonant cavity. The pickup element may be for obtaining a signal corresponding to the resonant frequency. The phase detector may be for receiving the signal from the pickup element. The pickup element may be capacitive and the signal may comprise a voltage signal. The pickup element may be inductive and the signal may comprise a current signal.


Also described herein is a method of matching a resonant frequency of a resonant cavity to a frequency of an input voltage to the resonant cavity, where the resonant frequency changes over time. The method comprises detecting a difference in phase between the resonant frequency and the input voltage, where a first signal corresponds to the difference, generating a control signal in response to the first signal, and regulating the input voltage in response to the control signal. The method may also include one or more of the following features, either alone or in combination.


Detecting the difference in phase may comprise obtaining the resonance frequency from one of a voltage of the resonant cavity and a current of the resonant cavity. The resonant frequency may sweep over a frequency range of about 30 MHz and about 300 MHz in about a predefined time. The control signal may be a low-pass filter circuit that has a cutoff frequency that is inversely proportional to the predefined time. The resonant cavity may be part of a synchrocyclotron that is configured to accelerate protons from the resonant cavity.


The method may comprise obtaining a signal corresponding to the resonant frequency. The difference in phase between the resonant frequency and the input voltage may be determined based on the signal corresponding to the resonant frequency.


The foregoing are not limited to use with a synchrocyclotron, but rather may be used with any type of cyclotron.


Any one or more of the foregoing features may be combined.


The details of one or more examples are set forth in the accompanying drawings and the description below. Further features, aspects, and advantages will become apparent from the description, the drawings, and the claims.





DESCRIPTION OF THE DRAWINGS


FIG. 1A is a cross-sectional view of a synchrocyclotron.



FIG. 1B is a side cross-sectional view of the synchrocyclotron shown in FIG. 1A.



FIG. 2 is an illustration of an idealized waveform that can be used for accelerating charged particles in the synchrocyclotron of FIGS. 1A and 1B.



FIG. 3 is a block diagram of a control circuit that may be used in the synchrocyclotron of FIGS. 1A and 1B.



FIG. 4 is a graph showing a frequency sweep of a resonant frequency in a resonant cavity of the synchrocyclotron.



FIG. 5 includes timing diagrams showing an output of a phase detector used in the control circuit of FIG. 3 in response to two inputs.



FIG. 6 is a block diagram of an alternative control circuit that may be used in the synchrocyclotron of FIGS. 1A and 1B.





DETAILED DESCRIPTION

A synchrocyclotron-based system is described herein. However, the circuits and methods described herein may used with any type of cyclotron.


Referring to FIGS. 1A and 1B, a synchrocyclotron includes electrical coils 2a and 2b around two spaced apart metal magnetic poles 4a and 4b, which are configured to generate a magnetic field. Magnetic poles 4a and 4b are defined by two opposing portions of yokes 6a and 6b (shown in cross-section). The space between poles 4a and 4b defines vacuum chamber 8 or a separate vacuum chamber can be installed between poles 4a and 4b. The magnetic field strength is generally a function of distance from the center of vacuum chamber 8 and is determined largely by the choice of geometry of coils 2a and 2b and the shape and material of magnetic poles 4a and 4b.


The accelerating electrodes are defined as dee 10 and dee 12, having gap 13 between them. Dee 10 is connected to an alternating voltage potential whose frequency is changed from high to low during an accelerating cycle in order to account for the increasing relativistic mass of a charged particle and radially decreasing magnetic field (measured from the center of vacuum chamber 8) produced by coils 2a and 2b and pole portions 4a and 4b. The characteristic profile of the alternating voltage in dees 10 and 12 is show in FIG. 2 and will be discussed in detail below. In this example, dee 10 is a half-cylinder structure, which is hollow inside. Dee 12, also referred to as the “dummy dee”, does not need to be a hollow cylindrical structure, since it is grounded at the vacuum chamber walls 14. Dee 12, as shown in FIGS. 1A and 1B, includes a strip of metal, e.g., copper, having a slot shaped to match a substantially similar slot in dee 10. Dee 12 can be shaped to form a mirror image of surface 16 of dee 10.


Ion source 18, which includes ion source electrode 20, is located at the center of vacuum chamber 8, and is operated to provide charged particles. Extraction electrodes 22 direct the charge particles into extraction channel 24, thereby forming beam 26 of the charged particles. The ion source may also be mounted externally and provide the ions substantially axially into the acceleration region. The ion source may be of the type described in U.S. patent application Ser. No. 11/948,662, entitled “Interrupted Particle Source”, the contents of which are incorporated herein by reference as if set forth in full.


Dees 10 and 12 and other pieces of hardware included in a synchrocyclotron define a tunable resonant circuit under an oscillating voltage input that creates an oscillating electric field across gap 13. The result is a resonant cavity in vacuum chamber 8. This resonant frequency of the resonant cavity can be tuned to keep its Q-factor high during a frequency sweep by using a tuning mechanism. In one example, the resonant frequency of the resonant cavity moves, or “sweeps”, between about 30 megahertz (MHz) and about 300 MHz (traditional VHF) in about 1 millisecond (ms). In another example, the resonant frequency of the resonant cavity moves, or “sweeps”, between about 95 MHz and about 135 MHz in about 1 millisecond (ms).


The Q-factor is a measure of the “quality” of a resonant system in its response to frequencies close to the resonant frequency. In this example, the Q-factor is defined as

Q=1/R×√(L/C),

where R is the active resistance of the resonant circuit, L is the inductance, and C is the capacitance of the resonant circuit.


The tuning mechanism can be, e.g., a variable inductance coil or a variable capacitance. A variable capacitance device can be a vibrating reed or a rotating capacitor. In the example shown in FIGS. 1A and 1B, the tuning mechanism includes rotating capacitor 28. Rotating capacitor 28 includes rotating blades 30 that are driven by a motor 31. During each quarter cycle of motor 31, as blades 30 mesh with blades 32, the capacitance of the resonant circuit that includes dees 10 and 12 and rotating capacitor 28 increases and the resonant frequency decreases. The process reverses as the blades unmesh. Thus, the resonant frequency is changed by changing the capacitance of the resonant circuit. This serves the purpose of reducing, by a large factor, the power required to generate the high voltage applied to the dees and necessary to accelerate the particle beam. The shape of blades 30 and 32 can be machined so as to create the required dependence of resonant frequency on time.


The blade rotation can be synchronized with RF frequency generation so that, by varying the Q-factor of the resonant cavity, the resonant frequency of the resonant circuit defined by the synchrocyclotron is kept close to the frequency of the alternating voltage potential applied to the resonant cavity.


A vacuum pumping system 40 maintains vacuum chamber 8 at a very low pressure so as not to scatter the accelerating beam.


To achieve uniform acceleration in the synchrocyclotron, the frequency and the amplitude of the electric field across the dee gap is varied to account for the relativistic mass increase and radial variation of magnetic field as well as to maintain focus of the beam of particles. The radial variation of the magnetic field is measured as a distance from the center of a spiral trajectory of a charged particle.



FIG. 2 is an illustration of an idealized waveform that may be required for accelerating charged particles in a synchrocyclotron. It shows only a few cycles of the waveform and does not necessarily represent the ideal frequency and amplitude modulation profiles. FIG. 2 illustrates the time varying amplitude and frequency properties of the waveform used in the synchrocyclotron. The frequency changes from high to low as the relativistic mass of the particle increases while the particle speed approaches a significant fraction of the speed of light.


In a synchrocyclotron particle accelerator, as particle gain energy, their frequencies changes relatively quickly over time. To change the resonant frequency of the synchrocyclotron accordingly, the capacitive and/or inductive properties of the synchrocyclotron are varied mechanically, as described above (e.g., using a rotating capacitor 31). In order to generate a voltage across the dee gap that ensures that particles gain enough energy to accelerate to full speed as the resonant frequency changes, power should be delivered to the resonant cavity over an entire particle beam acceleration period. To achieve the required voltage using a low amount of power, the frequency of the input (or applied) RF voltage should match the resonant frequency of the resonant cavity.


A digital phase-lock-loop topology may be employed in the synchrocyclotron to substantially match the frequency of the input RF voltage to the resonant frequency of the resonant cavity. In this context, a substantial match includes an exact match or a match that is close enough to obtain similar benefits of an exact match.


As explained above, the resonant frequency of the resonant cavity may change over a broad range at a relatively high rate of speed; in one example, the resonant frequency may sweep 40 MHz in 1 ms. The control system used in the example phase-lock-loop topology includes a closed loop feedback circuit to detect a phase difference between the frequency of the input RF voltage and the resonant frequency of the resonant cavity, to generate an error signal proportional to the phase difference, and to drive a broadband voltage controlled oscillator (VCO) to adjust the frequency of the input RF voltage in order to maintain resonance. One advantage of using the phase-lock-loop described herein for this purpose is that the circuitry used in its implementation can be located far enough away from the synchrocyclotron's beam chamber to be out of its radiation field.



FIG. 3 shows an example of a control system 40 that may be used to match the frequency of the input RF voltage to the resonant frequency of a resonant cavity 38 (in vacuum chamber 8) in the synchrocyclotron of FIGS. 1A and 1B. Control system 40 includes a phase detector 41, an integrating current-to-voltage conversion loop filter 42, and a VCO 44.


Phase detector 41 may be any type of phase detection circuit that is capable of identifying a phase difference between the frequencies of two input signals. Phase detector 41 is implemented in hardware in this example; however, in other examples, the phase detector may be implemented using software. The input signals may include any combination of signals, such as two voltage signals or a voltage signal and a current signal. The output of phase detector 41 is a signal that corresponds to the detected phase difference. In this example, the output of phase detector 41 is a current pulse having a length that corresponds to the detected phase difference.


Integrating current-to-voltage conversion loop filter 42 includes an integrator to sum the current pulses from phase detector 41 over time, and a loop filter to generate a voltage control signal for VCO 44 from the integrated current pulses. A transfer function of the loop filter is an impedance since integrating current-to-voltage conversion loop filter 42 transforms the switched current of the phase detector to a voltage for the VCO. In one example, the transfer function may be









V
out


I

i





n



=

-




R
1



C
1


s

+
1


sC
1




,





where R1 and C1 are resistive and capacitive values of the loop filter.


The bandwidth of the loop filter is set by a combination of R1 and C1, and may have a value that is about ⅓ of a modulation limit of the VCO. This value may be set to give VCO 44 enough time to respond to an input control signal in order to maintain loop stability. Furthermore, the output of the integrating current-to-voltage conversion loop filter 42 may be low-pass filtered, e.g., to remove high-frequency noise. The low-pass filter may be a resistive-capacitive (RC) circuit that is part of, or separate from, integrating current-to-voltage conversion loop filter 42. A cutoff frequency of the low-pass filter may be based on a sweep time (τsweep) of the resonant frequency of the resonant cavity. The sweep time refers to the time it takes for the resonant frequency to move, or “sweep” through all possible frequencies, e.g., between 95 MHz and 135 MHz. The cutoff frequency of the low-pass filter may be defined by the following equation







1

1.1
*
2
*

τ
sweep



.




The foregoing configuration enables control circuitry 40 to follow a frequency sweep that is approximately linear over a specified sweep time, τsweep 43 of FIG. 4, while reducing unwanted oscillations in a steady-state response.


VCO 44 is an electronic oscillator that is controlled by an input voltage signal to oscillate at a particular frequency. In this case, the input voltage signal is the output voltage of integrating current-to-voltage conversion loop filter 42. The output voltage of VCO 44 is applied to the resonant cavity (e.g., to dee 10), as shown in FIG. 3. The output voltage of VCO 44 is also applied an input to phase detector 41.


During operation of control system 40, a pickup element in the resonant cavity obtains a signal that corresponds to a resonant frequency of the resonant cavity. Since, at resonance, voltage and current are in phase, the signal may be either a voltage signal or a current signal. A capacitive circuit in the resonant cavity may be used to obtain the voltage signal. An inductive circuit in the resonant cavity may be used to obtain the current signal. In this implementation, there is little current in the resonant cavity; accordingly, a capacitive circuit (e.g., one or more capacitors) obtains a voltage signal.


The voltage signal is applied to an input 45 of phase detector 41. The other input 46 of phase detector 41 receives the output of VCO 44 (i.e., the input RF voltage to the resonant cavity). The signals have a phase difference of 0°, and thus are in phase, if the frequency of the VCO output matches the (time-varying) resonant frequency of the resonant cavity. If the two do not match, or come within a predefined tolerance defined, e.g., by phase detector 41, phase detector 41 outputs a current pulse. The current pulse has a width that is proportional to the phase difference detected by the phase detector, and is signed to indicate whether the VCO output (input 46) leads or lags the resonant frequency (input 45). An example output 47 of phase detector 41, in response to inputs 49 and 50, is shown in FIG. 5.


Integrating current-to-voltage conversion loop filter 42 includes an integrator that receives the output current pulses of phase detector 41, and that sums the output current pulses over time. The resulting sum is applied to an internal loop filter, which generates a voltage control signal for VCO 44. The voltage control signal is low-pass filtered to remove, e.g., high-frequency noise components, and applied to VCO 44. VCO 44 is generates an output RF voltage to substantially compensate for the difference between the prior input voltage frequency and the prior resonant cavity frequency. For example, the greater the phase difference, the larger the output RF voltage of VCO 44 may be. The output of VCO 44 is provided to the resonant cavity, e.g., to dee 10, and to input 45 of phase detector 41. The foregoing process repeats for the new input voltage and resonant cavity frequencies.


In one implementation, the open loop transfer function of control system 40 is as follows:







G
=

-




k
d

*

k
v

*

ω
v



R
1



C
1


s

+


k
d



k
v



ω
v






R
2



C
1



C
2



s
4


+


(


C
1

+


R
1



C
1



C
2



ω
v



)



s
3


+


C
1



ω
v



s
2






,





where kd is a current gain of a phase locked loop (PLL) chip used to implement the phase detector, kv is a gain of the VCO, ωv is a modulation frequency limit of the VCO, R1 and C1 are resistive and capacitive elements of the integrator and R2 and C2 are resistive and capacitive element of the low-pass filter.


The control system described herein is not limited to use with the synchrocyclotron of FIGS. 1A and 1B or even to synchrocyclotrons in general, but rather may be used in any type of cyclotron in which the resonant frequency of the resonant cavity has a relatively high slew rate, e.g., a frequency that sweeps on the order of tens of megahertz in about one or several milliseconds.


Furthermore, the control system described herein is not limited to the specific configuration shown in FIG. 3. Rather, any circuitry that implements the same, or similar functions, may be used to implement the control system.



FIG. 6 shows another example of a control system 55 that may be implemented in a cyclotron, such as the synchrocyclotron of FIGS. 1A and 1B. The example of FIG. 6 uses mixing circuits (referred to herein as “mixers”) to present the phase detector with substantially constant frequencies over substantially the entire frequency range that the resonant cavity 56 is swept (in one example, between about 95 megahertz (MHz) and about 135 MHz in about 1 millisecond (ms)).


In FIG. 6, the output 57 (f2) of voltage controlled oscillator (VCO) 59, which is applied to resonant cavity 56, is also mixed with a substantially constant frequency 60 (f1), which may be applied by signal generating circuit 61. In this example, mixer 62 acts as a sine wave multiplier. Multiplying the two sine waves f1 and f2, as follows

f1=A sin(ω1t+θ1) and f2=B sin(ω2t+θ2)

produces a signal 64 (f3) comprised of the sum of, and the difference of, the two original signal frequencies f1, f2, as follows:








f
3

=



f
1



f
2


=


AB
2



(


cos


(



(


ω
1

-

ω
2


)


t

+

ϕ
1


)


-

cos


(



(


ω
1

+

ω
2


)


t

+

ϕ
2


)



)




,





where φ11−θ2 and φ212. The signal f3 is low-pass filtered via low-pass filter 65 to produce filtered signal f4, as follows:







f
4

=


AB
2



cos


(



(


ω
1

-

ω
2


)


t

+

ϕ
1


)








Since the output of VCO 59 is a frequency that varies over time, the resonant frequency, ω2, of resonant cavity 56 varies over time and also the output of mixer 62 varies over time. The output of resonant cavity, f5, is as follows:

f5=C sin(ω2t+θ3)

The filtered signal f4 66 is mixed with the cavity input, f2 57, and the resonant cavity output, f5 69 via mixers 70 and 71, respectively, to produce two signals, f6, f7, as follows:










f
6

=




f
2



f
4








=





AB
2

4



(


cos


(



(


2
*

ω
2


-

ω
1


)


t

+

θ
2

-

ϕ
1

-
90

)


-












cos


(



ω
1


t

+

θ
2

+

ϕ
1

+
90

)


)








and









f
7

=




f
4



f
5








=




ABC
4



(


cos


(



(


ω
1

-

2


ω
2



)


t

-

θ
3

+

ϕ
1

+
90

)


-













cos


(



ω
1


t

+

θ
3

+

ϕ
1

+
90

)


)

.








Band-pass filters 70 and 71 band-pass filter signals f6 and f7, respectively, at a center frequency of ω1 to produce signals f8 76, and f9 77 as follows:











f
8

=


-


AB
2

4




cos


(



ω
1


t

+

θ
2

+

ϕ
1

+
90

)




)






and







f
9

=


-

ABC
4




cos


(



ω
1


t

+

θ
3

+

ϕ
1

+
90

)





)

.




In this example, to perform frequency tracking, phase detector 80 determines the phase difference between the resonant cavity input 57 and the resonant cavity output 69 and drives this difference to about zero. The difference, θ, in the phase components of signals f5 and f6 is as follows:

Θ=(θ21+90)−(θ31+90)=θ2−θ3.

This is the phase difference between the input 57 and the output 69 of the resonant cavity 56. In this case, the frequency of the input signals to phase detector 80 are substantially constant at a frequency ω1 regardless of the output frequency, ω2, for any time, t. The output of phase detector 80 is passed into loop filter 81 and processed in the same way as is described with respect to FIG. 3.


Components of different implementations described herein may be combined to form other embodiments not specifically set forth above. Other implementations not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A synchrocyclotron comprising: magnetic yokes that define a resonant cavity;a source to provide input voltage to the resonant cavity, the source comprising a voltage controlled oscillator (VCO); andfeedback circuitry to control the source so that a frequency of the input voltage substantially matches a resonant frequency of the resonant cavity, the feedback circuitry comprising: a phase detector to detect a phase difference between the frequency of the input voltage and the resonant frequency;an integrator to receive an output of the phase detector and to sum the output over timea filter to generate a control signal for the VCO based on an output of the integrator, the control signal for causing the VCO to change the frequency of the input voltage in accordance with the phase difference, andcircuitry to present the phase detector with substantially constant frequencies over at least part of a frequency range that the resonant cavity is swept.
  • 2. The synchrocyclotron of claim 1, wherein the substantially constant frequencies are derived from a frequency of the input voltage and the resonant frequency.
  • 3. The synchrocyclotron of claim 1, wherein the filter comprises a low-pass filter having a cutoff frequency that is inversely proportional to a sweep time of the resonant frequency.
  • 4. The synchrocyclotron of claim 1, wherein the phase detector is configured to detect the phase difference by comparing the frequency of the input voltage to a resonant frequency of a voltage in the resonant cavity.
  • 5. The synchrocyclotron of claim 1, wherein the phase detector is configured to detect the phase difference by comparing the frequency of the input voltage to a resonant frequency of a current in the resonant cavity.
  • 6. The synchrocyclotron of claim 1, further comprising: an ion source to provide particles to the resonant cavity,wherein the input voltage comprises a radio frequency (RF) voltage to draw particles from the resonant cavity; andwherein a combination of the RF voltage and a magnetic field caused by the magnetic yokes causes particles drawn from the resonant cavity to accelerate.
  • 7. The synchrocyclotron of claim 1, wherein the resonant frequency sweeps between about 30 megahertz (MHz) and about 300 MHz in about 1 millisecond (ms).
  • 8. The synchrocyclotron of claim 7, further comprising: a tuning circuit to change the resonant frequency of the resonant cavity,wherein the tuning circuit comprises: a variable capacitive circuit that is rotatable; ora variable inductive circuit.
  • 9. An apparatus comprising: magnetic structures that define a resonant cavity;a source to provide particles to the resonant cavity;a voltage source to provide radio frequency (RF) voltage to the resonant cavity;a phase detector to detect a difference in phase between the RF voltage and a resonant frequency of the resonant cavity that changes over time; andcontrol circuitry, responsive to the difference in phase, to control the voltage source so that a frequency of the RF voltage substantially matches the resonant frequency of the resonant cavity, the control circuitry comprising: an integrator to receive an output of the phase detector and to sum the output over timea filter to generate a control signal for the voltage source based on an output of the integrator, the control signal for causing the voltage source to change the frequency of the RF voltage in accordance with the difference in phase, andcircuitry to present the phase detector with substantially constant frequencies over at least part of a frequency range that the resonant cavity is swept.
  • 10. The apparatus of claim 9, wherein the resonant cavity comprises: a first dee to receive the RF voltage; anda second dee that is electrically connected to ground;wherein a space between the first dee and the second dee forms a gap; andwherein the first dee and the second dee define a tunable resonant circuit configured to create an oscillating electric field across the gap in response to the RF voltage.
  • 11. An apparatus comprising: magnetic structures that define a resonant cavity;a source to provide particles to the resonant cavity;a voltage source to provide radio frequency (RF) voltage to the resonant cavity;a phase detector to detect a difference in phase between the RF voltage and a resonant frequency of the resonant cavity that changes over time; andcontrol circuitry, responsive to the difference in phase, to control the voltage source so that a frequency of the RF voltage substantially matches the resonant frequency of the resonant cavity, the control circuitry comprising:an integrator to receive an output of the phase detector and to sum the output over time;a filter to generate a control signal for the voltage source based on an output of the integrator, the control signal for causing the voltage source to change the frequency of the RF voltage in accordance with the difference in phase, andcircuitry to present the phase detector with substantially constant frequencies over at least part of a frequency range that the resonant cavity is swept.
  • 12. Circuitry to substantially match an input voltage to a resonant cavity to a resonant frequency of the resonant cavity, where the resonant frequency sweeps frequencies over time, the circuitry comprising: a phase detector to detect a difference in phase between the resonant frequency and the input voltage, the phase detector outputting a first signal that corresponds to the difference;an integrator and filter circuit to generate a control signal in response to the first signal;a voltage controlled oscillator to regulate the input voltage in response to the control signal; andcircuits to present the phase detector with substantially constant frequencies over at least part of a frequency range of the resonant frequency.
  • 13. The circuitry of claim 12, wherein the phase detector is configured to obtain the resonant frequency from one of a voltage of the resonant cavity and a current of the resonant cavity.
  • 14. The circuitry of claim 12, wherein the resonant frequency sweeps over a frequency range of about 30 megahertz (MHz) and about 300 MHz in about a predefined time; and wherein the integrator and filter circuit comprises a low-pass filter having a cutoff frequency that is inversely proportional to the predefined time.
  • 15. The circuitry of claim 12, wherein the resonant cavity is part of a synchrocyclotron that is configured to accelerate protons from the resonant cavity.
  • 16. The circuitry of claim 12, further comprising: a pickup element associated with the resonant cavity, the pickup element for obtaining a signal corresponding to the resonant frequency, the phase detector for receiving the signal from the pickup element.
  • 17. The circuitry of claim 12, wherein the pickup element is capacitive and the signal comprises a voltage signal; or wherein the pickup element is inductive and the signal comprises a current signal.
  • 18. A method of matching an input voltage to a resonant cavity to a resonant frequency of the resonant cavity, where the resonant frequency sweeps frequencies over time, the method comprising: in a phase detector, detecting a difference in phase between the resonant frequency and the input voltage, a first signal corresponding to the difference;in a loop filter and integrator, generating a control signal in response to the first signal; andusing a voltage controlled oscillator, regulating the input voltage in response to the control signal;where circuitry is used to present the phase detector with substantially constant frequencies over at least part of a frequency range of the resonant frequency.
  • 19. The method of claim 18, wherein detecting the difference in phase comprises obtaining the resonant frequency from one of a voltage of the resonant cavity and a current of the resonant cavity.
  • 20. The method of claim 18, wherein the resonant frequency sweeps over a frequency range of about 30 megahertz (MHz) and about 300 MHz in about a predefined time; and wherein the loop filter and integrator comprises a low-pass filter circuit that has a cutoff frequency that is inversely proportional to the predefined time.
  • 21. The method of claim 18, wherein the resonant cavity is part of a synchrocyclotron that is configured to accelerate protons from the resonant cavity.
  • 22. The method of claim 18, further comprising: obtaining a signal corresponding to the resonant frequency, the difference in phase between the resonant frequency and the input voltage being determined based on the signal corresponding to the resonant frequency.
US Referenced Citations (571)
Number Name Date Kind
2280606 Van et al. Apr 1942 A
2492324 Salisbury Dec 1949 A
2615129 McMillan Oct 1952 A
2616042 Weeks Oct 1952 A
2659000 Salisbury Nov 1953 A
2701304 Dickinson Feb 1955 A
2789222 Marin et al. Apr 1957 A
3175131 Burleigh et al. Mar 1965 A
3432721 Naydan et al. Mar 1969 A
3582650 Avery Jun 1971 A
3679899 Dimeff Jul 1972 A
3689847 Verster Sep 1972 A
3757118 Hodge et al. Sep 1973 A
3868522 Bigham et al. Feb 1975 A
3886367 Castle, Jr. May 1975 A
3925676 Bigham et al. Dec 1975 A
3955089 McIntyre et al. May 1976 A
3958327 Marancik et al. May 1976 A
3992625 Schmidt et al. Nov 1976 A
4038622 Purcell Jul 1977 A
4047068 Ress et al. Sep 1977 A
4112306 Nunan Sep 1978 A
4129784 Tschunt et al. Dec 1978 A
4139777 Rautenbach Feb 1979 A
4197510 Szu Apr 1980 A
4220866 Taumann et al. Sep 1980 A
4230129 LeVeen Oct 1980 A
4256966 Heinz Mar 1981 A
4293772 Stieber Oct 1981 A
4336505 Meyer Jun 1982 A
4342060 Gibson Jul 1982 A
4345210 Tran Aug 1982 A
4353033 Karasawa Oct 1982 A
4425506 Brown et al. Jan 1984 A
4490616 Cipollina et al. Dec 1984 A
4507614 Prono et al. Mar 1985 A
4507616 Blosser et al. Mar 1985 A
4589126 Augustsson et al. May 1986 A
4598208 Brunelli et al. Jul 1986 A
4628523 Heflin Dec 1986 A
4633125 Blosser et al. Dec 1986 A
4641057 Blosser et al. Feb 1987 A
4641104 Blosser et al. Feb 1987 A
4651007 Perusek et al. Mar 1987 A
4680565 Jahnke Jul 1987 A
4705955 Mileikowsky Nov 1987 A
4710722 Jahnke Dec 1987 A
4726046 Nunan Feb 1988 A
4734653 Jahnke Mar 1988 A
4737727 Yamada et al. Apr 1988 A
4739173 Blosser et al. Apr 1988 A
4745367 Dustmann et al. May 1988 A
4754147 Maughan et al. Jun 1988 A
4763483 Olsen Aug 1988 A
4767930 Stieber et al. Aug 1988 A
4769623 Marsing et al. Sep 1988 A
4771208 Jongen et al. Sep 1988 A
4783634 Yamamoto et al. Nov 1988 A
4808941 Marsing Feb 1989 A
4812658 Koehler Mar 1989 A
4843333 Marsing et al. Jun 1989 A
4845371 Stieber Jul 1989 A
4865284 Gosis et al. Sep 1989 A
4868843 Nunan Sep 1989 A
4868844 Nunan Sep 1989 A
4870287 Cole et al. Sep 1989 A
4880985 Jones Nov 1989 A
4894541 Ono Jan 1990 A
4896206 Denham Jan 1990 A
4902993 Krevet Feb 1990 A
4904949 Wilson Feb 1990 A
4905267 Miller et al. Feb 1990 A
4917344 Prechter et al. Apr 1990 A
4943781 Wilson et al. Jul 1990 A
4945478 Merickel et al. Jul 1990 A
4968915 Wilson et al. Nov 1990 A
4987309 Klasen et al. Jan 1991 A
4992744 Fujita et al. Feb 1991 A
4996496 Kitamura et al. Feb 1991 A
5006759 Krispel Apr 1991 A
5010562 Hernandez et al. Apr 1991 A
5012111 Ueda Apr 1991 A
5017789 Young et al. May 1991 A
5017882 Finlan May 1991 A
5036290 Sonobe et al. Jul 1991 A
5039057 Prechter et al. Aug 1991 A
5039867 Nishihara et al. Aug 1991 A
5046078 Hernandez et al. Sep 1991 A
5072123 Johnsen Dec 1991 A
5111042 Sullivan et al. May 1992 A
5111173 Matsuda et al. May 1992 A
5117194 Nakanishi et al. May 1992 A
5117212 Yamamoto et al. May 1992 A
5117829 Miller et al. Jun 1992 A
5148032 Hernandez Sep 1992 A
5166531 Huntzinger Nov 1992 A
5189687 Bova et al. Feb 1993 A
5191706 Cosden Mar 1993 A
5240218 Dye Aug 1993 A
5260579 Yasuda et al. Nov 1993 A
5260581 Lesyna et al. Nov 1993 A
5278533 Kawaguchi Jan 1994 A
5285166 Hiramoto et al. Feb 1994 A
5317164 Kurokawa May 1994 A
5336891 Crewe Aug 1994 A
5341104 Anton et al. Aug 1994 A
5349198 Takanaka Sep 1994 A
5365742 Boffito et al. Nov 1994 A
5374913 Pissantezky et al. Dec 1994 A
5382914 Hamm et al. Jan 1995 A
5401973 McKeown et al. Mar 1995 A
5405235 Lebre et al. Apr 1995 A
5434420 McKeown et al. Jul 1995 A
5440133 Moyers et al. Aug 1995 A
5451794 McKeown et al. Sep 1995 A
5461773 Kawaguchi Oct 1995 A
5463291 Carroll et al. Oct 1995 A
5464411 Schulte et al. Nov 1995 A
5492922 Palkowitz Feb 1996 A
5511549 Legg et al. Apr 1996 A
5521469 Laisne May 1996 A
5538942 Koyama et al. Jul 1996 A
5549616 Schulte et al. Aug 1996 A
5561697 Takafuji et al. Oct 1996 A
5585642 Britton et al. Dec 1996 A
5633747 Nikoonahad May 1997 A
5635721 Bardi et al. Jun 1997 A
5668371 Deasy et al. Sep 1997 A
5672878 Yao Sep 1997 A
5691679 Ackermann et al. Nov 1997 A
5726448 Smith et al. Mar 1998 A
5727554 Kalend et al. Mar 1998 A
5730745 Schulte et al. Mar 1998 A
5751781 Brown et al. May 1998 A
5778047 Mansfield et al. Jul 1998 A
5783914 Hiramoto et al. Jul 1998 A
5784431 Kalend et al. Jul 1998 A
5797924 Schulte et al. Aug 1998 A
5811944 Sampayan et al. Sep 1998 A
5818058 Nakanishi et al. Oct 1998 A
5821705 Caporaso et al. Oct 1998 A
5825845 Blair et al. Oct 1998 A
5841237 Alton Nov 1998 A
5846043 Spath Dec 1998 A
5851182 Sahadevan Dec 1998 A
5866912 Slater et al. Feb 1999 A
5874811 Finlan et al. Feb 1999 A
5895926 Britton et al. Apr 1999 A
5917293 Saito et al. Jun 1999 A
5920601 Nigg et al. Jul 1999 A
5929458 Nemezawa et al. Jul 1999 A
5963615 Egley et al. Oct 1999 A
5993373 Nonaka et al. Nov 1999 A
6008499 Hiramoto et al. Dec 1999 A
6034377 Pu Mar 2000 A
6057655 Jongen May 2000 A
6061426 Linders et al. May 2000 A
6064807 Arai et al. May 2000 A
6066851 Madono et al. May 2000 A
6080992 Nonaka et al. Jun 2000 A
6087670 Hiramoto et al. Jul 2000 A
6094760 Nonaka et al. Aug 2000 A
6118848 Reiffel Sep 2000 A
6140021 Nakasuji et al. Oct 2000 A
6144875 Sachweikard et al. Nov 2000 A
6158708 Egley et al. Dec 2000 A
6207952 Kan et al. Mar 2001 B1
6219403 Nishihara Apr 2001 B1
6222905 Yoda et al. Apr 2001 B1
6241671 Ritter et al. Jun 2001 B1
6246066 Yuehu Jun 2001 B1
6256591 Yoda et al. Jul 2001 B1
6265837 Akiyama et al. Jul 2001 B1
6268610 Pu Jul 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6279579 Riaziat et al. Aug 2001 B1
6307914 Kunieda et al. Oct 2001 B1
6316776 Hiramoto et al. Nov 2001 B1
6366021 Meddaugh et al. Apr 2002 B1
6369585 Yao Apr 2002 B2
6380545 Yan Apr 2002 B1
6407505 Bertsche Jun 2002 B1
6417634 Bergstrom Jul 2002 B1
6433336 Jongen et al. Aug 2002 B1
6433349 Akiyama et al. Aug 2002 B2
6433494 Kulish et al. Aug 2002 B1
6441569 Janzow Aug 2002 B1
6443349 Van Der Burg Sep 2002 B1
6465957 Whitham et al. Oct 2002 B1
6472834 Hiramoto et al. Oct 2002 B2
6476403 Dolinskii et al. Nov 2002 B1
6492922 New Dec 2002 B1
6493424 Whitham Dec 2002 B2
6498444 Hanna et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6519316 Collins Feb 2003 B1
6576916 Smith et al. Jun 2003 B2
6593696 Ding et al. Jul 2003 B2
6594336 Nishizawa et al. Jul 2003 B2
6600164 Badura et al. Jul 2003 B1
6617598 Matsuda Sep 2003 B1
6621889 Mostafavi Sep 2003 B1
6639234 Badura et al. Oct 2003 B1
6646383 Bertsche et al. Nov 2003 B2
6670618 Hartmann et al. Dec 2003 B1
6683318 Haberer et al. Jan 2004 B1
6683426 Kleeven Jan 2004 B1
6693283 Eickhoff et al. Feb 2004 B2
6710362 Kraft et al. Mar 2004 B2
6713773 Lyons et al. Mar 2004 B1
6713976 Zumoto et al. Mar 2004 B1
6717162 Jongen Apr 2004 B1
6736831 Hartmann et al. May 2004 B1
6745072 Badura et al. Jun 2004 B1
6769806 Moyers Aug 2004 B2
6774383 Norimine et al. Aug 2004 B2
6777689 Nelson Aug 2004 B2
6777700 Yanagisawa et al. Aug 2004 B2
6780149 Schulte Aug 2004 B1
6799068 Hartmann et al. Sep 2004 B1
6800866 Amemiya et al. Oct 2004 B2
6803591 Muramatsu et al. Oct 2004 B2
6814694 Pedroni Nov 2004 B1
6822244 Beloussov et al. Nov 2004 B2
6853703 Svatos et al. Feb 2005 B2
6864770 Nemoto et al. Mar 2005 B2
6865254 Nafstadius Mar 2005 B2
6873123 Marchand et al. Mar 2005 B2
6891177 Kraft et al. May 2005 B1
6891924 Yoda et al. May 2005 B1
6894300 Reimoser et al. May 2005 B2
6897451 Kaercher et al. May 2005 B2
6914396 Symons et al. Jul 2005 B1
6936832 Norimine et al. Aug 2005 B2
6953943 Yanagisawa et al. Oct 2005 B2
6965116 Wagner et al. Nov 2005 B1
6969194 Nafstadius Nov 2005 B1
6979832 Yanagisawa et al. Dec 2005 B2
6984835 Harada Jan 2006 B2
6992312 Yanagisawa et al. Jan 2006 B2
6993112 Hesse Jan 2006 B2
7008105 Amann et al. Mar 2006 B2
7011447 Moyers Mar 2006 B2
7012267 Moriyama et al. Mar 2006 B2
7014361 Ein-Gal Mar 2006 B1
7026636 Yanagisawa et al. Apr 2006 B2
7038403 Mastrangeli et al. May 2006 B2
7041479 Swartz et al. May 2006 B2
7045781 Adamec et al. May 2006 B2
7049613 Yanagisawa et al. May 2006 B2
7053389 Yanagisawa et al. May 2006 B2
7054801 Sakamoto et al. May 2006 B2
7060997 Norimine et al. Jun 2006 B2
7071479 Yanagisawa et al. Jul 2006 B2
7073508 Moyers Jul 2006 B2
7081619 Bashkirov et al. Jul 2006 B2
7084410 Beloussov et al. Aug 2006 B2
7091478 Haberer Aug 2006 B2
7102144 Matsuda et al. Sep 2006 B2
7122811 Matsuda et al. Oct 2006 B2
7122966 Norling et al. Oct 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7135678 Wang et al. Nov 2006 B2
7138771 Bechthold et al. Nov 2006 B2
7154107 Yanagisawa et al. Dec 2006 B2
7154108 Tadokoro et al. Dec 2006 B2
7154991 Earnst et al. Dec 2006 B2
7162005 Bjorkholm Jan 2007 B2
7173264 Moriyama et al. Feb 2007 B2
7173265 Miller et al. Feb 2007 B2
7173385 Caporaso et al. Feb 2007 B2
7186991 Kato et al. Mar 2007 B2
7193227 Hiramoto et al. Mar 2007 B2
7199382 Rigney et al. Apr 2007 B2
7208748 Sliski et al. Apr 2007 B2
7212608 Nagamine et al. May 2007 B2
7212609 Nagamine et al. May 2007 B2
7221733 Takai et al. May 2007 B1
7227161 Matsuda et al. Jun 2007 B2
7247869 Tadokoro et al. Jul 2007 B2
7257191 Sommer Aug 2007 B2
7259529 Tanaka Aug 2007 B2
7262424 Moriyama et al. Aug 2007 B2
7262565 Fujisawa Aug 2007 B2
7274018 Adamec et al. Sep 2007 B2
7280633 Cheng et al. Oct 2007 B2
7295649 Johnsen Nov 2007 B2
7297967 Yanagisawa et al. Nov 2007 B2
7301162 Matsuda et al. Nov 2007 B2
7307264 Brusasco et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7319231 Moriyama et al. Jan 2008 B2
7319336 Baur et al. Jan 2008 B2
7331713 Moyers Feb 2008 B2
7332880 Ina et al. Feb 2008 B2
7345291 Kats Mar 2008 B2
7345292 Moriyama et al. Mar 2008 B2
7348557 Armit Mar 2008 B2
7348579 Pedroni Mar 2008 B2
7351988 Naumann et al. Apr 2008 B2
7355189 Yanagisawa et al. Apr 2008 B2
7368740 Beloussov et al. May 2008 B2
7372053 Yamashita et al. May 2008 B2
7378672 Harada May 2008 B2
7381979 Yamashita et al. Jun 2008 B2
7397054 Natori et al. Jul 2008 B2
7397901 Johnsen Jul 2008 B1
7398309 Baumann et al. Jul 2008 B2
7402822 Guertin et al. Jul 2008 B2
7402823 Guertin et al. Jul 2008 B2
7402824 Guertin et al. Jul 2008 B2
7402963 Sliski Jul 2008 B2
7405407 Hiramoto et al. Jul 2008 B2
7425717 Matsuda et al. Sep 2008 B2
7432516 Peggs et al. Oct 2008 B2
7439528 Nishiuchi et al. Oct 2008 B2
7446328 Rigney et al. Nov 2008 B2
7446490 Jongen et al. Nov 2008 B2
7449701 Fujimaki et al. Nov 2008 B2
7453076 Welch et al. Nov 2008 B2
7465944 Ueno et al. Dec 2008 B2
7466085 Nutt Dec 2008 B2
7468506 Rogers et al. Dec 2008 B2
7473913 Hermann et al. Jan 2009 B2
7476867 Fritsch et al. Jan 2009 B2
7476883 Nutt Jan 2009 B2
7482606 Groezinger et al. Jan 2009 B2
7492556 Atkins et al. Feb 2009 B2
7507975 Mohr Mar 2009 B2
7525104 Harada Apr 2009 B2
7541905 Antaya Jun 2009 B2
7547901 Guertin et al. Jun 2009 B2
7554096 Ward et al. Jun 2009 B2
7554097 Ward et al. Jun 2009 B2
7555103 Johnsen Jun 2009 B2
7557358 Ward et al. Jul 2009 B2
7557359 Ward et al. Jul 2009 B2
7557360 Ward et al. Jul 2009 B2
7557361 Ward et al. Jul 2009 B2
7560715 Pedroni Jul 2009 B2
7560717 Matsuda et al. Jul 2009 B2
7567694 Lu et al. Jul 2009 B2
7574251 Lu et al. Aug 2009 B2
7576499 Caporaso et al. Aug 2009 B2
7579603 Birgy et al. Aug 2009 B2
7579610 Grozinger et al. Aug 2009 B2
7582866 Furuhashi et al. Sep 2009 B2
7582885 Katagiri et al. Sep 2009 B2
7582886 Trbojevic Sep 2009 B2
7586112 Chiba et al. Sep 2009 B2
7598497 Yamamoto et al. Oct 2009 B2
7609009 Tanaka et al. Oct 2009 B2
7609809 Kapatoes et al. Oct 2009 B2
7609811 Siljamaki et al. Oct 2009 B1
7615942 Sanders et al. Nov 2009 B2
7626347 Sliski et al. Dec 2009 B2
7629598 Harada Dec 2009 B2
7639853 Olivera et al. Dec 2009 B2
7639854 Schnarr et al. Dec 2009 B2
7643661 Ruchala et al. Jan 2010 B2
7656258 Antaya et al. Feb 2010 B1
7659521 Pedroni Feb 2010 B2
7659528 Uematsu Feb 2010 B2
7668291 Nord et al. Feb 2010 B2
7672429 Urano et al. Mar 2010 B2
7679073 Urano et al. Mar 2010 B2
7682078 Rietzel Mar 2010 B2
7692166 Muraki et al. Apr 2010 B2
7692168 Moriyama et al. Apr 2010 B2
7696499 Miller et al. Apr 2010 B2
7696847 Antaya Apr 2010 B2
7701677 Schultz et al. Apr 2010 B2
7709818 Matsuda et al. May 2010 B2
7710051 Caporaso et al. May 2010 B2
7728311 Gall Jun 2010 B2
7746978 Cheng et al. Jun 2010 B2
7755305 Umezawa et al. Jul 2010 B2
7759642 Nir Jul 2010 B2
7763867 Birgy et al. Jul 2010 B2
7767988 Kaiser et al. Aug 2010 B2
7770231 Prater et al. Aug 2010 B2
7772577 Saito et al. Aug 2010 B2
7773723 Nord et al. Aug 2010 B2
7773788 Lu et al. Aug 2010 B2
7778488 Nord et al. Aug 2010 B2
7783010 Clayton Aug 2010 B2
7784127 Kuro et al. Aug 2010 B2
7786451 Ward et al. Aug 2010 B2
7786452 Ward et al. Aug 2010 B2
7789560 Moyers Sep 2010 B2
7791051 Beloussov et al. Sep 2010 B2
7796731 Nord et al. Sep 2010 B2
7801269 Cravens et al. Sep 2010 B2
7801270 Nord et al. Sep 2010 B2
7801988 Baumann et al. Sep 2010 B2
7807982 Nishiuchi et al. Oct 2010 B2
7809107 Nord et al. Oct 2010 B2
7812319 Diehl et al. Oct 2010 B2
7812326 Grozinger et al. Oct 2010 B2
7816657 Hansmann et al. Oct 2010 B2
7817778 Nord et al. Oct 2010 B2
7817836 Chao et al. Oct 2010 B2
7834334 Grozinger et al. Nov 2010 B2
7834336 Boeh et al. Nov 2010 B2
7835494 Nord et al. Nov 2010 B2
7835502 Spence et al. Nov 2010 B2
7839972 Ruchala et al. Nov 2010 B2
7839973 Nord et al. Nov 2010 B2
7848488 Mansfield Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7860216 Jongen et al. Dec 2010 B2
7860550 Saracen et al. Dec 2010 B2
7868301 Diehl Jan 2011 B2
7875861 Huttenberger et al. Jan 2011 B2
7875868 Moriyama et al. Jan 2011 B2
7881431 Aoi et al. Feb 2011 B2
7894574 Nord et al. Feb 2011 B1
7906769 Blasche et al. Mar 2011 B2
7914734 Livingston Mar 2011 B2
7919765 Timmer Apr 2011 B2
7920040 Antaya et al. Apr 2011 B2
7920675 Lomax et al. Apr 2011 B2
7928415 Bert et al. Apr 2011 B2
7934869 Ivanov et al. May 2011 B2
7940881 Jongen et al. May 2011 B2
7943913 Balakin May 2011 B2
7947969 Pu May 2011 B2
7949096 Cheng et al. May 2011 B2
7950587 Henson et al. May 2011 B2
7960710 Kruip et al. Jun 2011 B2
7961844 Takeda et al. Jun 2011 B2
7977648 Westerly et al. Jul 2011 B2
7977656 Fujimaki et al. Jul 2011 B2
7982198 Nishiuchi et al. Jul 2011 B2
7982416 Tanaka et al. Jul 2011 B2
7984715 Moyers Jul 2011 B2
7986768 Nord et al. Jul 2011 B2
7987053 Schaffner Jul 2011 B2
7989785 Emhofer et al. Aug 2011 B2
7990524 Jureller et al. Aug 2011 B2
7997553 Sloan et al. Aug 2011 B2
8002466 Von Neubeck et al. Aug 2011 B2
8003964 Stark et al. Aug 2011 B2
8009803 Nord et al. Aug 2011 B2
8009804 Siljamaki et al. Aug 2011 B2
8039822 Rietzel Oct 2011 B2
8041006 Boyden et al. Oct 2011 B2
8044364 Yamamoto Oct 2011 B2
8049187 Tachikawa Nov 2011 B2
8053508 Korkut et al. Nov 2011 B2
8053739 Rietzel Nov 2011 B2
8053745 Moore Nov 2011 B2
8053746 Timmer et al. Nov 2011 B2
8067748 Balakin Nov 2011 B2
8069675 Radovinsky et al. Dec 2011 B2
8071966 Kaiser et al. Dec 2011 B2
8080801 Safai Dec 2011 B2
8085899 Nord et al. Dec 2011 B2
8089054 Balakin Jan 2012 B2
8093564 Balakin Jan 2012 B2
8093568 Mackie et al. Jan 2012 B2
8111125 Antaya et al. Feb 2012 B2
8129699 Balakin Mar 2012 B2
8144832 Balakin Mar 2012 B2
8173981 Trbojevic May 2012 B2
8188688 Balakin May 2012 B2
8198607 Balakin Jun 2012 B2
8222613 Tajiri et al. Jul 2012 B2
8227768 Smick et al. Jul 2012 B2
8232536 Harada Jul 2012 B2
8288742 Balakin Oct 2012 B2
8291717 Radovinsky et al. Oct 2012 B2
8294127 Tachibana Oct 2012 B2
8304725 Komuro et al. Nov 2012 B2
8304750 Preikszas et al. Nov 2012 B2
8309941 Balakin Nov 2012 B2
8330132 Guertin et al. Dec 2012 B2
8334520 Otaka et al. Dec 2012 B2
8335397 Takane et al. Dec 2012 B2
8344340 Gall et al. Jan 2013 B2
8350214 Otaki et al. Jan 2013 B2
8368038 Balakin Feb 2013 B2
8368043 Havelange et al. Feb 2013 B2
8373143 Balakin Feb 2013 B2
8373145 Balakin Feb 2013 B2
8378299 Frosien Feb 2013 B2
8378321 Balakin Feb 2013 B2
8382943 Clark Feb 2013 B2
8389949 Harada et al. Mar 2013 B2
8399866 Balakin Mar 2013 B2
8405042 Honda et al. Mar 2013 B2
8405056 Amaldi et al. Mar 2013 B2
8415643 Balakin Apr 2013 B2
8416918 Nord et al. Apr 2013 B2
8421041 Balakin Apr 2013 B2
8426833 Trbojevic Apr 2013 B2
8436323 Iseki et al. May 2013 B2
8440987 Stephani et al. May 2013 B2
8445872 Behrens et al. May 2013 B2
8466441 Iwata et al. Jun 2013 B2
8472583 Star-Lack et al. Jun 2013 B2
8483357 Siljamaki et al. Jul 2013 B2
8487278 Balakin Jul 2013 B2
8552406 Phaneuf et al. Oct 2013 B2
8552408 Hanawa et al. Oct 2013 B2
8569717 Balakin Oct 2013 B2
8581215 Balakin Nov 2013 B2
8653314 Pelati et al. Feb 2014 B2
8653473 Yajima Feb 2014 B2
20020172317 Maksimchuk et al. Nov 2002 A1
20030048080 Amemiya et al. Mar 2003 A1
20030125622 Schweikard et al. Jul 2003 A1
20030136924 Kraft et al. Jul 2003 A1
20030152197 Moyers Aug 2003 A1
20030163015 Yanagisawa et al. Aug 2003 A1
20030183779 Norimine et al. Oct 2003 A1
20030234369 Glukhoy Dec 2003 A1
20040000650 Yanagisawa et al. Jan 2004 A1
20040017888 Seppi et al. Jan 2004 A1
20040056212 Yanagisawa et al. Mar 2004 A1
20040061077 Muramatsu et al. Apr 2004 A1
20040061078 Muramatsu et al. Apr 2004 A1
20040085023 Chistakov May 2004 A1
20040098445 Baumann et al. May 2004 A1
20040111134 Muramatsu et al. Jun 2004 A1
20040118081 Reimoser et al. Jun 2004 A1
20040149934 Yanagisawa et al. Aug 2004 A1
20040159795 Kaercher et al. Aug 2004 A1
20040173763 Moriyama et al. Sep 2004 A1
20040174958 Moriyama et al. Sep 2004 A1
20040183033 Moriyama et al. Sep 2004 A1
20040183035 Yanagisawa et al. Sep 2004 A1
20040200982 Moriyama et al. Oct 2004 A1
20040200983 Fujimaki et al. Oct 2004 A1
20040213381 Harada Oct 2004 A1
20040227104 Matsuda et al. Nov 2004 A1
20040232356 Norimine et al. Nov 2004 A1
20040240626 Moyers Dec 2004 A1
20050058245 Ein-Gal Mar 2005 A1
20050089141 Brown Apr 2005 A1
20050161618 Pedroni Jul 2005 A1
20050184686 Caporaso et al. Aug 2005 A1
20050228255 Saracen et al. Oct 2005 A1
20050234327 Saracen et al. Oct 2005 A1
20050247890 Norimine et al. Nov 2005 A1
20060017015 Sliski et al. Jan 2006 A1
20060067468 Rietzel Mar 2006 A1
20060126792 Li Jun 2006 A1
20060145088 Ma Jul 2006 A1
20060284562 Hruby et al. Dec 2006 A1
20070001128 Sliski et al. Jan 2007 A1
20070013273 Albert et al. Jan 2007 A1
20070014654 Haverfield et al. Jan 2007 A1
20070023699 Yamashita et al. Feb 2007 A1
20070029510 Hermann et al. Feb 2007 A1
20070051904 Kaiser et al. Mar 2007 A1
20070092812 Caporaso et al. Apr 2007 A1
20070114945 Mattaboni et al. May 2007 A1
20070145916 Caporaso et al. Jun 2007 A1
20070171015 Antaya Jul 2007 A1
20070181519 Khoshnevis Aug 2007 A1
20070284548 Kaiser et al. Dec 2007 A1
20080093567 Gall Apr 2008 A1
20080218102 Sliski Sep 2008 A1
20090096179 Stark et al. Apr 2009 A1
20090140671 O'Neal, III et al. Jun 2009 A1
20090140672 Gall et al. Jun 2009 A1
20090200483 Gall et al. Aug 2009 A1
20100045213 Sliski et al. Feb 2010 A1
20130237425 Leigh et al. Sep 2013 A1
20140097920 Goldie et al. Apr 2014 A1
Foreign Referenced Citations (149)
Number Date Country
2005267078 Jul 2009 AU
2629333 May 2007 CA
1537657 Oct 2004 CN
1537657 Oct 2004 CN
1377521 Oct 2008 CN
101932361 Dec 2010 CN
101933405 Dec 2010 CN
101933406 Dec 2010 CN
102036461 Apr 2011 CN
101061759 May 2011 CN
ZL 200580024522.4 May 2011 CN
ZL 201010581384.2 Nov 2012 CN
27 53 397 Jun 1978 DE
31 48 100 Jun 1983 DE
35 30 446 Aug 1984 DE
41 01 094 May 1992 DE
4411171 Oct 1995 DE
0044153 Jan 1982 EP
0194728 Sep 1986 EP
0 277 521 Aug 1988 EP
0 208 163 Jan 1989 EP
0 222 786 Jul 1990 EP
0 221 987 Jan 1991 EP
0499253 Aug 1992 EP
0 306 966 Apr 1995 EP
0 388 123 May 1995 EP
0 465 597 May 1997 EP
0 864 337 Sep 1998 EP
0 776 595 Dec 1998 EP
1 069 809 Jan 2001 EP
1 153 398 Apr 2001 EP
1 294 445 Mar 2003 EP
1 348 465 Oct 2003 EP
1 358 908 Nov 2003 EP
1 371 390 Dec 2003 EP
1 402 923 Mar 2004 EP
0 911 064 Jun 2004 EP
1 430 932 Jun 2004 EP
1430932 Jun 2004 EP
1 454 653 Sep 2004 EP
1 454 654 Sep 2004 EP
1 454 655 Sep 2004 EP
1 454 656 Sep 2004 EP
1 454 657 Sep 2004 EP
1 477 206 Nov 2004 EP
1 605 742 Dec 2005 EP
1 738 798 Jan 2007 EP
1790203 May 2007 EP
1826778 Aug 2007 EP
1949404 Jul 2008 EP
2183753 Jul 2008 EP
2394498 Feb 2010 EP
2227295 Sep 2010 EP
2232961 Sep 2010 EP
2232962 Sep 2010 EP
2259664 Dec 2010 EP
2227295 May 2011 EP
2363170 Sep 2011 EP
2363171 Sep 2011 EP
2 560 421 Aug 1985 FR
2911843 Aug 2008 FR
957342 May 1964 GB
2015821 Sep 1979 GB
2 361 523 Oct 2001 GB
43-23267 Oct 1968 JP
U-48-108098 Dec 1973 JP
57-162527 Oct 1982 JP
58-141000 Aug 1983 JP
61-80800 Apr 1986 JP
61-225798 Oct 1986 JP
62-150804 Jul 1987 JP
62-186500 Aug 1987 JP
63-149344 Jun 1988 JP
63-218200 Sep 1988 JP
63-226899 Sep 1988 JP
64-89621 Apr 1989 JP
1-276797 Nov 1989 JP
01-302700 Dec 1989 JP
4-94198 Mar 1992 JP
04-128717 Apr 1992 JP
04-129768 Apr 1992 JP
04-273409 Sep 1992 JP
04-337300 Nov 1992 JP
05-341352 Dec 1993 JP
5046928 Dec 1993 JP
06233831 Aug 1994 JP
06233831 Aug 1994 JP
06-036893 Oct 1994 JP
07-263196 Oct 1995 JP
2007-260939 Oct 1995 JP
07260939 Oct 1995 JP
08-173890 Jul 1996 JP
08-264298 Oct 1996 JP
09-162585 Jun 1997 JP
10-071213 Mar 1998 JP
11-47287 Feb 1999 JP
11-102800 Apr 1999 JP
11-243295 Sep 1999 JP
2000-294399 Oct 2000 JP
2001-6900 Jan 2001 JP
2001-0090580 Jan 2001 JP
2001-129103 May 2001 JP
2001-346893 Dec 2001 JP
2002-164686 Jun 2002 JP
2003-517755 May 2003 JP
2005-526578 Sep 2005 JP
2008-507826 Mar 2008 JP
2009-515671 Apr 2009 JP
2009-516905 Apr 2009 JP
2011-505191 Feb 2011 JP
2011-505670 Feb 2011 JP
2011-507151 Mar 2011 JP
5436443 Dec 2013 JP
5736443 Dec 2013 JP
SU 300137 Nov 1969 RU
SU 569 635 Aug 1977 RU
200930160 Jul 2009 TW
200934682 Aug 2009 TW
200939908 Sep 2009 TW
200940120 Oct 2009 TW
WO 8607229 Dec 1986 WO
WO9012413 Oct 1990 WO
WO 9203028 Feb 1992 WO
WO 9302536 Feb 1993 WO
WO 9817342 Apr 1998 WO
WO9939385 May 1999 WO
WO 0040064 Jul 2000 WO
WO 0049624 Aug 2000 WO
0126230 Apr 2001 WO
WO 0126569 Apr 2001 WO
WO 0207817 Jan 2002 WO
WO 03039212 May 2003 WO
WO 03092812 Nov 2003 WO
WO 2004026401 Apr 2004 WO
WO 2004101070 Nov 2004 WO
2006-012467 Feb 2006 WO
2007061937 May 2007 WO
WO2007061937 May 2007 WO
WO2007084701 Jul 2007 WO
WO2007130164 Nov 2007 WO
WO2007145906 Dec 2007 WO
WO2008030911 Mar 2008 WO
2008081480 Jul 2008 WO
WO 2009048745 Apr 2009 WO
WO 2009070173 Jun 2009 WO
WO2009-070173 Jun 2009 WO
WO2009-070588 Jun 2009 WO
WO2009-073480 Jun 2009 WO
WO 2009048745 Nov 2009 WO
Non-Patent Literature Citations (377)
Entry
Office action and response history of U.S. Appl. No. 11/601,056 up to Jan. 14, 2010.
International Search Report and Written Opinion of the International Searching Authority from International application No. PCT/US2008/084699, mailed Feb. 4, 2009, 11 pages.
Office action and response history of U.S. Appl. No. 11/601,056, to Mar. 24, 2009.
U.S. Appl. No. 60/738,404, filed Nov. 18, 2005, including application as filed.
PCT application No. PCT/US2006/44853, filed on Nov. 17, 2006, with Publication No. WO/2007/061937, including application as filed.
U.S. Appl. No. 10/949,734, filed Sep. 24, 2004, Patent No. 7,208,748, issued on Apr. 24, 2007, including application as filed, and allowed claims.
U.S. Appl. No. 11/724,055, filed Mar. 14, 2007, including application as filed (including pending claims).
U.S. Appl. No. 11/371,622, filed Mar. 9, 2006, including application as filed, and pending claims.
U.S. Appl. No. 60/590,088, filed Jul. 21, 2004, including application as filed.
U.S. Appl. No. 11/948,662, filed Nov. 30, 2007, including application as filed, and pending claims.
U.S. Appl. No. 11/187,633, filed Jul. 21, 2005, including application as filed, and pending claims.
PCT application No. PCT/US2005/25942 filed on Jul. 21, 2005, with Publication No. WO/2006/012452, including application as filed.
U.S. Appl. No. 11/463,403, filed Aug. 9, 20006, including application as filed (including pending claims).
U.S. Appl. No. 11/517,490, filed Sep. 7, 2006, including application as filed (including pending claims).
U.S. Appl. No. 11/624,769, filed Jan. 19, 2007, including application as filed (including pending claims).
PCT application No. PCT/US2007/01506 filed on Jan. 19, 2007, with Publication No. WO/2007/084701, including application as filed.
PCT application No. PCT/US2007/01628 filed on Jan. 19, 2007, with Publication No. WO/2007/130164, including application as filed.
PCT application No. PCT/US2007/77693 filed on Sep. 6, 2007with Publication No. WO/2007/77693, including application as filed.
U.S. Appl. No. 11/870,961, filed Oct. 11, 2007, including application as filed (including pending claims).
PCT application No. PCT/US2008/077513, filed on Sep. 24, 2008, including application as filed.
PCT application No. PCT/US2008/084695 filed on Nov. 25, 2008, including application as filed.
U.S. Appl. No. 60/991,454, filed Nov. 30, 2007, including application as filed.
U.S. Appl. No. 12/275,103, filed Nov. 20, 2008, including application as filed (including pending claims).
PCT application No. PCT/US2007/086109 filed on Nov. 30, 2007, including application as filed.
U.S. Appl. No. 60/850,565, filed Oct. 10, 2006, including application as filed.
PCT International Search report and Written Opinion of PCT application No. PCT/US2006/044853, mailed Oct. 5, 2007 (12 pages).
PCT International Preliminary Report on Patentability of corresponding PCT application No. PCT/US2006/044853, mailed May 29, 2008 (8 pages).
International Search Report dated Aug. 26, 2008 in PCT application No. PCT/US2007/086109 (6 pages).
Written Opinion dated Aug. 26, 2008 in PCT application No. PCT/US2007/086109 (6 pages).
International Search Report and Written Opinion for PCT application No. PCT/US2008/084695 mailed Jan. 26, 2009 (15 pages).
International Search Report and Written Opinion for PCT application No. PCT/US2007/001506 mailed Jul. 5, 2007, Publication No. WO2007/084701, Published Jul. 26, 2007 (14 pages).
International Preliminary Report on Patentability for PCT application No. PCT/US2007/001506 mailed Jul. 5, 2007 (15 pages).
International Search Report for PCT/US2007/001628 mailed Feb. 18, 2008 (4 pages).
Written Opinion for PCT/US2007/001628, mailed Feb. 18, 2008 (11 pages).
International Preliminary Report on Patentability for PCT/US2007/001628, mailed Apr. 22, 2008 (15 pages).
Abrosimov, N.K., et al. Proc. Academy Science, USSR 5, 84 (1985).
Abrosimov, N. K., et al, “1000MeV Proton Beam Therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron”, Medical Radiology (Moscow) 32, 10 (1987) revised in Journal of Physics, Conference Series 41, pp. 424-432, Institute of Physics Publishing Limited, 2006.
Adachi, T., et. al. “A 150MeV FFAG Synchrotron with “Return-Yoke Free” Magent” Proceedings of the 2001 Particle Accelerator Conference, Chicago (2001).
Ageyev, A. I., et. al. “The IHEP Accelerating and Storage Complex (UNK) Status Report” 11th International Conference on High-Energy Accelerators, pp. 60-70 (Jul. 7-11, 1980).
Agosteo, S., et. al. “Maze Design of a gantry room for proton therapy” Nuclear Instruments & Methods In Physics Research, Section A, 382, pp. 573-582 (1996).
Allardyce, B. W., et al., “Performance and Prospects of the Reconstructed CERN 600 MeV Synchrocyclotron” IEEE Transactions on Nuclear Science USA ns-24:(3), pp. 1631-1633 (Jun. 1977).
Alexeev, V. P., et. al. “R4 Design of Superconducting Magents for Proton Synchrotrons” Proceedings of the Fifth International Cryogenic Engineering Conference, pp. 531-533 (1974).
Amaldi, U. “Overview of the world landscape of Hadrontherapy and the projects of the TERA foundation” Physica Medica, An International journal Devoted to the Applications of Physics to Medicine and Biology, vol. XIV, Supplement 1 (Jul. 1998), 6th Workshop on Heavy Charged Particles in Biology and Medicine, Instituto Scientific Europeo (ISE), Baveno, pp. 76-85 (Sep. 29-Oct. 1, 1997).
Amaldi, U., et. al. “The Italian project for a hadrontherapy centre” Nuclear Instruments and Methods in Physics Research A, 360, pp. 297-301 (1995).
“An Accelerated Collaboration Meets with Beaming Success”, Lawrence Livermore National Laboratory, Apr. 12, 2006, S&TR,,Livermore, California, pp. 1-3. http://www.llnl.gov/str/April06/Caporaso.html.
Anferov, V., et. al. “The Indiana University Midwest Proton Radiation Institute” Proceedings of the 2001 Particle Accelerator Conference, Chicago, pp. 645-647 (2001).
Anferov, V., et. al. “Status of the Midwest Proton Radiotherapy Institute”, Proceedings of the 2003 Particle Accelerator Conference, pp. 699-701 (2003).
Appun, J. “Various problems of magnet fabrication for high-energy accelerators” Journal for All Engineers Interested in the Nuclear Field, pp. 10-16 (1967) [Lang.: German], English bibliographic information (http://www.osti.gov/energycitations/product.biblio.jsp?osti—id=4442292).
Arduini, G., et. al. “Physical specifications of clinical proton beams from a synchrotron” Med. Phys. 23 (6), pp. 939-951 (Jun. 1996).
Bloch, C. “The Midwest Proton Therapy Center” Application of Accelerators in Research and Industry, Proceedings of the Fourteenth Int 'l. Conf., Part Two, pp. 1253-1255 (Nov. 1996).
Blosser, H. G. “Compact Superconducting Synchrocyclotron Systems for Proton Therapy” Nuclear Instruments & Methods in Physics Research, Section B40-41, Part II, pp. 1326-1330 (Apr. 1989).
Blosser, H., et al, National Superconducting Cyclotron Laboratory, Michigan State University, Report MSUCL-760.
Blosser, H. G. “Synchrocyclotron Improvement Programs” IEEE Transactions on Nuclear Science USA, vol. 16, No. 3, Part I, pp. 405-414 (Jun. 1969).
Botha, A. H., et. al. “A New Multidisciplinary Separated-Sector Cyclotron Facility” IEEE Transactions on Nuclear Science, vol. NS-24, No. 3, pp. 1118-1120 (1977).
Source Search Cites of U.S. and Foreign Patents/Published applications in the name of Mitsubishi Denki Kabushiki Kaisha and Containing the Keywords (Proton and Synchrocyclotron), 8 pages.
Coupland, . “High-field (5 T) pulsed superconducting dipole magnet” Proceedings of the Institution of Electrical Engineers, vol. 121, No. 7, pp. 771-778 (Jul. 1974).
Cuttone, G., “Applications of a Particle Accelerators in Medical Physics” Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, V.S. Sofia, 44 Cantania, Italy (17 pages).
Flanz, et al., “Operation of a Cyclotron Based Proton Therapy Facility”, Massachusetts General Hospital, Boston, MA 02114, pp. 1-4.
Foster, G. W. and Kashikhin, V. S. “Superconducting Superferric Dipole Magent with Cold Iron Core for the VLHC” IEEE Transactions on Applied Superconductivity, vol. 12, No. 1, pp. 111-115 (Mar. 2002).
Friesel, D. L. et al. “Design and Construction Progress on the IUCF Midwest Proton Radiation Institute” Proceedings of EPAC 2002, pp. 2736-2738 (2002).
Graffman, S., et al., Acta Radiol. Therapy Phys. Biol. 9, 1 (1970).
Graffman, et. al. “Proton radiotherapy with the Uppsala cyclotron. Experience and plans” Strahlentherapie, 161, No. 12, pp. 764-770 (1985).
Graffman, et. al. “Design Studies for a 200 MeV Proton Clinic for Radiotherapy” AIP Conference Proceedings: Cyclotrons—1972, No. 9, pp. 603-615 (1972).
Hede, Karyn, “Research Groups Promoting Proton Therapy “Lite””, Journal of the National Cancer Institute, vol. 98, No. 23, Dec. 6, 2006, pp. 1682-1684.
Heinz, . “Superconducting Pulsed Magnetic Systems for High-Energy Synchrotrons” Proceedings of the Fourth International Cryogenic Engineering Conference, pp. 55-63. (May 24-26, 1972).
Hentschel, R., et. al., “Plans for the German National Neutron Therapy Centre with a Hospital-Based 70 MeV Proton Cyclotron at University Hospital Essen/Germany” Cyclotrons and their Applications, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Caen, Franco, pp. 21-23 (Jun. 14-19, 1998).
Hepburn, et. al. “Superconducting Cyclotron Neutron Source for Therapy” International Journal of Radiation Oncology Biology Physics, vol. 3 complete, pp. 387-391 (1977).
Hirabayashi, H. “Development of Superconducting Magnets for Beam Lines and Accelerator at KEK” IEEE Transaction on Magnetics, vol. Mag-17, No. 1, pp. 728-731 (Jan. 1981).
“Indiana's mega-million proton therapy cancer center welcomes its first patients” [online] Press release, Health & Medicine Week, 2004, retrieved from NewsRx.com, Mar. 1, 2004, pp. 119-120.
Ishibashi, K. and McInturff, A., “Stress Analysis of Superconducting 10T Magnets for Synchrotron”, Proceedings of the Ninth International Cryogenic Engineering Conference, pp. 513-516 (May 11-14, 1982).
Ishibashi, K. and McInturff, A. “Winding Design Study of Superconducting 10 T Dipoles for a Synchrotron” IEEE Transactions on Magnetics, vol. MAG-19, No. 3, pp. 1364-1367 (May 1983).
Jahnke, A., et. al. “First Superconducting Prototype Magnets for a Compact Synchrotron Radiation Source in Operation” IEEE Transactions on Magnetics, vol. 24, No. 2 (Mar. 1988), pp. 1230-1232.
Jones, D.T.L. “Progress with the 200 MeV Cyclotron Facility at the National Accelerator Centre” Commission of the European Communities Radiation Protection Proceedings, Fifth Symposium on Neutron Dosimetry, vol. II, pp. 989-998 (Sep. 17-21, 1984).
Jones, D. T. L. “Present Status and Future Trends of Heavy Particle Radiotherapy” Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, pp. 13-20 (Jun. 14-19, 1998).
Jones, and Dershem . “Synchrotron Radiation from Proton in a 20 TEV, 10 TESLA Superconducting Super Collider” Proceedings of the 12th International Conference on High-Energy Accelerators, pp. 138-140 (Aug. 11-16, 1983).
Jones, D. T. L. and Mills, S. J. “The South African National Accelerator Centre: Particle Therapy and Isotope Production Programmes” Radiation Physics and Chemistry, vol. 51, Nos. 4-6, pp. 571-578 (Apr.-Jun. 1998).
Jones, D. T. L., et. al. “Status Report of the NAC Particle Therapy Programme” Stralentherapie und Onkologie, vol. 175, Suppl. II, pp. 30-32 (Jun. 1999).
Jongen, Y., et. al. “Progress report on the IBA-SHI small cyclotron for cancer therapy” Nuclear Instruments and Methods in Physics Research, Section B, vol. 79, issue 1-4, pp. 885-889 (1993).
Jongen, Y., et. al. “The proton therapy system for MGH's NPTC: equipment description and progress report” Bulletin du Cancer/Radiotherapie, Proceedings of the meeting of the European Heavy Particle Therapy Group, vol. 83, Suppl. 1, pp. 219-222 (1996).
Jongen, Y., et. al. “Development of a Low-cost Compact Cyclotron System for Proton Therapy” National Institute of Radiol. Sci,, No. 81, pp. 189-200 (1991).
Jongen, Y. et. al. “The proton therapy system for the NPTC: equipment description and progress report” Nuclear Instruments and methods in Physics Research, Section B, vol. 113, No. 1, pp. 522-525 (1996).
Kanai, et al., “Three-dimensional Beam Scanning for Proton Therapy,” Nuclear Instruments and Methods in Physic Research, Sep. 1, 1983, The Netherlands, vol. 214, No. 23, pp. 491-496.
Karlin, D.L., et al., “Medical Radiology” (Moscow) 28, 13 (1983).
Karlin, D.L., et al., “The State and Prospects in the Development of the Medical Proton Tract on the Synchrocyclotron in Gatchina”, Med. Radiol., Moscow, vol. 28(3), pp. 28-32 (Mar. 1983)(German with English Abstract on end of p. 32).
Kats, M.M. and Druzhinin, B.L. “Comparison of Methods for Irradiation Prone Patients” Atomic Energy, vol. 94, No. 2, pp. 120-123 (Feb. 2003).
Kats, M. M. and Onosovskii, K. K. “A Planar Magnetooptical System for the Irradiation of a Lying Patient with a Proton Beam from Various Directions” Instruments and Experimental Techniques, vol. 39, No. 1, pp. 127-131 (1996).
Kats, M. M. and Onosovskii, K. K. “A Simple, Compact, Flat System for the Irradiation of a Lying Patient with a Proton Beam from Different Directions” Instruments and Experimental Techniques, vol. 39, No. 1, pp. 132-134 (1996).
Koehler, A.M., et al., “Range Modulators for Protons and Heavy Ions,” Nuclear Instruments and Methods, vol. 131, pp. 437-440 (1975).
Khoroshkov, V. S., et. al. “Moscow Hospital-Based Proton Therapy Facility Design” Am. Journal Clinical Oncology: CCT, vol. 17, No. 2, pp. 109-114 (Apr. 1994).
Kim, J. and Yun, C. “A Light-Ion Superconducting Cyclotron System for Multi-Disciplinary Users” Journal of the Korean Physical Society, vol. 43, No. 3, pp. 325-331 (Sep. 2003).
Kim, J.W., “An Eight Tesla Superconducting Magnet for Cyclotron Studies,” Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy (1994).
Kim, J., et al., “Construction of 8T Magnet Test Stand for Cyclotron Studies”, IEEE Transactions on Applied Superconductivity, vol. 3, No. 1, pp. 266-268 (Mar. 1993).
Kim, J., et al., “Design Study of a Superconducting Cyclotron for Heavy Ion Therapy”, Cyclotrons and Their Applications 2001, Sixteenth International Conference, pp. 324-326 (May 13-17, 2001).
Kim, J. and Blosser, H., “Optimized Magnet for a 250 MeV Proton Radiotherapy Cyclotron”, Cyclotrons and Their Applications 2001, Sixteenth International Conference, pp. 345-347 (May 2001).
Kim, J.W., et al., “Trim Coil System for the Riken Cyclotron Ring Cyclotron”, Proceedings of the 1997 Particle Accelerator Conference, IEEE, vol. 3, pp. 214-235 (Dec. 1981). OR 3422-3424, 1998).
Kishida, N. and Yano, Y. “Beam Transport System for the RIKEN SSC (II)” Scientific Papers of the Institute of Physical and Chemical Research, vol. 75, No. 4, pp. 214-235 (Dec. 1981).
Krevet, et al, “Design of a Strongly Curved Superconducting Bending Magnet for a Compact Synchrotron Light Source”, Advances in Cryogenic Engineering, vol. 33, pp. 25-32.
Meot, F., et. al. “ETOILE Hadrontherapy Project, Review of Design Studies” Proceedings of EPAC 2002, pp. 2745-2747 (2002).
Miyamoto, S., et. al. “Development of the Proton Therapy System” The Hitachi Hyoron, vol. 79, 10, pp. 775-779 (1997) [Lang: Japanese], English abstract (http://www.hitachi.com/rev/1998/revfeb98/rev4706.htm).
Montelius, A., et. al. “The Narrow Proton Beam Therapy Unit at the Svedberg Laboratory in Uppsala” ACTA Oncologica, vol. 30, pp. 739-745 (1991).
Moser, H.O., et al., “Nonlinear Beam Optics with Real Fields m Compact Storage Rings”, Nuclear Instruments & Methods in Physics Research/Section B, B30, Feb. 1988, No. 1, pp. 105-109.
National Cancer Institute Funding (Senate-Sep. 21, 1992) (www.thomas.loc.gov/cgi-bin/query/z?r102:S21SE2-712 (2 pages).
Nicholson, J. “Applications of Proton Beam Therapy” Journal of the American Society of Radiologic Technologists, vol. 67, No. 5, pp. 439-441 (May/Jun. 1996).
Nolen, J.A., et al., “The Integrated Cryogenic—Superconducting Beam Transport System Planned for MSU”, Proceedings of the 12th International Conference on High-Energy Accelerators, pp. 549-551 (Aug. 1983).
Norimine, T., et. al. “A Design of a Rotating Gantry with Easy Steering for Proton Therapy” Proceedings of EPAC 2002, pp. 2751-2753 (2002).
Okumura, T., et. al. “Overview and Future Prospect of Proton Radiotherapy” Japanese Journal of Cancer Clinics, vol. 43, No. 2, pp. 209-214 (1997) [Lang.: Japanese].
Okumura, T., et. al. “Proton Radiotherapy” Japanese Journal of Cancer and Chemotherapy, 10. 20, No. 14, pp. 2149-2155 (1993) [Lang.: Japanese].
Outstanding from Search Reports, “Accelerator of Polarized Portons at Fermilab,” 20 pages, 2005.
Palmer, R. and Tollestrup, A. V. “Superconducting Magnet Technology for Accelerators” Annual Review of Nuclear and Particle Science, vol. 34, pp. 247-284 (1984).
Patent Assignee and Keyword Searches for Synchrocyclotron, Jan. 25, 2005 (77 pages).
“Patent Assignee Search Paul Scherrer Institute,” Library Services at Fish & Richardson P.C., Mar. 20, 2007 (40 pages).
“Patent Prior Art Search for ‘Proton Therapy System’,” Library Services at Fish & Richardson P.C., Mar. 20, 2007 (46 pages).
Pavlovic, M. “Beam-optics study of the gantry beam delivery system for light-ion cancer therapy” Nuclear Instruments and Methods in Physics Research, Section A, vol. 399, No. 2, pp. 439-454(16) (Nov. 1997).
Pedroni, E. “Accelerators for Charged Particle Therapy: Performance Criteria from the User Point of View” Cyclotrons and their Applications, Proceedings of the 13th International Conference, pp. 226-233 (Jul. 6-10, 1992).
Pedroni, E. “Latest Developments in Proton Therapy” Proceedings of EPAC 2000, pp. 240-244 (2000).
Pedroni, E., et. al. “The 200-MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization” Medical Physics, vol. 22, No. 1, pp. 37-53 (Jan. 1995).
Pedroni, E., et. al. “A Novel Gantry for Proton Therapy at the Paul Scherrer Institute” Cycloctrons and Their Applications 2001: Sixteenth International Conference. AIP Conference Proceedings, vol. 600, pp. 13-17 (2001).
Pedroni, E. and Enge, H. “Beam optics design of compact gantry for proton therapy” Medical & Biological Engineering & Computing, vol. 33, No. 3, pp. 271-277 (May 1995).
Pedroni, E. and Jermann, M. “SGSMP: Bulletin Mar. 2002 Proscan Project, Progress Report on the PROSCAN Project of PSI” [online] retrieved from www.sgsmp.ch/protA23.htm, (5 pages) Mar. 2002.
Potts, R., et. al. “MPWP6-Therapy III: Treatment Aids and Techniques” Medical Physics, vol. 15, No. 5, p. 798 (Sep./Oct. 1988).
Pourrahimi, S. et al., “Powder Metallurgy Processed Nb3Sn(Ta) Wire for High Field NMR magnets,” IEEE Transactions on Applied Superconductivity, vol. 5, No. 2, (Jun. 1995), pp. 1603-1606.
Prieels, D., et. al. “The IBA State-of-the-Art Proton Therapy System, Performances and Recent Results” Application of Accelerators in Research and industry—Sixteenth Int'l. Conf., American Institute of Physics, vol. 576, pp. 857-860 (Nov. 1-5, 2000).
Rabin, M. S. Z., et. al. “Compact Designs for Comprehensive Proton Beam Clinical Facilities” Nuclear Instruments & Methods in Physics Research, Section B, vol. 40-41, Part II, pp. 1335-1339 (Apr. 1989).
Research & Development Magazine, “Proton Therapy Center Nearing Completion”, vol. 41, No. 9, Aug. 1999 (2 pages)(www.rdmag.com).
Resmini, F., “Design Characteristics of the K=800 Superconducting Cyclotron at M.S.U.”, Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, IEEE Transaction on Nuclear Science, vol. NS-26, No. 2, Apr. 1979 (8 pages).
RetroSearch “Berkeley 88-Inch Cyclotron ‘RF’ or ‘Frequency Control’,” Jan. 21, 2005 (36 pages).
RetroSearch “Berkeley 88-Inch Cyclotron,” Jan. 24, 2005 (170 pages).
RetroSearch “Bernard Gottschalk, Cyclotron, Beams, Compensated Upstream Modulator, Compensated Scatter,” Jan. 21, 2005 (20 pages).
RetroSearch “Cyclotron with ‘RF’ or ‘Frequency Control’,” Jan. 21, 2005 (49 pages).
RetroSearch Gottschalk, Bernard, Harvard Cyclotron Wheel, Jan. 21, 2005 (20 pages).
RetroSearch “Loma Linda University, Beam Compensation Foil Wedge,” Jan. 21, 2005 (15 pages).
RetroSearch “Loma Linda University Beam Compensation,” Jan. 21, 2005 (60 pages).
Revised Patent Keyword Search, Jan. 25, 2005 (88 pages).
Rifuggiato, D., et. al. “Status Report of the LNS Superconducting Cyclotron” Nukleonika, vol. 48, pp. S131-S134 (Supplement 2, 2003).
Rode, C. H. “Tevatron Cryogenic System” Proceedings of the 12th International Conference on High-energy Accelerators, Fermilab, pp. 529-535 (Aug. 11-16, 1983).
Salzburger, H., et al., “Superconducting Synchrotron Magnets Supraleitende Synchrotronmagnete”, Siemens A.G., Erlangen (West Germany). Abteilung Technische Physik, Report No. BMFT-FB-T-75-25, Oct. 1975, p. 147, Journal Announcement: GRAI7619; STAR1415, Subm-Sponsored by Bundesmin. Fuer Forsch. U. Technol. In German; English Summary.
Schneider, R., et al., “Nevis Synchrocyclotron Conversion Program—RF System,” IEEE Transactions on Nuclear Science USA ns 16(3) pp. 430-433 (Jun. 1969).
Schubert, J. R. “Extending the Feasibility Boundary of the Isochronous Cyclotron” Dissertation submitted to Michigan State University, 1997, Abstract http://adsabs.harvard.edu/abs/1998PhDT.......147S.
Shelaev, I. A., et. al. “Design Features of a Model Superconducting Synchrotron of JINR” Proceedings of the 12th International Conference on High-energy Accelerators, pp. 416-418 (Aug. 11-16, 1983).
Shintomi, T., et. al. “Technology and Materials for the Superconducting Super Collider (SSC) Project” [Lang.: Japanese], The Iron and Steel Institute of Japan 00211575, vol. 78, No. 8 (Aug. 1, 1992), pp. 1305-1313, http://ci.nii.ac.jp/naid/110001493249/en/ , 1992.
Slater, J. M., et. al. “Developing a Clinical Proton Accelerator Facility: Consortium-Assisted Technology Transfer” Conference Record of the 1991 IEEE Particle Accelerator Conference: Accelerator Science and Technology, vol. 1, pp. 532-536 (May 6-9, 1991).
Spiller, P., et. al. “The GSI Synchrotron Facility Proposal for Acceleration of High Intensity Ion and Proton Beams” Proceedings of the 2003 Particle Accelerator Conference, vol. 1, pp. 589-591 (May 12-16, 2003).
Stanford, A.L., et al., “Method of Temperature Control in Microwave Ferroelectric Measurements,” Sperry Microwave Electronics Company, Clearwater, Florida, Sep. 19, 196 (1 page).
Tadashi, I., et al., “Large superconducting super collider (SSC) in the planning and materials technology”, vol. 78, No. 8 (Aug. 1, 1992), pp. 1305-1313, The Iron and Steel Institute of Japan 00211575.
“The Davis 76-Inch Isochronous Cyclotron”, Beam On: Crocker Nuclear Laboratory, University of California.
“The K250 Proton therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k250.html , Feb. 2005.
“The K250 Proton-therapy Cyclotron Photo Illustration,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/media/image/experimental-equipment-technology/250.html , Feb. 2005.
Toyoda, E., “Proton Therapy System”, Sumitomo Heavy Industries, Ltd.
Trinks, U., et. al. “The Tritron: A Superconducting Separated-Orbit Cyclotron” Nuclear Instruments and Methods in Physics Research, Section A, vol. 244, pp. 273-282 (1986).
Tsuji, H., “Cancer Therapy by Proton Beam: Latest State and Future Prospects”, Isotope News, No. 459, pp. 2-7 (1992).
Tsuji, H. “The Future and Progress of Proton Beam Radiotherapy” Journal of Japanese Society for Therapeutic Radiology and Oncology, vol. 6, No. 2, pp. 63-76 (1994).
UC Davis School of Medicine, “Unlikely Partners Turn Military Defense into Cancer Offense”, Current Issue Summer 2008, Sacramento, California, pp. 1-2.
Umegaki, K., et. al. “Development of an Advanced Proton Beam Therapy System for Cancer Treatment” Hitachi Hyoron, vol. 85, No. 9, pp. 605-608 (2003) [Lang.: Japanese], English abstract, http://www.hitachi.com/ICSFiles/afieldfile/2004/06/01/r2003—04—104.pdf or http://www.hitachi.com/rev/archive/2003/2005649—12606.html (full text) [Hitachi, vol. 52, No. 4. Dec. 2003].
Umezawa, M., et. al. “Beam Commissioning of the new Proton Therapy System for University of Tsukuba” Proceedings of the 2001 Particle Accelerator Conference, vol. 1, pp. 648-650 (Jun. 18-22, 2001).
van Steenbergen, A. “The CMS, a Cold Magnet Synchrotron to Upgrade the Proton Energy Range of the BNL Facility” IEEE Transactions on Nuclear Science, vol. 18, Issue 3, pp. 694-698 (Jun. 1971).
van Steenbergen, A. “Superconducting Synchroton Development at BNL” Proceedings of the 8th International Conference on High-Energy Accelerators CERN 1971, pp. 196-198 (1971).
Vandeplassche, D., et. al. “235 MeV Cyclotron for MGH's Northeast Proton Therapy Center (NPTC): Present Status” EPAC 96, Fifth European Partical Accelerator Conference, vol. 3, pp. 2650-2652 (Jun. 10-14, 1996).
Vorobiev, L.G., et al., “Concepts of a Compact Achromatic Proton Gantry with a Wide Scanning Field”, Nuclear Instruments and Methods in Physics Research, Section A., vol. 406, No. 2, pp. 307-310 (1998).
Vrenken, H., et. al. “A Design of a Compact Gantry for Proton Therapy with 2D-Scanning” Nuclear Instruments and Methods in Physics Research, Section A, vol. 426, No. 2, pp. 618-624 (1999).
Wikipedia, “Cyclotron” http://en.wikipedia.org/wiki/Cyclotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009)(7 pages).
Wikipedia, “Synchrotron” http://en.wikipedia.org/wiki/Synchrotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009)(7pages).
Worldwide Patent Assignee Search, Jan. 24, 2005 (224 pages).
Worldwide Patent Keyword Search, Jan. 24, 2005 (94 pages).
Wu, X., “Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron,” Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy (1990).
York, R.C., et al., “Present Status and Future Possibilities at NSCL-MSU”, EPAC 94, Fourth European Particle Accelerator Conference, pp. 554-556 (Jun. 1994).
York, R.C., et al., “The NSCL Coupled Cyclotron Project—Overview and Status”, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, pp. 687-691 (Jun. 1998).
Yudelev, M., et. al. “Hospital Based Superconducting Cyclotron for Neutron Therapy: Medical Physics Perspective” Cyclotrons and their applications 2001, 16th International Conference. American Institute of Physics Conference Proceedings, vol. 600, pp. 40-43 (May 13-17, 2001) http://www.osti.gov/energycitations/product.biblio.jsp? osti—id=20468164 http://adsabs.harvard.edu/abs/2001AIPC..600...40Y http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APCPCS000600000001000040000001&idtype=cvips&gifs=yes.
Zherbin, E. A., et al., “Proton Beam Therapy at the Leningrad Synchrocyclotron (Clinicomethodological Aspects and Therapeutic Results)”, pp. 17-22, Aug. 1987, vol. 32(8)(German with English abstract on pp. 21-22).
18th Japan Conference on Radiation and Radioisotopes [Japanese], Nov. 25-27, 1987, 9 pages.
“510(k) Summary: Ion Beam Applications S.A.”, FDA, Apr. 13, 2001.
“510(k) Summary: Optivus Proton Beam Therapy System”, Jul. 21, 2000, 5 pages.
U.S. Appl. No. 11/601,056, filed Nov. 17, 2006, including application as filed (including pending claims).
European Search Report from application No. EP 06838033.6 (PCT/US2006/044853) mailed May 11, 2009 (69 pages).
European Patent Office communication for application No. 06838033.6, patent No. 1949404, mailed Aug. 5, 2009 (1 page).
Invitation to Pay Additional Fees and, where applicable, Protest Fees with partial search report for application No. PCT/US2008/077513 mailed Jul. 3, 2009 (62 pages).
Office action and response history of U.S. Appl. No. 11/601,056, to Aug. 24, 2009.
International Search Report and Written Opinion mailed Oct. 1, 2009 in PCT application No. PCT/US2008/077513 (73 pages).
International Preliminary Report on Patentability from PCT application No. PCT/US2008/084695, mailed Jun. 10, 2010 (10 pages).
International Preliminary Report on Patentability from PCT application No. PCT/US2008/084699, mailed Jun. 10, 2010 (8 pages).
International Preliminary Report on Patentability from PCT application No. PCT/US2007/086109, mailed Jun. 10, 2010 (7 pages).
European Patent Office communication from European application No. 07868958.5, mailed Jul. 16, 2010 (2 pages).
Voluntary amendment filed Apr. 18, 2011 in corresponding Chinese application No. CN200780102281.X , including English translation of claim amendments (10 pages).
Non Final Office Action from U.S. Appl. No. 12/618,297 mailed May 13, 2011 (44 pages).
Non Final Office Action from U.S. Appl. No. 12/275,103 mailed Feb. 1, 2011 (6 pages).
Response to Non Final Office Action issued Feb. 1, 2011 in U.S. Appl. No. 12/275,103, filed May 2, 2011 (13 pages).
European Search Report from corresponding European application No. 11165422.4 mailed Aug. 8, 2011 (118 pages).
European Search Report from corresponding European application No. 11165423.2 mailed Aug. 8, 2011 (118 pages).
European Communication from corresponding European application No. 11165422.4 mailed Sep. 2, 2011 (5 pages).
European Communication from corresponding European application No. 11165423.2 mailed Sep. 2, 2011 (5 pages).
Chinese Office action from Chinese application No. 200680051421.0 issued Aug. 22, 2011 (4 pages).
Chinese Office action from Chinese application No. 200680051421.0 issued Mar. 21, 2011 (6 pages).
Chinese Office action from Chinese application No. 200680051421.0 issued Dec. 25, 2009 (8 pages).
Canadian Office action from Canadian application No. 2,629,333 issued May 11, 2011 (2 pages).
Canadian Office action from Canadian application No. 2,629,333 issued Aug. 30, 2010 (5 pages).
European Communication from European application No. 06838033.6 mailed Apr. 20, 2010 (7 pages).
European Patent Office communication from European application No. 08855024.9, mailed Jul. 30, 2010 (2 pages).
European Patent Office communication from European application No. 08856764.9, mailed Jul. 30, 2010 (2 pages).
Chinese Office action from Chinese application No. 200880125918.1, mailed Sep. 15, 2011 (111 pages).
Chinese Office action from Chinese application No. 200880125832.9, mailed Sep. 22, 2011 (11 pages).
Response to Chinese Office action of Jan. 25, 2010 in Chinese application No. 200680051421.0, filed Jun. 24, 2010 (34 pages).
Response to European Communication of Apr. 20, 2010, from European application No. 06838033.6, filed Nov. 2, 2010 (13 pages).
European Communication from European application No. 07868958.5, mailed Nov. 26, 2010 (50 pages).
Response to European Communication of Jul. 16, 2010 in European application No. 07868958.5 filed Aug. 26, 2010 (9 pages).
Response to European Communication of Nov. 26, 2010 in European application No. 07868958.5, filed Mar. 28, 2011 (9 pages).
Office action from U.S. Appl. No. 11/948,662, mailed Oct. 14, 2011 (5 pages).
Response to Office action mailed Oct. 14, 2011 from U.S. Appl. No. 11/648,662, filed Dec. 14, 2011 (12 pages).
Chinese Office Action from Chinese Application No. 200780102281.X issued Dec. 7, 2011 with English translation (23 pages).
Response to Chinese Office Action from corresponding Chinese application No. 200880125832.9 issued Sep. 22, 2011, filed on Apr. 9, 2012 with English translation (23 pages).
Chinese Office action from corresponding Chinese application No. 200880125832.9, mailed Jun. 5, 2012. English Translation will follow upon receipt (4 pages).
Beeckman, W., et. al. “Preliminary design of a reduced cost proton therapy facility using a compact, high field isochronous cyclotron” Nuclear Instruments and Methods in Physics Reasearch B56/57, pp. 1201-1204 (1991).
Bellomo, G., et al., “The Superconducting Cyclotron Program at Michigan State University” Bulletin of the American Physical Society, vol. 25, No. 7, pp. 767 (Sep. 1980).
Benedikt, M. and Carli, C. “Matching to Gantries for Medical Synchrotrons” IEEE Proceedings of the 1997 Particle Accelerator Conference, pp. 1379-1381 (1997).
Bieth, C., et. al. “A Very Compact Protontherapy Facility Based on an Extensive Use of High Temperature Superconductors (HTS)” Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Caen, pp. 669-672 (Jun. 14-19, 1998).
Bigham, C.B. “Magnetic Trim Rods for Superconducting Cyclotrons,” Nuclear Instruments and Methods (North-Holland Publishing Co.) 141 (1975), pp. 223-228.
Blackmore, E. W., et. al. “Operation of the Triumf Proton Therapy Facility” IEEE Proceedings of the 1997 Particle Accelerator Conferenc, vol. 3, pp. 3831-3833 (May 12-16, 1997).
Bloch, C. “The Midwest Proton Therapy Center” Application of Accelerators in Research and Industry, Proceedings of the Fourteenth Int'l. Conf, Part Two, pp. 1253-1255 (Nov. 1996).
Blosser, H., et. al. “A Compact Superconducting Cyclotron for the Production of High Intensity Protons” Proceedings of the 1997 Particle Accelerator Conference, vol. 1, pp. 1054-1056 (May 12-16, 1997).
Blosser, H., et al., “Advances in Superconducting Cyclotrons at Michigan State University”, Proceedings of the 11th International Conference on Cyclotrons and their Applications, pp. 157-167 (Oct. 1986), Tokyo.
Blosser, H., “Application of Superconductivity in Cyclotron Construction”, Ninth International Conference on Cyclotrons and their Applications, pp. 147-157 (Sep. 1981).
Blosser, H. “Applications of Superconducting Cyclotrons” Twelfth International Conference on Cyclotrons and Their Applications, pp. 137-144 (May 8-12, 1989).
Blosser, H., et al., “Characteristics of a 400 (Q2/A) MeV Super-Conducting Heavy-Ion Cyclotron”, Bulletin of the American Physical Society, p. 1026 (Oct. 1974).
Blosser, H.G. “Compact Superconducting Synchrocyclotron Systems for Proton Therapy” Nuclear Instruments & Methods in Physics Research, Section B40-41, Part II, pp. 1326-1330 (Apr. 1989).
Blosser, H.G., “Future Cyclotrons” AIP, The Sixth International Cyclotron Conference, pp. 16-32 (1972).
Blosser, H., et. al. “Medical Accelerator Projects at Michigan State Univ.” IEEE Proceedings of the 1989 Particle Accelerator Conference, vol. 2, pp. 742-746 (Mar. 20-23, 1989).
Blosser, H.G., “Medical Cyclotrons”, Physics Today, Special Issue Physical Review Centenary, pp. 70-73 (Oct. 1993).
Blosser, H., et al., “Preliminary Design Study Exploring Building Features Required for a Proton Therapy Facility for the Ontario Cancer Institute”, MSUCL-760a (Mar. 1991).
Blosser, H., Present and Future Superconducting Cyclotrons, Bulletin of the American Physical Society, vol. 32, No. 2, p. 171 (Feb. 1987), Particle Accelerator Conference, Washington, D.C. 1987.
Blosser, H., et al., “Problems and Accomplishments of Superconducting Cyclotrons”, Proceedings of the 14th International Conference, Cyclotrons and Their Applications, pp. 674-684 (Oct. 1995).
Blosser, H.G., “Program on the Coupled Superconducting Cyclotron Project”, Bulletin of the American Physical Society, vol. 26, No. 4, p. 558 (Apr. 1981).
Blosser, H., et al., “Superconducting Cyclotron for Medical Application”, IEEE Transactions on Magnetics, vol. 25, No. 2, pp. 1746-1754 (Mar. 1989).
Blosser, H.G., et al., “Superconducting Cyclotrons”, Seventh International Conference on Cyclotrons and their Applications, pp. 584-594 (Aug. 19-22, 1975).
Blosser, H.G., “Superconducting Cyclotrons at Michigan State University”, Nuclear Instruments & Methods in Physics Research, vol. B 24/25, part II, pp. 752-756 (1987).
Blosser, H.G. “Synchrocyclotron Improvement Programs” IEEE Transactions on Nuclear Science USA, vol. 16, No. 3, Part I, pp. 405-414 (Jun. 1969).
Blosser, H.G., “The Michigan State University Superconducting Cyclotron Program”, Nuclear Science, vol. NS-26, No. 2, pp. 2040-2047 (Apr. 1979).
Botha, A.H., et. al. “A New Multidisciplinary Separated-Sector Cyclotron Facility” IEEE Transactions on Nuclear Science, vol. NS-24, No. 3, pp. 1118-1120 (1977).
Chichili, D.R., et al., “Fabrication of Nb3Sn Shell-Type Coils with Pre-Preg Ceramic Insulation,” American Institute of Physics Conference Proceedings, AIP USA, No. 711, (XP-002436709, ISSN: 0094-243X), 2004, pp. 450-457.
Chong, C.Y., et al., Radiology Clinic North American 7, 3319 (1969).
Chu, et. al. “Instrumentation for Treatment of Cancer Using Proton and Light-ion Beams” Review of Scientific Instruments, 64 (8), pp. 2055-2122 (Aug. 1993).
Cole, et. al. “Design and Application of a Proton Therapy Accelerator”, Fermi National Accelerator Laboratory, IEEE, 1985.
Conradie, et. al. “Proposed New Facilities for Proton Therapy at iThemba Labs” Proceedings of EPAC, pp. 560-562 (2002).
C/E Source of Ions for Use in Sychro-Cyclotrons Search, Jan. 31, 2005, 9 pages.
Coupland, “High-field (5 T) pulsed superconducting dipole magnet” Proceedings of the Institution of Electrical Engineers, vol. 121, No. 7, pp. 771-778 (Jul. 1974).
Coutrakon, et. al. “A prototype beam delivery system for the proton medical accelerator at Loma Linda” Medical Physics, vol. 18(6), pp. 1093-1099 (Nov./Dec. 1991).
Coutrakon, G et al. “Proton Synchrotrons for Cancer Therapy” Application of Accelerators in Research and Industry—Sixteenth International Conf., American Institute of Physics, vol. 576, pp. 861-864 (Nov. 1-5, 2000).
“CPAC Highlights Its Proton Therapy Program at ESTRO Annual Meeting”, TomoTherapy Incorporated, Sep. 18, 2008, Madison, Wisconsin, pp. 1-2.
Dahl, P., “Superconducting Magnet System” American Institute of Physics, AIP Conference Proceedings, vol. 2, pp. 1329-1376 (1987-1988).
Dialog Search, Jan. 31, 2005 (18 pages).
Dugan, G. et al. “Tevatron Status” IEEE, Particle Accelerator Conference, Accelerator Science & Technology (1989), pp. 426-430.
Eickhoff, et al. “The Proposed Accelerator Facility for Light Ion Cancer Therapy in Heidelberg” Proceedings of the 1999 Particle Accelerator Conference, New York, pp. 2513-2515 (1999).
Enchevich, B. et al., “Minimizing Phase Losses in the 680 MeV Synchrocyclotron by Correcting the Accelerating Voltage Amplitude,” Atomnaya Energiya 26:(3), pp. 315-316 (1969).
Endo, K., et. al., “Compact Proton and Carbon Ion Synchrotrons for Radiation Therapy” Proceedings of EPAC 2002, Paris France, pp. 2733-2735 (2002).
Flanz, et al., “Large Medical Gantries”, 1995 Particle Accelerator Conference, Massachusetts General Hospital, pp. 1-5 (1995).
Flanz, et al., “The Northeast Proton Therapy Center at Massachusetts General Hospital”, Fifth Workshop on Heavy Charge Particles in Biology and Medicine, GSI, Darmstadt (Aug. 1995).
Flanz, et. al. “Treating Patients with the NPTC Accelerator Based Proton Treatment Facility” Proceedings of the 2003 Particle Accelerator Conference (2003), pp. 690-693.
Flood, W. S. and Frazier, P. E. “The Wide-Band Driven RF System for the Berkeley 88-Inch Cyclotron” American Institute of Physics, Conference Proceedings., No. 9, 459-466 (1972).
Foster, G.W. and Kashikhin, V.S. “Superconducting Superferric Dipole Magent with Cold Iron Core for the VLHC” IEEE Transactions on Applied Superconductivity, vol. 12, No. 1, pp. 111-115 (Mar. 2002).
Friesel, D.L. et al. “Design and Construction Progress on the IUCF Midwest Proton Radiation Institute” Proceedings of EPAC 2002, pp. 2736-2738 (2002).
Fukumoto, “Cyclotron Versus Synchrotron for Proton Beam Therapy”, KEK Prepr., No. 95-122, pp. 533-536 (1995).
Fukumoto, et. al., “A Proton Therapy Facility Plan” Cyclotrons and their Applications, Proceedings of the 13th International Conference, Vancouver, Canada, pp. 258-261 (Jul. 6-10, 1992).
Gordon, et. al. “Design Study for a Compact 200 MeV Cyclotron” AIP Conference Proceedings Sixth International Cyclotron Conference, No. 9, pp. 78-86 (1972).
Gordon, M. M., “Extraction Studies for a 250 MeV Superconducting Synchrocyclotron”, Proceedings of the 1987 IEEE Particle Accelerator Conference: Accelerator Engineering and Technology, pp. 1255-1257 (1987).
Goto, A. et al., “Progress on the Sector Magnets for the Riken SRC,” American Institute of Physics, CP600, Cyclotrons and Their Applications 2001, Sixteenth International Conference (2001), pp. 319-323.
Koto, M. and Tsujii, H. “Future of Particle Therapy” Japanese Journal of Cancer Clinics, vol. 47, No. 1, pp. 95-98 (2001) [Lang.: Japanese], English abstract (http://sciencelinks.jp/j-east/article/200206/000020020601A0511453.php).
Kraft, G. et al., “Hadrontherapy in Oncology”, U. Amaldi and Larrsson, editors Elsevier Science, 1994.
Larsson, B. “Biomedical Program for the Converted 200-MeV Synchrocyclotron at the Gustaf Werner Institute” Radiation Research, 104, pp. S310-S318 (1985).
Larsson, B., et al., Nature 182, 1222 (1958).
Lawrence, J.H., Cancer 10, 795 (1957).
Lawrence, J.H., et al., “Heavy particles in acromegaly and Cushing's Disease,” in Endocrine and Norendocrine Hormone Producing Tumors (Year Book Medical Chicago, 1973), pp. 29-61.
Lawrence, J.H., et al., “Successful Treatment of Acromegaly: Metabolic and Clinical Studies in 145 Patients”, The Journal of Clinical Endrocrinology and Metabolism, vol. 31, No. 2, Aug. 1970.
Lawrence, J.H., et al., Treatment of Pituitary Tumors, (Excerpta medica, Amsterdam/American Elsevier, New York, 1973), pp. 253-262.
Lecroy, W., et al., “Viewing Probe for High Voltage Pulses”, Review of Scientific Instruments USA 31(12), p. 1354 (Dec. 1960).
Linfoot, J.A., et al., “Acromegaly,” in Hormonal Proteins and Peptides, edited by C.H. Li, (1975), pp. 191-246.
Literature Author and Keyword Search, Feb. 14, 2005 (44 pages).
Literature Author and Keyword Searches (Synchrotron), Jan. 25, 2005 (78 pages).
Literature Keyword Search, Jan. 24, 2005 (96 pages).
Literature Search, Jan. 26, 2005 (36 pages).
Literature Search and Keyword Search for Synchrocyclotron, Jan. 25, 2005 (68 pages).
Literature Search by Company Name/Component Source, Jan. 24, 2005 (111 pages).
Livingston, M. S., et. al. “A Capillary Ion Source for the Cyclotron” Review Science Instruments, vol. 10:63, pp. 63-67, (Feb. 1939).
“LLNL, UC Davis Team Up to Fight Cancer”, Lawrence Livermore National Laboratory, Apr. 28, 2006, SF-06-04-02, Livermore, California, pp. 1-4.
Mandrillon, P. “High Energy Medical Accelerators” EPAC 90, 2nd European Particle Accelerator Conference, vol. 2, (Jun. 12-16, 1990), pp. 54-58.
Marti, F., et al., “High Intensity Operation of a Superconducting Cyclotron”, Proceedings of the 14the International Conference, Cyclotrons and Their Applications, pp. 45-48 (Oct. 1995).
Martin, P. “Operational Experience with Superconducting Synchrotron Magnets” Proceedings of the 1987 IEEE Particle Accelerator Conference, vol. 3 of 3, pp. 1379-1382 (Mar. 16-19, 1987).
Schillo, M., et. al. “Compact Superconducting 250 MeV Proton Cyclotron for the Psi Proscan Proton Therapy Project” Cyclotrons and Their Applications 2001, Sixteenth International Conference, pp. 37-39 (2001).
Schneider et al., “Superconducting Cyclotrons,” IEEE Transactions on Magnetics, vol. MAG-11, No. 2, Mar. 1975, New York, pp. 443-446.
Schneider, R., et al., “Nevis Synchrocyclotron Conversion Program—RF System,” IEEE Transactions on Nuclear Science USA ns. 16(3) pp. 430-433 (Jun. 1969).
Schreuder, H.W. “Recent Developments in Superconducting Cyclotrons” Proceedings of the 1995 Particle Accelerator Conference, vol. 1, pp. 317-321 (May 1-5, 1995).
Schreuder, A. N., et. al. “The Non-orthogonal Fixed Beam Arrangement for the Second Proton Therapy Facility at the National Accelerator Centre” Application of Accelerators in Research and Industry, American Institute of Physics, Proceedings of the Fifteenth International Conference, Part Two, pp. 963-966 (Nov. 1998).
Schubert, J. R. “Extending the Feasibility Boundary of the Isochronous Cyclotron” Dissertation submitted to Michigan State University, 1997, Abstract lap://adsabs.harvard.edu/abs/1998PhDT . . . 147S.
Schubert, J. and Blosser, H. “Conceptual Design of a High Field Ultra-Compact Cyclotron for Nuclear Physics Research” Proceedings of the 1997 Particle Accelerator Conference, vol. 1, pp. 1060-1062 (May 12-16, 1997).
Shelaev, I.A., et. al. “Design Features of a Model Superconducting Synchrotron of JINR” Proceedings of the 12th International Conference on High-energy Accelerators, pp. 416-418 (Aug. 11-16, 1983).
Shintomi, T., et. al. “Technology and Materials for the Superconducting Super Collider (SSC) Project” [Lang.: Japanese], The Iron and Steel Institute of Japan 00211575, vol. 78, No. 8 (19920801), pp. 1305-1313, http://ci.nii.ac.jp/naid/110001493249/en/, 1992.
Sisterson, J. M. “World Wide Proton Therapy Experience in 1997” The American Insitute of Physics, Applications of Accelerators in Research and Industry, Proceedings of the Fifteenth International Conference, Part Two, pp. 959-962 (Nov. 1998).
Sisterson, J. M. “Clinical Use of Proton and Ion Beams From a World-Wide Perspective” Nuclear Instruments and Methods in Physics Research, Section B, vols. 40-41, pp. 1350-1353 (1989).
Slater, J. M., et. al. “Development of a Hospital-Based Proton Beam Treatment Center” International Journal of Radiation Oncology Biology Physics, vol. 14, No. 4, pp. 761-775 (Apr. 1988).
Slater, J. M., et. al. “Developing a Clinical Proton Accelerator Facility: Consortium-Assisted Technology Transfer” Conference Record of the 1991 IEEE Particle Accelerator Conference: Accelerator Science and Technology, vol. 1, pp. 532-536 (May 6-9 1991).
Smith, A., et. al. “The Northeast Proton Therapy Center at Massachusetts General Hospital” Journal of Brachytherapy International, pp. 137-139 (Jan. 1997).
Snyder, S. L. And Marti, F. “Central region design studies for a proposed 250 MeV proton cyclotron” Nuclear Instruments and Methods in Physics Research, Section A, vol. 355, pp. 618-623 (1995).
Soga, F. “Progress of Particle Therapy in Japan” Application of Accelerators in Research and Industry, American Institute of Physics, Sixteenth International Conference, pp. 869-872 (Nov. 2000).
Spiller, P., et. al. “The GSI Synchrotron Facility Proposal for Acceleration of High Intensity Ion and Proton Beams” Proceedings of the 2003 Particle Accelerator Conference, vol. 1, pp. 589 - 591 (May 12-16, 2003).
Superconducting Cyclotron Contract awarded by Paul Scherrer Institute (PSI), Villigen, Switzerland, http://www.accel.de/News/superconducting—cyclotron—contract.html Feb. 3, 2005.
Takada, Yoshihisa Tsukumba, “A review of rotating gantries for heavy charged particle therapy,” Symposium of Research Center for Charged Particle Therapy on Fundamental development of the charged particle therapy, Chiba (Japan), Nov. 13-14, 2001.
Takada, Y. “Conceptual Design of a Proton Rotating Gantry for Cancer Therapy” Japanese Journal of Medical Physics, vol. 15, No. 4, pp. 270-284 (1995).
Takayama, T., et al., “Compact Cyclotron for Proton Therapy,” Proceedings of the 8th Symposium on Accelerator Science and Technology, Japan (Nov. 25-27, 1991) pp. 380-382.
Teng, L. C. “The Fermilab Tevatron” Coral Gables 1981, Proceedings, Gauge Theories, Massive Neutrinos, and Proton Decay, pp. 43-62 (1981).
The Journal of Practical Pharmacy, vol. 46, No. 1, 1995, pp. 97-103. [Japanese].
“The K100 Neutron-therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k100, Feb. 2005.
“The K250 Proton therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k250.html, Feb. 2005.
“The K250 Proton-therapy Cyclotron Photo Illustration,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://wwvv.nscl.msu.edremedia/image/experimental-equipment-teclmology/250.html , Feb. 2005.
Tobias, C.A., et al., Cancer Research 18, 121 (1958).
Tom, J. L. “The Use of Compact Cyclotrons for Producing Fast Neutrons for Therapy in a Rotatable Isocentric Gantry” IEEE Transaction on Nuclear Science, vol. 26, No. 2, pp. 2294-2298 (Apr. 1979).
Non-Final Office Action with English translation from Japanese Patent Office 2010-536131, Jun. 4, 2013 (10 pages). ****JP Action first cited and filed with USPTO on Jun. 13, 2012****.
Blosser, H., et al, “Progress Toward an Experiment to Study the Effect of RF Grounding in an Internal Ion Source on Axial Oscillations of the Beam in a Cyclotron”, National Superconducting Cyclotron Laboratory, Michigan State University, Report MSUCL-760, CP600, Cyclotrons and Their Applications 2001, Sixteenth International Conference, 2001 pp. 274-276.
Cuttone, G., “Applications of a Particle Accelerators in Medical Physics” Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, V.S. Sofia, 44 Cantania, Italy, Jan. 2010 (17 pages).
Source Search Cites of U.S. And Foreign Patents/Published applications in the name of Mitsubishi Denki Kabushiki Kaisha and Containing the Keywords (Proton and Synchrocyclotron), Jan. 2005, 8 pages.
Flanz, et al., “Operation of a Cyclotron Based Proton Therapy Facility”, Massachusetts General Hospital, Boston, MA, 2010, pp. 1-4.
Krevet, et al, “Design of a Strongly Curved Superconducting Bending Magnet for a Compact Synchrotron Light Source”, Advances in Cryogenic Engineering, vol. 33, pp. 25-32, 1988.
Salzburger, H., et al., “Superconducting Synchrotron Magnets Supraleitende Synchrotronmagnete”, Siemens A.G., Erlangen (West Germany). Abteilung Technische Physik, Report No. BMFT-FB-T75-25, Oct. 1975, p. 147, Journal Announcement: GRAI7619; STAR1415, Subm-Sponsored by Bundesmin. Fuer Forsch. U. Technol. In German; English Summary.
Stanford, A.L., et al., “Method of Temperature Control in Microwave Ferroelectric Measurements,” Sperry Microwave Electronics Company, Clearwater, Florida, Sep. 19, 1960 (1 page).
Tadashi, I., et al., “Large superconducting super collider (SSC) in the planning and materials technology”, vol. 78, No. 8 (Aug. 1992), pp. 1305-1313, The Iron and Steel Institute of Japan 00211575.
“The Davis 76-Inch Isochronous Cyclotron”, Beam On: Crocker Nuclear Laboratory, University of California, Feb. 9, 2009 (1 page).
Toyoda, E., “Proton Therapy System”, Sumitomo Heavy Industries, Ltd., 2000.
Office action from Canadian Application No. 2,574,122 mailed Nov. 14, 2012 (6 pages).
Response to Chinese Patent application No. 200880125832.9 office action filed May 20, 2013, 6 pages.
Response to Office action from Canadian Application No. 2,574,122 mailed Nov. 14, 2012, filed May 13, 2013 (32 pages).
Office action from Taiwan IPO Pat. Application No. 097138794, received Feb. 8, 2012, 7 pages.
Response to Office Action for Chinese Patent Office Appln 200880125832.9 filed on Apr. 9, 2012.
Non-Final Office action mailed Jun. 14, 2013 in U.S. Appl. No. 13/618,848, 9 pgs.
Response to office action for Chinese Patent App. No. 200880125832.9 filed Oct. 22, 2012, 7 pages.
Non-Final Office Action from Japanese Patent Office 2010-536131, Jun. 4, 2013, 5 pages.
Badano et al., Proton-Ion Medical Machine Study (PIMMS) Part I, PIMMS, Jan. 1999, 238 pages.
“Beam Delivery and Properties” Journal of the ICRU, vol. 7 No. 2, 2007, 20 pages.
Peggs et al. “A Survey of Hadron Therapy Accelerator Technologies” Particle Accelerator Conference, Jun. 25-29, 2007, 7 pages.
Pedroni et al., “Latest Developments in Proton Therapy” Proceedings of EPAC, Vienna Austria, 2000, 5 pages.
Collins, et al., “The Indiana University Proton Therapy System”, Proceedings of EPAC 2006, Edinburgh, Scotland, 3 pages.
Paganetti et al., “Proton Beam Radiotherapy—The State of the Art” Springer Verlag, Heidelberg, ISBN 3-540-00321-5, Oct. 2005, 36 pages.
Pedroni, “Status of Proton Therapy: results and future trends” Paul Scherrer Institute, Division of Radiation Medicine, 5 pages, 2007.
Kimstrand, “Beam Modelling for Treatment Planning of Scanned Proton Beams” Digital Comprehensive Summaries of Uppsala dissertations from the Faculty of Medicine 330, Uppsala Universitet, 2008, 58 pages.
Marchand et al., “IBA Proton Pencil Beam Scanning: an Innovative Solution for Cancer Treatement”, Proceedings of EPAC 2000, Vienna, Austria, 3 pages.
Alonso, “Magnetically Scanned Ion Beams for Radiation Therapy” Accelerator & Fusion Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, Oct. 1988, 13 pages.
Moyers et al., “A Continuously Variable Thickness Scatterer for Proton Beams Using Self-compensating Dual Linear Wedges” Loma Linda University Medical Center, Dept. of Radiation Medicine, Loma Linda, CA, Nov. 2, 1992, 21 pages.
Chu et al., “Performance Specifications for Proton Medical Facility” , Lawrence Berkeley Laboratory, University of California, Mar. 1993, 128 pages.
Chu, “Instrumentation in Medical Systems” Accelerator and Fusion Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, May 1995, 9 pages.
Tilly et al., “Development and verification of the pulsed scanned proton beam at the Svedberg Laboratory in Uppsala”, Phys. Med. Biol. 52, 2007, pp. 2741-2754.
Bimbot, “First Studies of the Extern-al Beam from the Orsay S.C. 200 MeV” Institut de Physique Nucleaire, BP 1, Orsay, France, IEEE, 1979, pp. 1923-1926.
Cosgrove et al., “Microdosimetric Studies on the Orsay Proton Synchrocyclotron at 73 and 200 MeV”, Radiation Protection Dosimetry, vol. 70, Nos. 1-4, pp. 493-496, 1997.
Laisne et al., “The Orsay 200 MeV Synchrocyclotron” IEEE Transactions on Nuclear Science, vol. NS-26, No. 2, Apr. 1979, pp. 1919-1922.
First Office action issued by Chinese Patent Office for Appln. 200880125832.9 dated Sep. 22, 2011.
Timmer, Jan, “The ACCEL Single Room Proton Therapy Facility” ACCEL Instruments GmbH, PTCOG 45, Oct. 7-11, 2006, Houston, Texas (18 pages).
Renner, T.R., et al., “Preliminary Results of a Raster Scanning Beam Delivery System”, IEEE, 1989 (3 pages).
Pardo, J., et al., “Simulation of the Performance of the CNAO facility's Beam Delivery System”, PTCOG 46, Zibo, China, May 21, 2007 (17 pages).
“Single Room Proton Therapy Facility”, ACCEL, Oct. 2006 (1 page).
Flanz, J, et al., “Scanning Beam Technologies”, PTCOG 2008 (28 pages).
Lin, S., et al., “Principles and 10 Year Experience of the Beam Monitor System at the PSI Scanned Proton Therapy Facility”, Center for Proton Radiation Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, 2007 (21 pages).
Chinese Office Action with English translation from corresponding Chinese Application 200880125832.9 issued Sep. 29, 2013 (11 pages).
Office Action with English translation from Taiwanese application No. 097144546 issued Oct. 25, 2013 (27 pages).
Chu, W.T., et al., “Instrumentation for treatment of cancer using proton and light-ion beams”, Lawrence Berkeley Laboratory, University of California, Berkeley California 94720, Review of Scientific Instruments 64(1993) August, No. 8, Woodbury, NY, US, Received Jan. 14, 1993, accepted for publication May 24, 1993 (68 pages).
Office Action from U.S. Appl. No. 13/618,939 dated Mar. 11, 2013 (6 pages).
Response with English translation to Japanese Office filed Mar. 1, 2012 in Japanese Application No. 2007-522777 (14 pages).
Voluntary amendment filed in Canadian Application No. 2,574,122 on Jul. 26, 2010 (16 pages).
Tilly, et al., “Development and verification of the pulsed scanned proton beam at The Svedberg Laboratory in Uppsala”, Physics in Medicine and Biology, Phys. Med. Biol. 52, pp. 2741-2454, 2007.
European Search Report issued in European Application No. 08856764.9 on Jun. 4, 2014 (3 pages).
Voluntary amendment filed in Canadian Application No. 2707075 on Oct. 18, 2013 (8 pages).
Response with English translation to office action dated Oct. 25, 2013 in Taiwanese Application No. 097144546, filed on Mar. 28, 2014 (34 pages).
Response with English translation to Japanese Office action filed Mar. 1, 2012 in Japanese Application No. 2007-522777 (14 pages).
Office action with English translation from Japanese Application No. 2007-522777 mailed Oct. 4, 2011 (15 pages).
European search report from European Application No. 10175751.6 mailed Nov. 18, 2010 (8 pages).
Response to examination search report filed in European Application No. 05776532.3 on Dec. 20, 2011 (14 pages).
European communication issued in European Application No. 05776532.3 mailed Jun. 10, 2011 (10 pages).
Office action with English translation issued in Chinese Application No. 201010581384.2 on Nov. 10, 2011 (19 pages).
Volunatary amendment filed in Canadian Application No. 2,574,122 on Jul. 26, 2010 (16 pages).
Voluntary amendment filed in Canadian Application No. 2,574,122 on Nov. 5, 2010 (15 pages).
Response with English translation to Chinese Office action filed in Chinese Application No. 200880125832.9 on Dec. 16, 2013 (12 pages).
European Search Report from corresponding European application No. 088556764.9 mailed Jun. 5, 2014 (3 pages).
European Search Report from corresponding European Application No. 08856764.9 mailed Jul. 31, 2014 (11 pages).
Lin et al., “Principles and 10 Year Experience of the Beam Monitor System at the PSI Scanned Proton Therapy Facility”, Center for Proton Radiation Therapy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland, 2007, 21 pages.
Canadian Office Action from Canadian application 2574122 issued Aug. 14, 2014 (6 pages).
Related Publications (1)
Number Date Country
20090140671 A1 Jun 2009 US