The present disclosure relates to infusion pump programming analysis. Specifically, disclosed is a system and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein. At least one embodiment optionally displays an error message at the infusion pump if the manual or auto-program request is inconsistent with a drug library. At least one embodiment analyzes the differences in the manual program and the stale auto-program and saves the results of the analysis locally in the pump or remotely in a remote server for subsequent review and/or data mining.
Infusion pumps are commonplace among medical devices in modern hospitals. The pumps serve as a useful tool for delivering medication to patients, and are particularly beneficial for their great accuracy in delivering medication at a specific rate and dose. Moreover, medical facilities have enabled hospital caregivers, such as nurses, to deliver medication to patients using auto-programming features available for the infusion pump. Although auto-programming features may reduce errors made manually by hospital caregivers, medical facilities still struggle with identifying and responding to errors made when using an infusion pump. In a conventional auto-programmable pump, error codes and messages may be sent surreptitiously from the pump to other areas of the medical network, but are not immediately accessible to a hospital caregiver submitting an auto-program request at the infusion pump. Furthermore, these error codes often do not specifically describe the error to the caregiver at the pump so that the caregiver may immediately respond to the error.
In addition, known systems do not analyze potential acceptable events if the manual program entered by the caregiver while waiting for an auto-program to arrive at the infusion pump is acceptable. Known systems do not store or analyze the differences between the manual program and the auto-program to determine response times, quality of data entry by the caregiver, and do not learn from caregivers that are at the point of care and thus may purposefully enter a different infusion rate or volume. Thus, there is a need for system and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein.
The following presents a simplified summary of the present disclosure in order to provide a basic understanding of some aspects of the disclosure. This summary is not an extensive overview of the disclosure. It is not intended to identify key or critical elements of the disclosure or to delineate the scope of the disclosure. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the more detailed description provided below.
Certain aspects disclose a method, comprising: receiving, at an infusion pump, an auto-programming request, wherein the auto-programming request comprises IV drug container information, infusion pump information, and optionally patient wristband information; receiving, at the infusion pump, infusion program settings; comparing, at the infusion pump, the infusion program settings with drug library program settings, wherein the drug library program settings are provided in a drug library stored at the infusion pump; determining, at the infusion pump, that the infusion program settings are inconsistent with the drug library program settings based on the comparing; generating, at the infusion pump, an error message based on the determining; and displaying, at the infusion pump, a screen, wherein the screen comprises the error message and a recommended action.
Certain other aspects disclose a non-transitory computer-readable storage medium having computer-executable program instructions stored thereon that, when executed by a processor, cause the processor to: receive an auto-programming request, wherein the auto-programming request comprises patient wristband information, IV drug container information, infusion pump information, and optionally patient wristband information; receive infusion program settings; compare the infusion program settings with drug library program settings, wherein the drug library program settings are provided in a drug library stored at the infusion pump; determine that the infusion program settings are inconsistent with the drug library program settings based on the comparing; generate an error message based on the determining; and display a screen on the infusion pump, wherein the screen comprises the error message and a recommended action; and receive a command in response to the error message and the suggested action.
Certain other aspects disclose an apparatus comprising: a memory; a processor, wherein the processor executes computer-executable program instructions which cause the processor to: receive an auto-programming request, wherein the auto-programming request comprises patient wristband information, IV bag information, infusion pump information, and optionally patient wristband information; receive infusion program settings; compare the infusion program settings with drug library program settings, wherein the drug library program settings are provided in a drug library stored at the infusion pump; determine that the infusion program settings are inconsistent with the drug library program settings based on the comparing; generate an error message based on the determining; and display a screen at the infusion pump, wherein the screen comprises the error message and a recommended action.
One or more embodiments of the invention include a system and method that identify delayed infusion programs at an infusion pump. At least one embodiment of the invention includes a first computer including a computer network interface and at least one infusion pump. In one or more embodiments, the first computer communicates with the at least one infusion pump via the computer network interface.
By way of one or more embodiments, the first computer receives at least one infusion auto-program from a remote source. In at least one embodiment, the remote source may include hospital information system, pharmacy information system or medication administration system and the first computer may include a medication management unit (MMU), such as a server equipped with Hospira MedNet™ software. In one or more embodiments, the at least one infusion auto-program may include one or more of IV drug container information, infusion pump information, and infusion program settings.
In at least one embodiment, the first computer transmits the at least one infusion auto-program to the at least one infusion pump. In one or more embodiments, the first computer may queue the at least one infusion auto-program when the first computer is unable to transmit the at least one infusion auto-program to the at least one infusion pump. In at least one embodiment, the first computer sends the at least one stale auto-program to the at least one infusion pump when the at least one infusion pump communicates with the first computer.
According to one or more embodiments of the invention, at least one infusion pump may receive at least one manual infusion program from a caregiver. In one or more embodiments, the at least one manual infusion program may include one or more of a completed manual infusion program or a running manual infusion program. In one or more embodiments, the at least one infusion pump saves and executes the at least one manual infusion program received from the caregiver, and compares the at least one stale auto-program to the at least one manual infusion program. In at least one embodiment of the invention, the at least one manual infusion program may be manually selected by a caregiver at the pump from a plurality of protocols that are predefined and provided in a drug library stored in the memory of the at least one infusion pump. In one or more embodiments, the comparison may be based on an approximate time of infusion administration and parameter matching logic including infusion administration parameters and infusion pump operating parameters.
By way of at least one embodiment, the at least one infusion pump compares the infusion pump operating parameters and the infusion administration parameters to identify potential matches between the at least one stale auto-program and the at least one manual infusion program. In one or more embodiments, the at least one infusion pump may evaluate the potential matches using one or more configurable rules and determines if the potential matches are within a predefined tolerance. In at least one embodiment, the at least one infusion pump may continue to execute the at least one manual infusion program on the at least one infusion pump if the potential matches are within the predefined tolerance.
In one or more embodiments, the at least one infusion pump saves differences in the at least one manual infusion program and the at least one stale auto-program locally in a processor of the pump and/or remotely in the remote server. In at least one embodiment, the at least one infusion pump locally and/or remotely saves a first event alert indicating the at least one manual infusion program as an acceptable potential match of the potential matches, and locally and/or remotely saves a second event alert indicating the at least one auto-program as an un-executed program because the at least one manual infusion program is an acceptable potential match.
According to at least one embodiment of the invention, the at least one infusion pump may include an input screen, such that the caregiver may input the at least one manual infusion program via the input screen.
In one or more embodiments, the at least one infusion pump may save identification data of the caregiver locally and/or remotely in the remote server. In at least one embodiment of the invention, the at least one infusion pump compares the at least one manual infusion program from the caregiver to the at least one stale auto-program to determine a scoring of accuracy. In at least one embodiment, the scoring of accuracy may include an acceptability level of the at least one manual infusion program from the caregiver.
By way of one or more embodiments of the invention, the at least one infusion pump may generate at least one report from the comparison of the at least one manual infusion program to the at least one stale auto-program. In at least one embodiment, the report generated by the at least one infusion pump may include one or more of a time differential between completion time of the at least one manual infusion program and completion time of the at least one stale auto-program, a scoring of accuracy including an acceptability level between infusion administration parameters of the at least one manual infusion program and the at least one stale auto-program, and a rating of the caregiver.
In one or more embodiments, the at least one infusion pump may transmit the at least one manual infusion program from the caregiver to the first computer. In at least one embodiment, the first computer may save the at least one manual infusion program from the caregiver and may save identification data of the caregiver. In one or more embodiments, the first computer may compare the at least one manual infusion program from the caregiver to the at least one stale auto-program to determine a scoring of accuracy. In at least one embodiment, the scoring of accuracy may include an acceptability level of the at least one manual infusion program from the caregiver, or analyze and save the program for review if the outcome for the patient results in improved care for example.
By way of one or more embodiments of the invention, the first computer may generate at least one report from the comparison of the at least one manual infusion program to the at least one stale auto-program. In at least one embodiment, the report generated by the first computer may include one or more of a time differential between completion time of the at least one manual infusion program and completion time of the at least one stale auto-program, a scoring of accuracy including an acceptability level between infusion administration parameters of the at least one manual infusion program and the at least one stale auto-program, and a rating of the caregiver. Data mining may be utilized to determine the manual programs that result in improved outcomes, less drug use, shorter patient stay or any other parameter.
The details of these and other embodiments of the disclosure are set forth in the accompanying drawings and description below. Other features and advantages of aspects of the disclosure will be apparent from the description, drawings, and claims.
The above and other aspects, features and advantages of at least one embodiment of the invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
The following description is of the best mode presently contemplated for carrying out at least one embodiment of the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Intravenous (IV) fluid(s) and/or medication(s) 3100 in containers 3102 may be administered to a patient 3104 using the system shown in
In certain aspects, the IV fluids and/or medications 3100 in container 3102 may be provided with new or supplemental labels with a unique infusion order identifying barcode by a pharmacist according to certain hospital practices. Specifically, drug container specific identification information, such as barcoded information on the container 3102 may include patient identification information, including a patient name, patient number, medical record number for which the medication has been prescribed, medication identification information such as a medication name or solution within the IV container 3102, universal identification information which may be created or assigned at the hospital, medical device delivery information, such as the operating parameters to use in programming an infusion pump to deliver fluids and/or medication 3100 to the patient 3104, and/or medication order information, such as one or more of above information items and/or other medication order information specific to a particular patient 3104, and which may be a part of a medication order for a particular patient. The IV fluids and/or medications 3100 in barcode-identified containers 3102 may be supplied to hospitals by various vendors, with preexisting unique barcode identifiers which include medication information and other information, such as a National Disease Center (NDC) code, expiration information, drug interaction information, and the like.
In some aspects of the disclosure, the universal identification information on the container 3102 may be a unique medication order identifier that, by itself, identifies the order associated with the container. In other aspects, the identification information on the container 3102 may be a composite patient/order code that contains both a patient ID (such as a medical record number) and an order ID unique only within the context of the patient. In certain aspects, the identification information on the container 3102 may comprise a medication ID. Within a particular hospital, all medication prepared or packaged for patients by the pharmacy may contain either a composite patient/order ID or a universally unique order ID, but generally not within the same hospital. The medication ID alone option may be used only for medication that are pulled by a nurse directly from floor stock at the point of care.
The system identified in
Hospital information systems (HIS) 3110 may include one or more computers connected by cabling, interfaces and/or Ethernet connections. Alternatively wireless connections and communications may be used in whole or in part. Servers provide processing capability and memory for storage of data and various application programs or modules, including but not limited to a module for admissions-discharge-and-transfer (ADT) 3112, a computerized physician order entry (CPOE) module 3114, and a pharmacy information system (PIS) module 3116. Hospital personnel, such as admission clerks 3118, physicians 3120, and pharmacists 3122, respectively, may be authorized to access these modules through client workstations connected to the servers in order to enter data, access information, run reports, and complete other tasks.
In the embodiment shown in
In one embodiment of
In embodiment of
Upon admission to the hospital, the admission clerk 3118 or similar personnel may enter demographic information about each patient 3104 into an associated memory of the ADT computer or module 3112 of an HIS database stored in an associated memory of the HIS system 3110. Each patient 3104 may be issued a patient identification wristband, bracelet or tag 112 (or other patient identification device) that may include an identifier 3103, such as a barcode or RFID tag for example, representing a unique set of characters, typically a patient ID or medical record number, identifying the patient, sometimes referred to as patient specific identification information. The wristband, bracelet or tag 112 may also include other information, in machine readable or human-readable form, such as the name of the patient's doctor, blood type, allergies, and the like as part of the patient specific identification information.
The patient's doctor 3120 may prescribe medical treatment by entering an order into the CPOE computer terminal or module 3120 within the HIS system 3110. The order, as prescribed, may specify a start time, stop time, a range of allowable doses, physiological targets, route, and site of administration. In the case of an order for infusion of fluids or medication, the order may be written in various formats, but typically includes the patient's name, patient ID number, a unique medication order or prescription number, a medication name, medication concentration, a dose or dosage, frequency, and a time of desired delivery. This information may be entered into the memory of the CPOE computer 3124, and may be stored in a memory associated with at least the POC server or computer 3124.
The medication order may also be delivered electronically to the PIS computer 3116 in the pharmacy and may be stored in an associated memory. The pharmacist 3122 may screen the prescribed order, translate it into an order for dispensing medication, and prepare the medication or fluids with the proper additives and/or necessary diluents. The pharmacist 3122 may prepare and affix a label 102 with drug container specific identifying information 3101 to the medication or drug container 3102. In one embodiment, the label only includes in machine-readable (barcode, RFID, etc.) form a unique sequentially assigned “dispense ID number” that may be tied to or associated with the particular patient ID number and medication order number in the HIS 3110, PIS 3116 and/or POC computer 3125. In another embodiment, the label may include in machine readable form a composite identifier that includes an order ID and a patient ID, which may be a medical record number. In another embodiment, the label does not include a patient ID at all in barcode or machine readable format but includes in machine readable form only a medication ID. Another embodiment may be useful for “floor stock” items that are commonly stocked in operating rooms, emergency rooms, or on a ward for administration on short notice with ad hoc or post hoc orders. In another embodiment, the label may include in machine readable and/or human-readable form medical device specific delivery information including but not limited to the dispense ID number, patient ID, drug name, drug concentration, container volume, volume-to-be-infused (“VTBI”), rate or duration, and the like. Only two of the three variables VTBI, rate and duration may be required to be defined as the third may be calculated when the other two are known. The labeled medication may be delivered to a secure, designated staging location or mobile drug cart on the ward or floor near the patient's room or treatment area. The medication order pending dispensing or administration may be posted to a task list in the HIS system 3110 and POC system 3125 and stored in an associated memory.
The caregiver 3132 (e.g., a nurse) may use the identification receiver 32 associated with the POC client 3126 to scan the caregiver specific identification information 3133 or barcode on his/her caregiver identification badge 116 (or other caregiver identification device) and enter a password, which logs the caregiver into the system and authorizes the caregiver to access a nurse's task list from the POC system 3125 through the POC client 3126. The information within the nurse's badge 116 is sometimes referred to as the caregiver specific identification information herein. The caregiver 3132 may view from the task list that IV drugs are to be administered to certain patients 3104 in certain rooms. The caregiver 3132 obtains the necessary supplies, including medications, from the pharmacy and/or a staging area in the vicinity of the patient's room.
The caregiver 3132 may take the supplies to a patient's bedside, turn on the infusion pump 3130, verify that the network connection icon on the pump 3130 indicates a network connection (for example, a wireless connection such as Wi-Fi or the like) is present, select the appropriate clinical care area (CCA) on the pump, and mount the IV bag, container, or vial 3102 and any associated tube set as required in position relative to the patient 3104 and infusion pump 3130 for infusion. Another connection icon on the pump 3130 or pump user interface screen can indicate that a wired or wireless connection to the MMU server 3108 is present. Using the identification receiver/reader integral to the POC client PDA 3126, the caregiver 3132 may scan the barcode on the patient's identification wristband, bracelet or tag 112 or other patient identification device. A task list associated with that particular patient may appear on the PDA 3126 screen. The task list, which may also include orders to give other forms of treatment or medication by other routes (oral, topical, etc.), may be obtained from the HIS via the POC server 3124 and communicated wirelessly to the POC client PDA 3126. In one embodiment, the list is generated by matching the scanned patient ID with the patient ID for orders in memory within the POC server 3124. In another embodiment, as will be described below, the order information may be obtained by scanning the drug container specific identification information for associated orders in memory within the POC server 3124, through the following step(s).
The caregiver 3132 may scan the medication barcode label 102 containing medication container specific identification information 3101 on the medication container 3102 with the PDA 3126. The PDA 3126 may highlight the IV administration task on the task list and send the scanned medication container specific identification information, such as dispense ID information, from the medication container 3102, to the POC server 3124, which uses the medication container specific identification information, such as the dispense ID, to pull together the rest of the order details and send them back to the PDA 3126. The PDA 3126 may then display an IV Documentation Form on its screen. One side of the IV Documentation Form screen may show the order details as “ordered” and the other side may be reserved for a status report from the infusion pump 3130. The status report from the infusion pump 3130 may be transmitted to the PDA 3126 through the POC server 3124 and MMU server 3108, as will be described below. The lower portion of the IV Documentation Form screen may provide the caregiver 3132 with instructions (like to scan the infusion pump 3130 barcode) or identify whether the pump is running or stopped.
The caregiver 3132 may then scan the barcode label 92 associated with the infusion pump 3130 (or pump channel if the pump is a multi-channel pump). The barcode label 92 may contain medical device specific identification information 3131, such as the logical name and/or logical address of the device or channel. The POC system 3125 then automatically bundles the information into a program pump request containing the “order details” and in one embodiment, without further interaction with the caregiver 3132, transmits this information to the MMU server 3108.
The program pump request may include at least some of the following information (in HIS/POC system format): a Transaction ID, which may include a Logical Pump ID, a Pump Compartment, a Pump Channel ID, a Reference Device Address, a Caregiver ID, a Caregiver Name, a Patient/Person ID (HIS identifier), a Patient Name, a Patient Birth Date & Time, a Patient Gender, a Patient Weight, a Patient Height, and an Encounter ID which may include a Room, a Bed, and a Building (including Clinical Care Area or CCA). The program pump request may also include Order Information or “order details”, including an Order ID, a Start Date/Time, a Stop Date/Time, a Route of Administration, a Rate, a Duration of Infusion (Infuse Over), a Total Volume to be Infused (VTBI), an Ad Hoc Order Indicator, and Ingredients including HIS Drug Name or HIS Generic Drug Name, HIS Drug Identifier or HIS Generic Drug ID, Rx Type (Additive or Base), Strength w/units, and Volume w/units. The program pump request may further include Patient Controlled Analgesia (PCA) Orders Only information, such a PCA Mode-PCA only, Continuous only, or PCA and Continuous, a Lockout Interval (in minutes), a PCA Continuous Rate, a PCA Dose, a Loading Dose, a Dose Limit, a Dose Limit Time w/units, a Total Volume in vial or syringe, and Order Comments.
The MMU 3108 may map or convert the wide range of expressions of units allowed by the HIS system 3110 or POC system 3125 for PDA 3126 requests into the much more limited set of units allowed in the MMU 3108 and infusion pump 3130. For example, the PDA 3126 request may express “g, gm, gram, or grams” whereas the MMU 3108 and/or infusion pump 3130 may accept “grams” only. Infusion pump 3130 delivery parameters or infusion pump 3130 settings are mapped or converted from corresponding order information or “order details” of the program pump request.
The MMU 3108 may store in an associated memory a mapping or translation table that keep track of the logical ID, serial number or other identifier of an infusion pump 3130 and the corresponding current network (static or dynamic) address (Internet Protocol (IP) address) or ID of the infusion pump 3130 on the network, which in this example is a wireless network. The MMU 3108 may be able to translate or associate a given identifier of the infusion pump 3130 with its network address in the translation table and provide the network IP address to the requesting POC system 3125 or device. The MMU 3108 may also store in an associated memory and/or may look up the drug library applicable to the scanned infusion pump 3130 and may also convert the Drug ID and Strength from the pump program request into an index number of the medication at the desired strength or concentration from the drug library. The duration of the infusion may come from the POC system 3125 in hours and minutes and may be converted to just minutes for the infuser to recognize it. Volume or VTBI may be rounded to provide a value-specific and infuser-specific number of digits to the right of the decimal point. Units (of drug) may be converted to million units where appropriate. Patient weight may be converted and either rounded according to infuser-specific rules or not sent to the infuser.
Once the MMU 3108 transforms the information from the program pump request into infusion pump settings or delivery parameters and other information in a format acceptable to the infusion pump 3130, the MMU 3108 may wirelessly download a command message to the infusion pump 3130. If the infusion pump 3130 is not already equipped with the latest appropriate version of the hospital-established drug library, the MMU 3108 may also automatically download a drug library to the infusion pump 3130. The hospital-established drug library may be maintained in a separate process undertaken by the biomedical engineer or pharmacist 3122 to place limits on the programming of the infusion pump 3130, as well as other infusion pump operating parameters such as default alarm settings for air in the line, occlusion pressure, and the like. The drug library may set up acceptable ranges or hard and/or soft limits for various drug delivery parameters in the infusion pump 3130.
The MMU 3108 may also download to the infusion pump new versions, patches, or software updates of the infusion pump's internal operating system software. The infusion settings or delivery parameters and other information from the MMU 3108 may be entered into the memory of the infusion pump 3130 and the infusion pump 3130 settings may automatically populate the programming screen(s) of the infuser, just as if the caregiver 3132 had entered the information and settings manually. The infusion pump 3130 screen may populate with the name of the drug and drug concentration based on the drug library index number, patient weight (if applicable), rate, VTBI, and duration (only two of the last three variable are sent by the MMU 3108 because the pump 3130 may calculate the third from the other two). A return message of confirmation signal may be sent to the MMU 3108 by the infusion pump 3130 to indicate that the command message has been received. At this point, if necessary, the caregiver 3104 may manually enter any additional infusion settings or optional information that was not included in the command message.
The infusion pump 3130 may then prompt the caregiver 3132 to start the infusion pump 3130 by pressing the start button. When the caregiver 3132 presses the start button, a confirmation screen with the infusion settings programmed may be presented for confirmation and an auto-program acknowledgment message can be sent to the MMU server 3108 to forward without request (i.e., pushed in a near real-time manner) or provide to the POC system 3125 when requested or polled. When the caregiver 3132 presses the button to confirm, the infusion pump 3130 may begin delivering fluid according to the programmed settings. The infusion pump 3130 may send a status message to the MMU 3108 indicating that the infusion pump 3130 was successfully auto-programmed, confirmed and started by the caregiver 3132, and is now delivering fluid. This information may also be displayed at the infusion pump. The MMU 3108 may continue to receive logs and status messages wirelessly from the infusion pump 3130 periodically as the infusion progresses or when alarms occur.
The MMU 3108 may report a portion of the initial status message to the PDA 3126 through the POC server 3124 (in MMU format) to indicate that the infusion pump 3130 has been auto-programmed and the caregiver 3132 has confirmed the settings. The MMU 3108 may communicate to the POC system 3125 and/or at the infusion pump 3130 the actual Rate, VTBI and Duration. A notation at the bottom of the PDA screen and/or the infusion pump may indicate that the infusion pump 3130 is running. The infusion pump 3130 may compare and give a visual, audio or other type of affirmative signal if the pump information matches or acceptably corresponds with the ordered information. An initial determination of whether the pump information matches the order may be done in the MMU 3108 and communicated to the PDA 3126 through the POC server 3124. Alternatively, the POC server 3124 or the infusion pump 3130 may make the necessary comparisons. If the pump information does not match the order, the infusion pump 3130 at the display 88 may output a visual, audio or other type of negative signal, which may include an error message.
At least one embodiment of the invention includes a first computer, such as a medication management unit (MMU) 3108, including a computer network interface and the at least one infusion pump 3130. In one or more embodiments, the first computer communicates with the at least one infusion pump 3130 via the computer network interface.
By way of one or more embodiments, the first computer receives at least one infusion auto-program from a remote source. In at least one embodiment, the remote source may include a hospital information system, pharmacy information system or medication administration system and the first computer may include the medication management unit (MMU) 3108, such as a server equipped with Hospira MedNet™ software. In one or more embodiments, the at least one infusion auto-program may include one or more of IV drug container information, infusion pump information, and infusion program settings.
In at least one embodiment, the first computer transmits the at least one infusion auto-program to the at least one infusion pump 3130. In one or more embodiments, the first computer may queue the at least one infusion auto-program when the first computer is unable to transmit the at least one infusion auto-program to the at least one infusion pump 3130. In at least one embodiment, the first computer sends the at least one stale auto-program to the at least one infusion pump 3130 when the at least one infusion pump 3130 communicates with the first computer.
According to one or more embodiments of the invention, the at least one infusion pump 3130 may receive at least one manual infusion program from the at least one caregiver 3132. In one or more embodiments, the at least one manual infusion program may include one or more of a completed manual infusion program or a running manual infusion program.
The caregiver 3132 may be prompted to review and press a save button on the infusion pump 3130 if the order has been begun as desired or any variations are acceptable. The MMU 3108 may receive status, event, differences and variation information from the infusion pump 3130 and pass such information to the POC system 3125. In a separate subsequent step, the nurse may electronically sign the record and presses a send button on the POC client PDA 3126 to send the information to the patient's electronic medication record (EMR) or medication administration record (MAR).
Referring now to
In certain aspects of the disclosure, prior to beginning the workflow illustrated in
As shown in
At step 203, the caregiver 3132 may use the POC client 3126 to scan the identifier 3101 on the identification label 102 on the IV bag 3102. The container ID 3101 may comprise machine-readable indicia such as a bar code, RFID tag, or the like. The container ID 3101 may be a universally unique order ID so that the HIS 3110 or POC system 3125 may retrieve information about the association medication order without having to scan the patient ID on the patient wristband, bracelet, or tag 112 (or other patient identification device) or rely on such patient ID information for comparison purposes. Alternatively, the container ID may be a composite ID that includes patient ID or some portion thereof and an order ID related to that particular patient. Alternatively, the container ID may be an absolute or unique pharmacy order identifier that may be generated by the order entry or pharmacy information systems. Alternatively, for commonly used containers that are stocked on the ward or patient care floor, like dextrose, saline or other solutions, the container ID may be a medication ID that includes only medication-specific information, including but not limited to medication name, concentration (if applicable) and volume.
At step 205, the caregiver 3132 may use the POC client 3126 to scan the barcode label 92 or RFID tag on the infusion pump 3130 or a channel of the pump to obtain medical device specific identification information 3131 on the identifier. Thus, the POC client 3126 may receive or capture the pump ID or identifier information. Steps 201, 203, and 205 may be performed in any order. For instance, the caregiver 3132 may perform step 203 first, followed by steps 201 and 205, or may perform step 205 first, followed by steps 203 and 201, and the like.
As shown in
Based on the received scanned information, the EMR/BCMA within the HIS 3110 may look up patient demographic information it received from the Admission, Discharge and Transfer (ADT) system 3112 and an infusion order for the patient or medication it received from the Pharmacy Information System (PIS) 3116. Software in POC system 3125 may then perform a variety of safety checks, comparisons or matching functions to ensure that the right drug is administered to the right patient, at the right rate, in the right dose, at the right time, via the right route, and by an authorized or right caregiver, etc. as is conventional in the BCMA art. The BCMA/POC system 3125 then transmits an auto-programming message containing infusion pump settings to the MMU 3108.
At step 209, based upon the pump identification information contained in the auto-programming message, the MMU 3108 may then look up the infusion pump network location to determine the pump that is targeted to receive the infusion pump settings contained in the auto-programming message.
At step 211, the MMU 3108 may send the infusion pump settings to the infusion pump 3130 using the pump's IP address. At step 213, the infusion pump 3130 may receive the infusion pump setting and then verify the infusion program settings against the installed drug library. In other words, the infusion pump 3130 may ensure that the received program settings for the patient 3104 are consistent with the information provided in the drug library. Steps 215, 217, and 219 shown in
As shown in
At step 217, the caregiver 3132 may review and verify that the displayed infusion program settings were correctly populated. The caregiver 3132, in some aspects, may be required to select a button at the infusion pump 3130 in order to indicate confirmation that the infusion program settings were correctly populated. In response, the infusion pump 3130 may display a start button on screen 88 that enables the caregiver 3132 to start the infusion in accordance with the final confirmed programmed pump settings. The caregiver 3132 may select the start button to start the infusion program at step 219.
Referring now to
At step 315, infusion pump 3130 may display an error message. The error message may be reported to the MMU 3108 at step 315a. The error message may be relayed and reported to the EMR/POC system 3125 via the MMU server 3108 at step 315b. Alternative, the error message can be reported directly from the pump 3130 to the EMR/POC system 3125 through any wired or wireless networks available in the hospital. Most importantly, the error message may be displayed at or on the display screen 88 of infusion pump 3130. Thus, even if the caregiver has limited or no access to the POC client or other computer systems within the hospital at the time, they will be advised of auto-programming errors at the pump 3130. As will be discussed in greater detail below, the error message may notify the caregiver 3132 of the rejection of the auto-programming request. The error message may comprise an error code and a brief description of the error cause. The error message may further comprise suggested actions for the caregiver 3132 to perform in response to the error message. For example, if the keypad is locked, the infusion pump 3130 may output an error message KLO00017 stating “The auto-program is not valid because the keypad is locked.” The infusion pump 3130 may also display, on the same screen, a suggested or recommended action, e.g., “Unlock the keypad”. A table of errors, including exemplary code numbers, descriptions and recommended actions are included below in Table 1.
At step 317, the caregiver 3132 may review and respond to the error message displayed at the infusion pump 3130. The caregiver 3132 may provide a response that comprises at least one of a modification to the auto-programming request, performing the actions suggested at the pump 3130, and/or rejecting or clearing the error message and suggested action. Based on the response to the error message received at step 317, pump 3130 may perform an operation at step 319. For example, after displaying the error message provided above and suggested action “Unlock the keypad”, infusion pump 3130 may receive a response from the caregiver 3132 that the keypad has been unlocked. The caregiver's action of unlocking the keypad may itself serve as the response to the error message at step 317. Thereafter, the operation performed at step 319 may comprise the infusion pump starting the infusion program similar to or the same as step 219 illustrated in
In some aspects, the caregiver 3132 may reject or override the error message displayed at step 315. The caregiver 3132 may override the error message at step 317 in cases of soft limit violations. Some limit violations may require entry of a special override code or input of a code from a second caregiver or supervisory personnel. In another aspect of the invention, the infusion pump 3130 may display an error message that a pump channel is “Already in Use”. The caregiver 3132 may investigate and determine that the pump is not in use. The caregiver 3132 may send a response rejecting the error message and indicating that the pump channel is not currently in use. The pump 3130 may then return to step 213 to verify infusion program settings against the installed drug library or may automatically start the infusion program at step 219.
In certain aspects, the caregiver 3132 may not input a response into infusion pump 3130 within a predetermined time. The lack of a response within this predetermined time may itself server as a response to error message 317. Specifically, the infusion pump 3130 may be configured (for example, by the manufacturer or the hospital via the user customized drug library configuration settings downloaded to the pump by the MMU) to timeout after a predetermined time. The predetermined time may be about 15 seconds, 30 seconds, 35 seconds or any other amount of time. If the infusion pump 3130 does not receive a response within the timeout period (or predetermined time), the infusion pump 3130 may reject the auto-program and display a previous or home screen at display screen 88. In this case, the operation performed at step 319 may comprise clearing the error message and displaying a previous or home screen at the pump 3130.
In one or more embodiments, the at least one infusion pump 3130 saves and executes the at least one manual infusion program received from the at least one caregiver 3132. At step 321, in at least one embodiment, the at least one infusion pump 3130 compares the at least one stale auto-program to the at least one manual infusion program that has been completed or is running.
In at least one embodiment of the invention, the at least one manual infusion program may be entered at the infusion pump and/or accessed as provided in a library stored at the at least one infusion pump 3130. In one or more embodiments, the comparison may be based on an approximate time of infusion administration and parameter matching logic including infusion administration parameters and infusion pump operating parameters, for example volume to be infused, rate, or any other characteristic available in the system.
By way of at least one embodiment, the at least one infusion pump compares the infusion pump operating parameters and the infusion administration parameters to identify potential matches between the at least one stale auto-program and the at least one manual infusion program. In one or more embodiments, the at least one infusion pump 3130 may evaluate the potential matches using one or more configurable rules and determines if the potential matches are within a predefined tolerance. In at least one embodiment, the at least one infusion pump 3130 may continue to execute the at least one manual infusion program on the at least one infusion pump 3130 if the potential matches are within the predefined tolerance. Any type of logic including neural networks, rule based, threshold or range based may be utilized to determine whether an acceptable manual program has executed or is executing when compared with the stale auto-program.
At step 323, in one or more embodiments, the at least one infusion pump 3130 saves differences in the at least one manual infusion program and the at least one stale auto-program in the remote server or MMU 3108 for later analysis and/or data mining. This may allow the management system to determine which caregivers are accurate or even may be utilized to determine whether better outcomes of care result from a slightly different, yet acceptable manual program when compared to the auto-program as well as determine whether cost saving may be made while maintaining a given level of service, for example with shorter patient stays or less drug volume used overall. Any other large data analysis is in keeping with the invention when comparing manual programs and stale auto-programs and any parameters associated with the patient, drug, volume to be infused, rate, or any patient characteristics such as age or time of stay or any other parameter.
In at least one embodiment, the at least one infusion pump 3130 remotely saves a first event alert indicating the at least one manual infusion program as an acceptable potential match of the potential matches, and remotely saves a second event alert indicating the at least one auto-program as an un-executed program because the at least one manual infusion program is an acceptable potential match.
At step 325, in one or more embodiments, the at least one infusion pump 3130 may optionally notify the at least one caregiver 3132 of the acceptable at least one manual infusion program using the first event alert, and optionally notify the at least one caregiver 3132 of the at least one auto-program as an un-executed program using the second event alert.
According to at least one embodiment of the invention, the at least one infusion pump 3130 may include a graphical user interface comprising keys and a display screen 88 or an input/output touch screen 88 on the at least one infusion pump, such that the at least one caregiver 3132 may input the at least one manual infusion program via the graphical user interface.
In one or more embodiments, the at least one infusion pump 3130 may save identification data of the at least caregiver 3132. In at least one embodiment of the invention, the at least one infusion pump 3130 compares the at least one manual infusion program from the at least one caregiver 3132 to the at least one stale auto-program to determine a scoring of accuracy. In at least one embodiment, the scoring of accuracy may include an acceptability level of the at least one manual infusion program from the at least one caregiver.
By way of one or more embodiments of the invention, the at least one infusion pump 3130 may generate at least one report from the comparison of the at least one manual infusion program to the at least one stale auto-program. In at least one embodiment, the report generated by the at least one infusion pump 3130 may include one or more of a time differential between completion time of the at least one manual infusion program and completion time of the at least one stale auto-program, a scoring of accuracy including an acceptability level between infusion administration parameters of the at least one manual infusion program and the at least one stale auto-program, and a rating of the at least one caregiver 3132.
In at least one embodiment of the invention, the accuracy/effectiveness history or rating of the at least one caregiver 3132 may determine if the at least one manual infusion program received from said at least one caregiver 3132 is acceptable and/or more accurate or effective than the at least one auto-program. The at least one stale auto-program is aggregated and compared using matching logic (either statically residing on the pump or dynamically provided with the auto-program) to the at least one manual infusion program received from the at least one caregiver 3132 at the at least one infusion pump 3130. This comparison generates an auto-program compliance information/rating or contributes to an overall auto-program compliance information/rating for the at least one caregiver 3132. The at least one infusion pump 3130 would subsequently display the at least one caregiver 3132 compliance information (rating) for the at least one caregiver 3132 at the next attempt to auto-program the infusion pump. Auto-program compliance information is saved in a memory of the pump and, whether or not displayed on the pump, can be subsequently transmitted or relayed to the first computer, another medical device or infusion pump or a remote computer for storage, analysis, display or use.
In one or more embodiments, the at least one infusion pump 3130 may transmit the at least one manual infusion program from the at least one caregiver 3132 to the first computer. In at least one embodiment, the first computer may save the at least one manual infusion program from the at least one caregiver 3132 and may save identification data of the at least one caregiver 3132. In one or more embodiments, the first computer may compare the at least one manual infusion program from the at least one caregiver 3132 to the at least one stale auto-program to determine a scoring of accuracy or effectiveness. In at least one embodiment, the scoring of accuracy may include an acceptability level of the at least one manual infusion program from the at least one caregiver 3132.
By way of one or more embodiments of the invention, the first computer may generate at least one report from the comparison of the at least one manual infusion program to the at least one stale auto-program. In at least one embodiment, the report generated by the first computer may include one or more of a time differential between completion time of the at least one manual infusion program and completion time of the at least one stale auto-program, a scoring of accuracy including an acceptability level between infusion administration parameters of the at least one manual infusion program and the at least one stale auto-program, and a rating of the at least one caregiver 3132.
At this point, infusion pump 3130 may display screen 501. Display screen 501 may be referred herein as the A/B screen or home screen. As shown in
The screens displayed at the infusion pump 3130 may include other indicators, such as a battery life indicator 563 (which may indicate the amount of battery life remaining for the pump 3130), a wireless signal indicator 565 (which may indicate the strength of the wireless signal connection at pump 3130), and a two-way arrow 561 (which may indicate connection between the MMU and the pump and thus the capability of pump 3130 to upload and download information to and from the MMU server 3108).
Screens, as shown in
At step 551, infusion pump 3130 may determine whether an auto-programming request has been received. In other words, infusion pump 3130 may determine whether the steps described with respect to
At step 553, the infusion pump 3130 may determine whether it needs to change the auto-program drug order to “No Drug Selected”. The analysis performed at step 553 is an example of the various analyses that may be performed when the infusion pump 3130 verifies the infusion program settings against the installed drug library at step 213. Thus, as the pump 3130 performs its verification step 213, one of the plurality of verification actions it may perform may include determining whether the medication selected by caregiver 3132 is stored in the drug library for the selected CCA. For example, caregiver 3132 may select the CCA “ICU” prior to auto-programming. Then the caregiver 3132 may select or scan medication using POC client 3126 at step 203. After pump 3130 receives the auto-programming request for the ICU CCA, pump 3130 may verify the program settings against installed settings stored in its drug library at step 213. One of the verification steps may include determining whether the selected or scanned medication is included among the medications stored in the drug library for the ICU CCA. In other words, a processor of the pump 3130 makes a comparison between the drug name, concentration and dosing units provided in the auto-programming request to the same parameters in the drug library for the particular clinical care area selected or active on the pump. If, in the drug library, the selected medication is not among the listed medications available for the ICU CCA, pump 3130 may be programmed to output “No Drug Selected” as a substitution alert error message. At step 553, if the pump 3130 determines that it must change the order to “No Drug Selected”, it may display an error message such as screen 503.
The error message may comprise a brief description of the error so that the caregiver 3132 may be able to quickly determine the cause of the error at the pump 3130 and perform subsequent actions in response to the error. In the example provided at screen 503, processor of the pump 3130 may perform a drug name, concentration, dosing units, or drug ID comparison against the drug list in the drug library on the pump for the selected clinical care area or CCA and display at display screen 88 the error message “The Auto-Program contains a medication which is not available in the CCA (ICU)” and “For this order the medication ‘No Drug Selected’ has been substituted”. The pump 3130 may display a “Substitution Alert” in the status region or elsewhere on screen 503 to notify caregiver 3132 that an error has occurred. The error message may then notify the caregiver 3132 of the precise cause of the error (here, the selected CCA and the fact that the auto-program contained a medication that, pursuant to the hospital's best practices as set forth in the customizable drug library, is not planned to be available in the CCA). The error message may also, in some aspects display the actions taken by the pump 3130 in response to the error (here, “No Drug Selected” has been substituted for the medication by the processor of the pump because it found no match for the medication in the drug library entries for the selected CCA).
Also shown in the message region or elsewhere on the screen 503 is the suggested action “Continue with no drug selected or Reject program”. The suggested action may notify caregiver 3132 that s/he should either select the input option “Continue” in order to continue the auto-program request with no drug selected substituted for the medication, or select the input option “Reject” to cancel the auto-program request. The input options may be displayed immediately below the suggested action, as shown in screen 503. If the caregiver 3132 selects the “Reject” option, pump 3130 may deny the auto-program request and display a previous screen such as home screen 501. A message concerning the rejection of the auto-program request may be sent to the MMU server 3108, which then relays the message to the POC system 3125. In certain aspects, screen 503 may be displayed for a predetermined amount of time, such as about 30 seconds. If no response or input option is selected within that predetermined amount of time, pump 3130 may automatically reject the auto-programming request and display screen 501. If, instead, the caregiver 3132 selects the “Continue” input option, pump 3130 may display screen 505 where the rest of the auto-programmed delivery information is pre-populated on the pump screen 88 in the working region 88B or elsewhere as shown on screen 505. At screen 505, caregiver 3132 may edit the delivery information, such as rate, VTBI, and duration. Screen 505 may continue to display “No Drug Selected” in or near the status region 88A at the top of the screen and a suggested action “Enter value using keypad” in the message region 88C at the lower portion of the screen 88. Pump 3130 may also highlight the field that may have its value edited (here, e.g., “500” for VTBI in mL) or do so when activated by touch or other keys. The caregiver 3132 may enter these values on the keypad 401 provided at the pump 3130, as shown in
At step 555, pump 3130 may determine if the start button 403 (
Screen 603 may display “Rejection Alert” in the status region or another region of the screen to notify caregiver 3132 of an error. Screen 603 may also display the error message, such as “The Auto-Program received contained a medication which is different from what is delivering on the programmed line” in the working region or another region. Thus, the caregiver 3132 may be notified at the pump 3130 that there has been an error and the cause of the error. In some aspects, this error message may also display the medication that is being delivered on the channel, and/or other information such as the concentration and or dosing units of the medication order. For example, the error message at screen 603 may display “The Auto-Program received contained a medication [Morphine] which is different from [Dopamine] that is delivering on the programmed line” or “The Auto-Program received contained a medication which is different from the [Dopamine 400 mg/250 mL] that is delivering on the programmed line”. Screen 603 may also display the suggested action for this error message in the message region or another region, in this case “Reject this order now, or wait for automatic rejection?” Pump 3130 may provide one or more one input options at screen 603, e.g., an option to reject the auto-program order. Caregiver 3132 may select the “Reject” option to return to screen 509. Alternatively, caregiver 3132 may not select an input option at all, in which case pump 3130 may automatically reject the auto-program order after the timeout period, such as about 30 seconds.
If, at step 653, pump 3130 determines that the medication in the auto-programming request is the same or equivalent as the medication currently pumping on channel A, or that the at least one manual infusion program is acceptable, pump 3130 may display screen 605. Similar to screen 505, discussed above, screen 605 may enable a caregiver 3132 to modify the settings of the delivery information values, such as concentration, rate, VTBI, and duration. Also shown at screen 605 is an input option “Delay Start”. A caregiver 3132 may select the “Delay Start” input option in order to select a later time in which to begin pumping of the auto-program medication. Alternatively, caregiver 3132 may select the “Return to A/B” input option to return to screen 509.
At step 655, pump 3130 determines if the start button 403 (as shown in
Some other examples of error messages that may be displayed by the pump 3130, for example at screens such as screens 503 and 603, will now be discussed in further detail. In certain aspects, pump 3130 may determine an error at step 213 without any outside intervention from, for example, MMU, HIS, BCMA, EMR, and the POC system. In some cases, pump 3130 may allow an auto-programming order to continue after displaying an error message. Pump 3130 may also notify parties, such as MMU, HIS, BCMA, EMR, and the POC system of an error and the error message that was displayed. Those of ordinary skill in the art will appreciate that the error messages disclosed herein are exemplary, and may be modified without veering from the scope of this disclosure.
Pump 3130 may display an error message such as associated with error code NTA00003 in Table 1 above, “The auto-program received contains duration information, and you cannot titrate the duration of a delivery with this dosing unit”. This error message will be displayed when the infuser receives an auto-program message with a titrated duration value and is for a medication that normally has time-based alternative dosing units. For example, if the drug involved in the program has time-based alternative dosing units the caregiver is not allowed to change the duration because such an action would change the associated dose. Examples include but are not limited to vasoactive drugs like nitroglycerin or Dopamine dosed in mcg/kg/min, anti-coagulants like Heparin dosed in units/kg/hour, diabetes control drugs like Insulin dosed in Units/kg/day, and oncolytic drugs like Taxol dosed in mg/m2/day. The particular drugs or categories of drugs for which this type error is generated can be established by the hospital according to their preferences in their user customizable drug library. On the same screen, pump 3130 may display the suggested action, e.g., “Press OK now, or wait for this screen to automatically dismiss”. After selection of the “OK” input option or waiting for the screen to automatically dismiss after the timeout period, pump 3130 may display the home A/B screen.
In some aspects of the disclosure, pump 3130 may display an error message such as “The auto-program received did not contain all required information”. Generally, the auto-programming message should include at a minimum the following information: pump channel, drug name and concentration. If one or more of these elements, parameters or settings is missing, the above-mentioned error message is displayed. On the same screen, pump 3130 may display the suggested action, e.g., “Press OK now, or wait for this screen to automatically dismiss”. As discussed above, after selection of the “OK” input option or waiting for the screen to automatically dismiss after the timeout period, pump 3130 may display the home A/B screen.
Pump 3130 may be programmed to generate and display an error message such as “The auto-program received contains a value that exceeds a system limit. Or the values cause a calculated parameter to exceed a system limit.” One or more system limits may be hard-coded into pump 3130 and/or included in the drug library. The system limits may pertain to a rate. For example, the pump 3130 may be able to pump at a maximum rate of 999 mL/hr. If an auto-program request is received at a rate greater than 999 mL/hr., for example say 2000 mL/hr., pump 3130 may display the error message. Similar system limits may exist for other information such as duration, VTBI, and the like. Along with the error message, pump 3130 may display the suggested action, e.g., “Press OK now, or wait for this screen to automatically dismiss”.
In some instances, pump 3130 may display an error message such as “The auto-program is for a line that contains unconfirmed programming data”. This might happen if the caregiver got called away on an emergency to help another patient or co-worker before confirming the programming data. Pump 3130 may also display the corresponding suggested action “Resubmit the auto-program. All unconfirmed data will be cleared.” Thus, in response to the error message, caregiver 3132 may either resubmit the auto-program or reject the auto-program. If the user elects to resubmit the auto-program, all of the unconfirmed data previously entered will be cleared and thereafter replaced with the data from the resubmitted auto-program. If the caregiver rejects the auto-program, the unconfirmed data will be maintained and the user is taken to the last input screen used or the home A/B screen.
Pump 3130 may generate an error message at screen 603 stating “The auto-program is rejected because of a partially programmed line.” A line is partially programmed when a drug is selected for the line and the line program has not been cleared or confirmed. A pump with an installed cassette was started. The CCA was selected. A new IV bag containing the same or different drug was hung. The user manually selects one of the lines and a medication on the pump. The user then switches part way through the programming sequence to the auto-program process, wherein the barcode on the drug container is scanned and the order sent. The standard auto-program for line A is sent to the infuser, which rejects the auto-program because a manual program was already partially input. On the same screen, the suggested course of action is displayed: “Press [Clear] and resubmit the auto-program. All unconfirmed data will be cleared.”
Caregiver 3132 may select a “Standby” input option at pump 3130 for a particular channel. The standby input option is selected to suspend for an indefinite time, up to 72 hours, an infusion that has already been programmed on a particular channel or infusion line. The standby option can be used prior to an infusion being started if the caregiver is unsure of the time the infusion should be started. For example, the caregiver can set up the pump and it can be programmed, but the patient may not yet be present at their bed. However, unlike the delayed start option which inserts a predetermined delay prior to the start of a programmed infusion, the standby option also can be selected during the execution of a programmed infusion. It would be undesirable in most cases for a previously programmed and started infusion program to be automatically supplanted by a new set of infusion pump settings through an auto-programming message or request. Thus, the pump 3130 may not accept an auto-program request for a channel or line that is already in standby mode. When a request is received for a line in standby, pump 3130 may display an error message such as “The auto-program is for a line which is in Standby”. Similarly, pump 3130 may not accept an auto-program request for a channel or line that is “Delay Start” mode. As discussed above, “Delay Start” may enable a caregiver 3132 to input auto-program settings to be started automatically at a later time (X number of minutes or hours later), wherein the later time may be predetermined, known and selected by the caregiver 3132. If pump 3130 receives a request for auto-program on a line which is in “Delay Start” mode, pump 3130 may display an error message such as “The auto program is for a line which is in Delay Start”. For both the Standby and Delay Start error messages, pump 3130 may display a suggested action, e.g., “Clear this line and resubmit the auto-program”. This suggested action may advise the caregiver 3132 to clear the line that is in either “Standby” or “Delay Start” mode and then resubmit the auto-program request.
Pump 3130 may display the error message “The auto-program is for a line that has an active alarm that stops or prevents delivery, thus the auto-program is not valid in this alarm condition.” Pump 3130 may be capable of outputting alarms for various situations or conditions. For example, the pump 3130 battery may be almost dead and not plugged in to a power source. In another example, a high priority alarm may be in progress. During these situations, pump 3130 may not accept an auto-program request and, along with the error message, may display the suggested action “Clear the alarm condition and resubmit the auto-program”. Clearing the alarm may comprise eliminating the condition causing the alarm (such as replacing or charging the pump battery).
Because of the unique concurrent delivery capabilities of the PLUM™ infusion pump, two different medications can be delivered from two different source containers upstream of the pump, effectively at the same time through a single line to the patient downstream of the pump. The pump can also switch back and forth from delivering medication from lines A and B respectively, and vice versa, making separate but coordinated “piggyback” delivery possible and convenient. However, this can lead to some rather complex scenarios from an auto-programming perspective. Many things can go wrong and lead to errors, including failures, unintended consequences or problems. Previously many of these errors would not have been communicated to the caregiver at the pump or on its display screen. Recall from above that the pump may have a rate limit of 999 mL/hr. The pump may have certain low flow limitations too. Thus, in certain aspects, pump 3130 may display an error message such as “The auto-program is not valid due to concurrency violation. Delivery A+B greater than 500 mL/hr or less than 0.5 mL/hr for each line.” Although the pump is physically capable of 999 mL/hr. through a single line, when concurrent delivery is taking place through two lines (A and B) only 500 mL/hr. is permitted for each of the lines A and B. Otherwise, if each line were to be programmed to deliver 500 mL/hr. or more, the pump system rate limit of 999 mL/hr. would be exceeded. Also, each line must also be programmed to deliver at least 0.5 mL/hr. or more for proper pump operation. As discussed above, on the same screen, pump 3130 may display the suggested action, e.g., “Press OK now, or wait for this screen to automatically dismiss”. For greater clarity to the pump user, the specific cause for the concurrency violation could be specified. For example, the error message could read “Delivery of A+B greater than 500 mL/hr” or “Delivery A+B less than 0.5 mL/hr” depending upon the specific cause. Concurrency errors can result from various situations as well. For example, an auto-program can be rejected for a concurrency violation when a new IV bag or container or rate change is requested for Line A or Line B when B is running in concurrent, which would result in a concurrency violation, i.e., delivery greater than 500 mL/hr. for the sum of the two lines or less than 0.5 mL/hr. on each line. Alternatively a concurrency violation can happen on the first attempt to program an initial concurrent delivery on Line B. The error messages can be tailored to more clearly indicate the specific situation that caused the rejection of the auto-program.
In some aspects, infusion pump 3130 may be configured to pump primary medications through line A and secondary medication through line B in a separate but coordinated piggyback delivery in series. In some cases, an auto-program request for line B may cause an interruption to the pumping medication in line A. This may be undesirable, particularly when the medication pumping in line A is vital such as critical medications including but not limited to Dopamine, Heparin or Insulin. Thus, when the infusion pump 3130 receives an auto-program for line B in step 651, the infusion pump 3130 may at step 653 make a determination whether a medication on that or another line is interruptible. If the answer is affirmative, then the process can continue to screen 605, step 655, etc. If the answer is negative, the pump 3130 can display an error message at screen 603 such as “The auto-program is not valid for line B. The medication delivering for line A cannot be interrupted.” Similarly, infusion pump 3130 may display an error message such as “The auto-program is not valid for line A. The medication in the Auto-Program is not interruptible and Line B is delivering a Piggyback infusion.” Correspondingly, pump 3130 may display the suggested action “Press OK now, or wait for this screen to automatically dismiss”.
Pump 3130 may display the same suggested action on a screen with an error message such as “The auto-program is not valid because the weight of the patient in the Auto-Program does not match the weight of the patient on the program delivering on the other line.” The infusion pump 3130 may generate this or similar error message when the weight or expected weight range entered for a patient is inconsistent among the multiple lines. For instance, a nurse may enter a weight of 75 kg for a patient on line A and then a weight of 7.5 kg for the same patient on line B. These inconsistent weights may cause infusion pump 3130 to display the error message. Similarly, pump 3130 may display an error message such as “The auto-program is not valid because the height of the patient in the auto-program does not match the height of the patient on the program delivering on the other line.” In this case, pump 3130 may ensure that the height or expected height range of the patient receiving medication is consistent on line A and line B. Similarly, pump 3130 may display an error message such as “The auto-program is not valid because the BSA in the auto-program does not match the BSA on the program delivering on the other line.” BSA means body surface area and is usually estimated or calculated based on a patient's body mass and height. BSA is also sometimes expressed as BMI or body mass index and some drugs are dosed on this basis.
As discussed previously, a caregiver 3132 may be required to enter a CCA prior to programming the pump 3130 manually or submitting an auto-program request. If no CCA is received or a CCA not stored in the drug library is received, infusion pump 3130 may display an error message such as “The Auto-Program is not valid because a CCA has not been selected on the infuser.” Pump 3130 may also suggest the action, e.g., “Select a CCA and resubmit the Auto-Program”.
Pump 3130 may comprise a lock to the keypad shown in
The remaining error messages discussed below may be displayed in conjunction with the suggested action, e.g., “Press OK now, or wait for this screen to automatically dismiss”. As discussed above, after selection of the “OK” input option or waiting for the screen to automatically dismiss after the timeout period, pump 3130 may display the home A/B screen.
Pump 3130 may, in some cases, generate and display an error message such as “The Auto-Program is not valid because the received parameters will not result in a valid dose.” When two out of the three parameters or variables volume, (flow) rate and duration are provided to the pump 3130, its processor can calculate a dose. Normally when a certain dosage is being targeted or ordered by the doctor, it is based upon the weight of the patient. The drug may be available as an amount or mass in a given volume of diluent such as 5 mg/1000 mL IV container. When there is no combination of values of flow rate and duration that will result in a valid dose, this error message is generated.
Infusion pump 3130 may display an error message such as “The auto-program is not valid because the Rate cannot be titrated when VTBI is 0.” This error message may be displayed when a caregiver 3132 enters a rate for a medication to be pumped while also entering a total volume of the medication to be infused of 0 mL. Pump 3130 may therefore require a VTBI greater than 0. The auto-program might be a change to a currently running program—a “titration.” However, if there is no VTBI left to infuse in the program, the rate or other parameters cannot effectively be changed because there is no volume left to be infused. Similarly, infusion pump 3130 may display an error message such as “The auto-program is not valid because it is a titration for a line that has no confirmed program.” A titration is by definition a change in rate, duration or VTBI in a currently running or already programmed infusion. Thus, you cannot auto-program a titration or change for a line or pump channel until after it has a prior program that has been confirmed.
In certain aspects, pump 3130 may display an error message such as “The auto-program is not valid for a line with a Multistep or Loading dose program.” If the line is busy with a multistep infusion or loading dose program, that program must be completed or cleared before any new auto-program request can be received and executed.
Infusion pump 3130 may display an error message such as “The Auto-Program was rejected by Hospira MedNet due to incomplete or corrupt data.” This might be highlighted by a checksum failure or handshake failure. Part of the auto-program message may have been lost or corrupted for one reason or another.
Pump 3130 may display an error message such as “The Auto-Program for this infuser was rejected by Hospira MedNet™ due to drug library incompatibility.” The drug library identified in the device manifest for the auto-program message is not recognized. In other words, the active drug library mentioned in the auto-program manifest does not match what the MMU server 3108 and/or the pump itself thinks is the appropriate drug library that is in the pump. For example, the drug library has an identifier (perhaps an alphanumerical string) that may include the pump type and version of the drug library. For some reason, the drug library version may get out of synch between the infusion pump and the MMU such that drug library identifier in the auto-program request does match the drug library that is currently in the infusion pump.
Step 709 may comprise generating an error message based on the determining that the infusion program settings are inconsistent with the drug library settings. Step 711 may comprise displaying a screen, wherein the screen comprises the error message and a suggested action. In some aspects, other steps may be performed as discussed above in connection with
In at least one embodiment of the invention, if the infusion program settings are consistent with the drug library program settings based on the comparing, at step 713 the at least one infusion pump 3130 compares the at least one stale auto-program received to the at least one completed or running manual infusion program based on an approximate time of infusion administration and parameter matching logic including infusion administration parameters and infusion pump operating parameters, to determine if the at least one previously completed or running manual infusion program is acceptable based on the potential matches as discussed previously.
At step 715, in one or more embodiments, the at least one infusion pump 3130 saves the acceptably completed or running manual infusion programs for later analysis. In at least one embodiment, at step 715, the at least one infusion pump may optionally notify the at least one caregiver 3132 of the acceptable at least one completed or running manual infusion program instead of the at least one auto-program as the acceptable program.
It will be apparent to those skilled in the art that numerous modifications and variations of the described examples and embodiments are possible in light of the above teaching. The disclosed examples and embodiments are presented for purposes of illustration only. Other alternate embodiments may include some or all of the features disclosed herein. For example, the first computer can be in the HIS/POC or other computer system inside or outside the healthcare facility such that the MMU 3108 is not required to communicate with the infusion pump 3130. Therefore, it is the intent to cover all such modifications and alternate embodiments as may come within the true scope of this invention.
This application is a continuation of U.S. application Ser. No. 15/511,193, filed Mar. 14, 2017, which is a 371 of International PCT/US2015/050128, filed Sep. 15, 2015, which is a continuation of U.S. application Ser. No. 14/853,198, filed on Sep. 14, 2015, now U.S. Pat. No. 9,539,383, which claims the benefit of U.S. Application No. 62/050,536, filed Sep. 15, 2014, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4024864 | Davies et al. | May 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4151845 | Clemens | May 1979 | A |
4213454 | Shim | Jul 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4280494 | Cosgrove et al. | Jul 1981 | A |
4308866 | Jeliffe | Jan 1982 | A |
4370983 | Lichtenstein et al. | Feb 1983 | A |
4373527 | Fischell | Feb 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4457751 | Rodler | Jul 1984 | A |
4464170 | Clemens | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4515584 | Abe et al. | May 1985 | A |
4526568 | Clemens et al. | Jul 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4551133 | Zegers de Beyl et al. | Nov 1985 | A |
4553958 | Lecocq | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4613937 | Batty | Sep 1986 | A |
4624661 | Arimond | Nov 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4634426 | Kamen | Jan 1987 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4674652 | Aten et al. | Jun 1987 | A |
4676776 | Howson et al. | Jun 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4695954 | Rose | Sep 1987 | A |
4696671 | Epstein et al. | Sep 1987 | A |
4714462 | DiDomenico | Dec 1987 | A |
4722734 | Kolin | Feb 1988 | A |
4731051 | Fischell | Mar 1988 | A |
4741732 | Crankshaw et al. | May 1988 | A |
4756706 | Kerns et al. | Jul 1988 | A |
4776842 | Franetzki et al. | Oct 1988 | A |
4785969 | McLaughlin | Nov 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4835372 | Gombrich et al. | May 1989 | A |
4838275 | Lee | Jun 1989 | A |
4838856 | Mulreany et al. | Jun 1989 | A |
4838857 | Strowe et al. | Jun 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4857716 | Gombrich et al. | Aug 1989 | A |
4858154 | Anderson et al. | Aug 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4933873 | Kaufman et al. | Jun 1990 | A |
4943279 | Samiotes et al. | Jul 1990 | A |
4946439 | Eggers | Aug 1990 | A |
4953745 | Rowlett | Sep 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
5000739 | Kulisz et al. | Mar 1991 | A |
5010473 | Jacobs | Apr 1991 | A |
5014698 | Cohen | May 1991 | A |
5016172 | Dessertine | May 1991 | A |
5026084 | Paisfield | Jun 1991 | A |
5034004 | Crankshaw | Jul 1991 | A |
5041086 | Koenig et al. | Aug 1991 | A |
5058161 | Weiss | Oct 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5088981 | Howson et al. | Feb 1992 | A |
5097505 | Weiss | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5102392 | Sakai et al. | Apr 1992 | A |
5104374 | Bishko et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5131816 | Brown | Jul 1992 | A |
5142484 | Kaufman et al. | Aug 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5157640 | Backner | Oct 1992 | A |
5161222 | Montejo et al. | Nov 1992 | A |
5177993 | Beckman et al. | Jan 1993 | A |
5181910 | Scanlon | Jan 1993 | A |
5190522 | Wocicki et al. | Mar 1993 | A |
5199439 | Zimmerman et al. | Apr 1993 | A |
5200891 | Kehr et al. | Apr 1993 | A |
5216597 | Beckers | Jun 1993 | A |
5221268 | Barton et al. | Jun 1993 | A |
5230061 | Welch | Jul 1993 | A |
5243982 | Möstl et al. | Sep 1993 | A |
5244463 | Cordner, Jr. et al. | Sep 1993 | A |
5249260 | Nigawara et al. | Sep 1993 | A |
5256156 | Kern et al. | Oct 1993 | A |
5256157 | Samiotes et al. | Oct 1993 | A |
5261702 | Mayfield | Nov 1993 | A |
5317506 | Coutre et al. | May 1994 | A |
5319355 | Russek | Jun 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5341476 | Lowell | Aug 1994 | A |
5364346 | Schrezenmeir | Nov 1994 | A |
5366346 | Danby | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5373454 | Kanda et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5378231 | Johnson et al. | Jan 1995 | A |
5389071 | Kawahara et al. | Feb 1995 | A |
5389078 | Zalesky et al. | Feb 1995 | A |
5417222 | Dempsey et al. | May 1995 | A |
5423748 | Uhala | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5432777 | Le Boudec et al. | Jul 1995 | A |
5445621 | Poli et al. | Aug 1995 | A |
5447164 | Shaya et al. | Sep 1995 | A |
5455851 | Chaco et al. | Oct 1995 | A |
5461365 | Schlager et al. | Oct 1995 | A |
5464392 | Epstein et al. | Nov 1995 | A |
5465082 | Chaco | Nov 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5486286 | Peterson et al. | Jan 1996 | A |
5493430 | Lu et al. | Feb 1996 | A |
5496273 | Pastrone et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5507786 | Morgan et al. | Apr 1996 | A |
5508499 | Ferrario | Apr 1996 | A |
5515713 | Saugues et al. | May 1996 | A |
5520637 | Pager et al. | May 1996 | A |
5522798 | Johnson et al. | Jun 1996 | A |
5547470 | Johnson et al. | Aug 1996 | A |
5554013 | Owens et al. | Sep 1996 | A |
5562615 | Nassif | Oct 1996 | A |
5577169 | Prezioso | Nov 1996 | A |
5582323 | Kurtenbach | Dec 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5594786 | Chaco et al. | Jan 1997 | A |
5598519 | Narayanan | Jan 1997 | A |
5620608 | Rosa et al. | Apr 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5636044 | Yuan et al. | Jun 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5651775 | Walker et al. | Jul 1997 | A |
5658131 | Aoki et al. | Aug 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5669877 | Blomquist | Sep 1997 | A |
5672154 | Sillën et al. | Sep 1997 | A |
5681285 | Ford et al. | Oct 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5689229 | Chaco et al. | Nov 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5699509 | Gary et al. | Dec 1997 | A |
5713856 | Eggers et al. | Feb 1998 | A |
5718562 | Lawless et al. | Feb 1998 | A |
5719761 | Gatti et al. | Feb 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5738102 | Lemelson | Apr 1998 | A |
5744027 | Connell et al. | Apr 1998 | A |
5752621 | Passamante | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5764034 | Bowman et al. | Jun 1998 | A |
5764159 | Neftel et al. | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5774865 | Glynn | Jun 1998 | A |
5778256 | Darbee | Jul 1998 | A |
5778345 | McCartney | Jul 1998 | A |
5781442 | Engleson et al. | Jul 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5797515 | Liff et al. | Aug 1998 | A |
5800387 | Duffy et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822544 | Chaco et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5827179 | Lichter et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5836910 | Duffy et al. | Nov 1998 | A |
5850344 | Conkright | Dec 1998 | A |
5867821 | Ballantyne et al. | Feb 1999 | A |
5870733 | Bass et al. | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5873731 | Predergast | Feb 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5897498 | Canfield, II et al. | Apr 1999 | A |
5910252 | Truitt et al. | Jun 1999 | A |
5912818 | McGrady et al. | Jun 1999 | A |
5915240 | Karpf | Jun 1999 | A |
5920054 | Uber, III | Jul 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5924074 | Evans | Jul 1999 | A |
5931764 | Freeman et al. | Aug 1999 | A |
5935099 | Peterson | Aug 1999 | A |
5935106 | Olsen | Aug 1999 | A |
5941846 | Duffy et al. | Aug 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957885 | Bollish et al. | Sep 1999 | A |
5960085 | de la Huerga | Sep 1999 | A |
5961448 | Swenson et al. | Oct 1999 | A |
5967559 | Abramowitz | Oct 1999 | A |
5971594 | Sahai et al. | Oct 1999 | A |
5975081 | Hood et al. | Nov 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
6000828 | Leet | Dec 1999 | A |
6003006 | Colella et al. | Dec 1999 | A |
6012034 | Hamparian et al. | Jan 2000 | A |
6017318 | Gauthier et al. | Jan 2000 | A |
6021392 | Lester et al. | Feb 2000 | A |
6024539 | Blomquist | Feb 2000 | A |
6032155 | de La Huerga | Feb 2000 | A |
6032676 | Moore | Mar 2000 | A |
6039251 | Holowko | Mar 2000 | A |
6073106 | Rozen et al. | Jun 2000 | A |
6104295 | Gaisser et al. | Aug 2000 | A |
6112182 | Akers et al. | Aug 2000 | A |
RE36871 | Epstein et al. | Sep 2000 | E |
6115390 | Chuah | Sep 2000 | A |
6122536 | Sun et al. | Sep 2000 | A |
6126637 | Kriesel et al. | Oct 2000 | A |
6135949 | Russo et al. | Oct 2000 | A |
6150942 | O'Brien | Nov 2000 | A |
6151643 | Cheng et al. | Nov 2000 | A |
6157914 | Seto et al. | Dec 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6167567 | Chiles et al. | Dec 2000 | A |
6182667 | Hanks et al. | Feb 2001 | B1 |
6189105 | Lopes | Feb 2001 | B1 |
6195589 | Ketcham | Feb 2001 | B1 |
6208974 | Campbell et al. | Mar 2001 | B1 |
6222323 | Yamashita et al. | Apr 2001 | B1 |
6223440 | Rashman | May 2001 | B1 |
6226277 | Chuah | May 2001 | B1 |
6227371 | Song | May 2001 | B1 |
6234176 | Domae et al. | May 2001 | B1 |
6241704 | Peterson et al. | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6249705 | Snell | Jun 2001 | B1 |
6257265 | Brunner et al. | Jul 2001 | B1 |
6259355 | Chaco et al. | Jul 2001 | B1 |
6269340 | Ford et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6271813 | Palalau | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6285665 | Chuah | Sep 2001 | B1 |
6292860 | Cochcroft, Jr. | Sep 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6327254 | Chuah | Dec 2001 | B1 |
6330008 | Razdow et al. | Dec 2001 | B1 |
6339718 | Zatezalo et al. | Jan 2002 | B1 |
6346886 | de la Huerga | Feb 2002 | B1 |
6363282 | Nichols et al. | Mar 2002 | B1 |
6371719 | Hildebrandt | Apr 2002 | B1 |
6377548 | Chuah | Apr 2002 | B1 |
6388951 | Matsumoto et al. | May 2002 | B1 |
6406426 | Reuss et al. | Jun 2002 | B1 |
6408330 | de la Huerga | Jun 2002 | B1 |
6418334 | Unger et al. | Jul 2002 | B1 |
6427088 | Bowman et al. | Jul 2002 | B1 |
6428483 | Carlebach | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6469991 | Chuah | Oct 2002 | B1 |
6475180 | Peterson et al. | Nov 2002 | B2 |
6482158 | Mault | Nov 2002 | B2 |
6485418 | Yasushi et al. | Nov 2002 | B2 |
6494694 | Lawless et al. | Dec 2002 | B2 |
6494831 | Koritzinsky | Dec 2002 | B1 |
6497680 | Holst et al. | Dec 2002 | B1 |
6514460 | Fendrock | Feb 2003 | B1 |
6517482 | Eiden et al. | Feb 2003 | B1 |
6519569 | White et al. | Feb 2003 | B1 |
6520930 | Critchlow et al. | Feb 2003 | B2 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6542902 | Dulong et al. | Apr 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6544228 | Heitmeier | Apr 2003 | B1 |
6546350 | Hartmann et al. | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6567416 | Chuah | May 2003 | B1 |
6571294 | Simmon et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6578002 | Derzay et al. | Jun 2003 | B1 |
6581117 | Klein et al. | Jun 2003 | B1 |
6587034 | Heiman et al. | Jul 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6599281 | Struys et al. | Jul 2003 | B1 |
6602191 | Quy | Aug 2003 | B2 |
6605072 | Struys et al. | Aug 2003 | B2 |
6628809 | Rowe et al. | Sep 2003 | B1 |
6631353 | Davis et al. | Oct 2003 | B1 |
6640246 | Gardy, Jr. et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6647299 | Bourget | Nov 2003 | B2 |
6652455 | Kocher | Nov 2003 | B1 |
6653937 | Nelson et al. | Nov 2003 | B2 |
6659947 | Carter et al. | Dec 2003 | B1 |
6669630 | Joliat et al. | Dec 2003 | B1 |
6671563 | Engleson et al. | Dec 2003 | B1 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6674403 | Gray et al. | Jan 2004 | B2 |
6681003 | Linder et al. | Jan 2004 | B2 |
6689091 | Bui et al. | Feb 2004 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6694334 | DuLong et al. | Feb 2004 | B2 |
6721286 | Williams et al. | Apr 2004 | B1 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6725200 | Rost | Apr 2004 | B1 |
6731989 | Engleson et al. | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6751651 | Crockett | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6753830 | Gelbman | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6773396 | Flach et al. | Aug 2004 | B2 |
6774786 | Havekost et al. | Aug 2004 | B1 |
6775577 | Cmkovich et al. | Aug 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6796956 | Hartlaub et al. | Sep 2004 | B2 |
6799149 | Hartlaub | Sep 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6816605 | Rowe et al. | Nov 2004 | B2 |
6839753 | Biondi et al. | Jan 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6859134 | Heiman et al. | Feb 2005 | B1 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6876303 | Reeder et al. | Apr 2005 | B2 |
6885881 | Leonhardt | Apr 2005 | B2 |
6891525 | Ogoro | May 2005 | B2 |
6899695 | Herrera | May 2005 | B2 |
6915170 | Engleson et al. | Jul 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6924781 | Gelbman | Aug 2005 | B1 |
6928338 | Buchser et al. | Aug 2005 | B1 |
6936029 | Mann et al. | Aug 2005 | B2 |
6945954 | Hochman et al. | Sep 2005 | B2 |
6948492 | Wemeling et al. | Sep 2005 | B2 |
6958677 | Carter | Oct 2005 | B1 |
6958691 | Anderson et al. | Oct 2005 | B1 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6961448 | Nichols et al. | Nov 2005 | B2 |
6969352 | Chiang et al. | Nov 2005 | B2 |
6969865 | Duchon et al. | Nov 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6979326 | Mann et al. | Dec 2005 | B2 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6986347 | Hickle | Jan 2006 | B2 |
6997880 | Carlebach et al. | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
6998984 | Zittrain | Feb 2006 | B1 |
7017293 | Riley | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7038584 | Carter | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7069552 | Lindberg et al. | Jun 2006 | B2 |
7072725 | Bristol et al. | Jul 2006 | B2 |
7079035 | Bock et al. | Jul 2006 | B2 |
7092943 | Roese et al. | Aug 2006 | B2 |
7096072 | Engleson et al. | Aug 2006 | B2 |
7099809 | Dori | Aug 2006 | B2 |
7103419 | Engleson et al. | Sep 2006 | B2 |
7103578 | Beck et al. | Sep 2006 | B2 |
7107106 | Engleson et al. | Sep 2006 | B2 |
7108680 | Rohr et al. | Sep 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7117041 | Engleson et al. | Oct 2006 | B2 |
7136645 | Hanson et al. | Nov 2006 | B2 |
7137964 | Flaherty | Nov 2006 | B2 |
7142190 | Martinez | Nov 2006 | B2 |
7150741 | Erickson et al. | Dec 2006 | B2 |
7153289 | Vasko | Dec 2006 | B2 |
7154397 | Zerhusen et al. | Dec 2006 | B2 |
7156807 | Carter et al. | Jan 2007 | B2 |
7161484 | Tsoukalis et al. | Jan 2007 | B2 |
7167755 | Seeberger et al. | Jan 2007 | B2 |
7167920 | Traversat | Jan 2007 | B2 |
7171277 | Engleson et al. | Jan 2007 | B2 |
7171492 | Borella et al. | Jan 2007 | B1 |
7181493 | English et al. | Feb 2007 | B2 |
7185288 | McKeever | Feb 2007 | B2 |
7193514 | Ritson | Mar 2007 | B2 |
7197025 | Chuah | Mar 2007 | B2 |
7201734 | Hickle | Apr 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7213009 | Pestotnik | May 2007 | B2 |
7216802 | de la Huerga | May 2007 | B1 |
7220240 | Struys et al. | May 2007 | B2 |
7224979 | Singhal et al. | May 2007 | B2 |
7229430 | Hickle et al. | Jun 2007 | B2 |
7230529 | Ketcherside | Jun 2007 | B2 |
7236936 | White et al. | Jun 2007 | B2 |
7238164 | Childers et al. | Jul 2007 | B2 |
7247154 | Hickle | Jul 2007 | B2 |
7248239 | Dowling | Jul 2007 | B2 |
7250856 | Havekost et al. | Jul 2007 | B2 |
7255683 | Vanderveen et al. | Aug 2007 | B2 |
7256888 | Staehr et al. | Aug 2007 | B2 |
7258534 | Fathallah et al. | Aug 2007 | B2 |
7263213 | Rowe | Aug 2007 | B2 |
7267664 | Rizzo | Sep 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7275156 | Balfanz et al. | Sep 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7289815 | Gfeller et al. | Oct 2007 | B2 |
7289948 | Mohri | Oct 2007 | B1 |
7293107 | Hanson et al. | Nov 2007 | B1 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7295556 | Roese et al. | Nov 2007 | B2 |
7301451 | Hastings | Nov 2007 | B2 |
7308300 | Toews et al. | Dec 2007 | B2 |
7315825 | Rosenfeld et al. | Jan 2008 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7324000 | Zittrain et al. | Jan 2008 | B2 |
7327705 | Fletcher et al. | Feb 2008 | B2 |
7343224 | DiGianfilippo et al. | Mar 2008 | B2 |
7346025 | Bryson | Mar 2008 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7369897 | Boveja et al. | May 2008 | B2 |
7369948 | Ferenczi et al. | May 2008 | B1 |
7383088 | Spinelli et al. | Jun 2008 | B2 |
7384410 | Eggers et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7420472 | Tran | Sep 2008 | B2 |
7432807 | Schmitt | Oct 2008 | B2 |
7447643 | Olson | Nov 2008 | B1 |
7454314 | Holland et al. | Nov 2008 | B2 |
7457804 | Uber, III et al. | Nov 2008 | B2 |
7464040 | Joao | Dec 2008 | B2 |
7471994 | Ford et al. | Dec 2008 | B2 |
7483756 | Engleson et al. | Jan 2009 | B2 |
7489808 | Gerder | Feb 2009 | B2 |
7490021 | Holland et al. | Feb 2009 | B2 |
7490048 | Joao | Feb 2009 | B2 |
7491187 | Van Den Berghe et al. | Feb 2009 | B2 |
7523401 | Aldridge | Apr 2009 | B1 |
7524304 | Genosar | Apr 2009 | B2 |
7551078 | Carlson | Jun 2009 | B2 |
7559321 | Wermeling et al. | Jul 2009 | B2 |
7565197 | Haulbrich et al. | Jul 2009 | B2 |
7572230 | Neumann et al. | Aug 2009 | B2 |
7578802 | Hickle | Aug 2009 | B2 |
7621009 | Elhabashy | Nov 2009 | B2 |
D606533 | De Jong et al. | Dec 2009 | S |
7636718 | Steen et al. | Dec 2009 | B1 |
7640172 | Kuth | Dec 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7647237 | Malave et al. | Jan 2010 | B2 |
7662124 | Duchon et al. | Feb 2010 | B2 |
7668731 | Martucci et al. | Feb 2010 | B2 |
7671733 | McNeal et al. | Mar 2010 | B2 |
7678071 | Lebel et al. | Mar 2010 | B2 |
7687678 | Jacobs | Mar 2010 | B2 |
7697994 | VanDanacker et al. | Apr 2010 | B2 |
7698239 | Lieuallen | Apr 2010 | B2 |
7705727 | Pestotnik | Apr 2010 | B2 |
7724147 | Brown et al. | May 2010 | B2 |
7739126 | Cave | Jun 2010 | B1 |
7746218 | Collins, Jr. | Jun 2010 | B2 |
7766873 | Moberg et al. | Aug 2010 | B2 |
7776029 | Whitehurst et al. | Aug 2010 | B2 |
7776031 | Hartlaub et al. | Aug 2010 | B2 |
7785313 | Mastrototaro | Aug 2010 | B2 |
7806852 | Jurson | Oct 2010 | B1 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7835927 | Schlotterbeck et al. | Nov 2010 | B2 |
7836314 | Chieu | Nov 2010 | B2 |
7856276 | Ripart et al. | Dec 2010 | B2 |
7860583 | Condurso et al. | Dec 2010 | B2 |
7868754 | Salvat, Jr. | Jan 2011 | B2 |
7871394 | Halbert et al. | Jan 2011 | B2 |
7886231 | Hopermann et al. | Feb 2011 | B2 |
7895053 | Holland et al. | Feb 2011 | B2 |
7896842 | Palmroos et al. | Mar 2011 | B2 |
7899546 | Sieracki et al. | Mar 2011 | B2 |
7905710 | Wang et al. | Mar 2011 | B2 |
7920061 | Klein et al. | Apr 2011 | B2 |
7933780 | de la Huerga | Apr 2011 | B2 |
7938796 | Moubayed | May 2011 | B2 |
7945452 | Fathallah et al. | May 2011 | B2 |
7974714 | Hoffberg | Jul 2011 | B2 |
7996241 | Zak | Aug 2011 | B2 |
8034026 | Grant | Oct 2011 | B2 |
8038593 | Friedman et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8060576 | Chan et al. | Nov 2011 | B2 |
8065161 | Howard et al. | Nov 2011 | B2 |
8066672 | Mandro | Nov 2011 | B2 |
8078983 | Davis et al. | Dec 2011 | B2 |
8082018 | Duchon et al. | Dec 2011 | B2 |
8082312 | Chan et al. | Dec 2011 | B2 |
8147448 | Sundar et al. | Apr 2012 | B2 |
8149131 | Blornquist | Apr 2012 | B2 |
8169914 | Bajpai | May 2012 | B2 |
8171094 | Chan et al. | May 2012 | B2 |
8172798 | Hungerford et al. | May 2012 | B2 |
8185322 | Schroeder et al. | May 2012 | B2 |
8195478 | Petersen et al. | Jun 2012 | B2 |
8206350 | Mann et al. | Jun 2012 | B2 |
8219413 | Martinez et al. | Jul 2012 | B2 |
8231578 | Fathallah et al. | Jul 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8267892 | Spencer et al. | Sep 2012 | B2 |
8271106 | Wehba et al. | Sep 2012 | B2 |
8287495 | Michaud et al. | Oct 2012 | B2 |
8291337 | Gannin et al. | Oct 2012 | B2 |
8298184 | DiPerna et al. | Oct 2012 | B2 |
8352290 | Bartz et al. | Jan 2013 | B2 |
8359338 | Butterfield et al. | Jan 2013 | B2 |
8380536 | Howard et al. | Feb 2013 | B2 |
8387112 | Ranjan et al. | Feb 2013 | B1 |
8394077 | Jacobson et al. | Mar 2013 | B2 |
8403908 | Jacobson et al. | Mar 2013 | B2 |
8435206 | Evans et al. | May 2013 | B2 |
8449523 | Brukalo et al. | May 2013 | B2 |
8452953 | Buck et al. | May 2013 | B2 |
8453645 | Figueiredo et al. | Jun 2013 | B2 |
8480648 | Burnett et al. | Jul 2013 | B2 |
8494879 | Davis et al. | Jul 2013 | B2 |
8504179 | Blomquist | Aug 2013 | B2 |
8517990 | Teel et al. | Aug 2013 | B2 |
8518021 | Stewart et al. | Aug 2013 | B2 |
8543416 | Palmroos et al. | Sep 2013 | B2 |
8551038 | Tsoukalis et al. | Oct 2013 | B2 |
8560345 | Wehba et al. | Oct 2013 | B2 |
8577692 | Silkaitis et al. | Nov 2013 | B2 |
8579884 | Lanier et al. | Nov 2013 | B2 |
8655676 | Wehba et al. | Feb 2014 | B2 |
8660860 | Wehba et al. | Feb 2014 | B2 |
8662388 | Belkin | Mar 2014 | B2 |
8666769 | Butler et al. | Mar 2014 | B2 |
8700421 | Feng et al. | Apr 2014 | B2 |
8731960 | Butler et al. | May 2014 | B2 |
8768719 | Wehba et al. | Jul 2014 | B2 |
8771251 | Ruchti et al. | Jul 2014 | B2 |
8777894 | Butterfield et al. | Jul 2014 | B2 |
8777895 | Hsu et al. | Jul 2014 | B2 |
8799012 | Butler et al. | Aug 2014 | B2 |
8876793 | Ledford et al. | Nov 2014 | B2 |
8922330 | Moberg et al. | Dec 2014 | B2 |
8936565 | Chawla | Jan 2015 | B2 |
8952794 | Bloomquist et al. | Feb 2015 | B2 |
8998100 | Halbert et al. | Apr 2015 | B2 |
9026370 | Rubalcaba et al. | May 2015 | B2 |
9069887 | Gupta et al. | Jun 2015 | B2 |
9089642 | Murphy et al. | Jul 2015 | B2 |
9114217 | Sur et al. | Aug 2015 | B2 |
9123077 | Silkaitis et al. | Sep 2015 | B2 |
9192712 | DeBelser et al. | Nov 2015 | B2 |
9240002 | Hume et al. | Jan 2016 | B2 |
9381296 | Arrizza et al. | Jul 2016 | B2 |
9393362 | Cozmi et al. | Jul 2016 | B2 |
9498583 | Sur et al. | Nov 2016 | B2 |
9539383 | Kohlbrecher | Jan 2017 | B2 |
9572923 | Howard et al. | Feb 2017 | B2 |
9594875 | Arrizza et al. | Mar 2017 | B2 |
9604000 | Wehba et al. | Mar 2017 | B2 |
9641432 | Jha et al. | May 2017 | B2 |
9649431 | Gray et al. | May 2017 | B2 |
9662436 | Belkin et al. | May 2017 | B2 |
9690909 | Stewart et al. | Jun 2017 | B2 |
9707341 | Dumas, III et al. | Jul 2017 | B2 |
9724470 | Day et al. | Aug 2017 | B2 |
9764082 | Day et al. | Sep 2017 | B2 |
9971871 | Arrizza et al. | May 2018 | B2 |
9995611 | Ruchti et al. | Jun 2018 | B2 |
10022498 | Ruchti et al. | Jul 2018 | B2 |
10042986 | Ruchti et al. | Aug 2018 | B2 |
10046112 | Oruklu et al. | Aug 2018 | B2 |
20010016056 | Westphal et al. | Aug 2001 | A1 |
20010031944 | Peterson et al. | Oct 2001 | A1 |
20010032099 | Joao | Oct 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20010051787 | Haller et al. | Dec 2001 | A1 |
20010056358 | Dulong et al. | Dec 2001 | A1 |
20020010595 | Kapp | Jan 2002 | A1 |
20020013551 | Zaitsu | Jan 2002 | A1 |
20020013723 | Mise | Jan 2002 | A1 |
20020015018 | Shimazu et al. | Feb 2002 | A1 |
20020016568 | Lebel | Feb 2002 | A1 |
20020019584 | Schulze et al. | Feb 2002 | A1 |
20020026103 | Norris et al. | Feb 2002 | A1 |
20020029776 | Blomquist | Mar 2002 | A1 |
20020032583 | Joao | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020040282 | Bailey et al. | Apr 2002 | A1 |
20020082728 | Mueller et al. | Jun 2002 | A1 |
20020087115 | Hartlaub | Jul 2002 | A1 |
20020087116 | Hartlaub | Jul 2002 | A1 |
20020095486 | Bahl | Jul 2002 | A1 |
20020103675 | Vanelli | Aug 2002 | A1 |
20020123905 | Goodroe et al. | Sep 2002 | A1 |
20020152239 | Bautista-Lloyd et al. | Oct 2002 | A1 |
20020194329 | Ailing | Dec 2002 | A1 |
20030009244 | Engleson | Jan 2003 | A1 |
20030013959 | Grunwald et al. | Jan 2003 | A1 |
20030014222 | Klass et al. | Jan 2003 | A1 |
20030014817 | Gallant et al. | Jan 2003 | A1 |
20030025602 | Medema et al. | Feb 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030036683 | Kehr et al. | Feb 2003 | A1 |
20030047126 | Tomaschko | Mar 2003 | A1 |
20030050621 | Lebel et al. | Mar 2003 | A1 |
20030059750 | Bindler et al. | Mar 2003 | A1 |
20030060688 | Ciarniello et al. | Mar 2003 | A1 |
20030069963 | Jayant et al. | Apr 2003 | A1 |
20030079746 | Hickle | May 2003 | A1 |
20030097529 | Arimilli et al. | May 2003 | A1 |
20030104982 | Wittmann et al. | Jun 2003 | A1 |
20030106553 | Vanderveen | Jun 2003 | A1 |
20030115358 | Yun | Jun 2003 | A1 |
20030120384 | Haitin et al. | Jun 2003 | A1 |
20030125662 | Bui | Jul 2003 | A1 |
20030130616 | Steil | Jul 2003 | A1 |
20030135087 | Hickle et al. | Jul 2003 | A1 |
20030139701 | White et al. | Jul 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030140929 | Wilkes et al. | Jul 2003 | A1 |
20030141981 | Bui et al. | Jul 2003 | A1 |
20030143746 | Sage, Jr. | Jul 2003 | A1 |
20030144878 | Wilkes et al. | Jul 2003 | A1 |
20030158749 | Olchanski et al. | Aug 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030200116 | Forrester | Oct 2003 | A1 |
20030204416 | Acharya | Oct 2003 | A1 |
20030204781 | Peebles et al. | Oct 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217962 | Childers et al. | Nov 2003 | A1 |
20040015132 | Brown | Jan 2004 | A1 |
20040019607 | Moubayed et al. | Jan 2004 | A1 |
20040030323 | Ullestad et al. | Feb 2004 | A1 |
20040039257 | Hickle | Feb 2004 | A1 |
20040057226 | Berthou et al. | Mar 2004 | A1 |
20040064341 | Langan et al. | Apr 2004 | A1 |
20040064342 | Browne et al. | Apr 2004 | A1 |
20040064435 | Moubayed et al. | Apr 2004 | A1 |
20040073811 | Sanin | Apr 2004 | A1 |
20040077934 | Massad | Apr 2004 | A1 |
20040078231 | Wilkes et al. | Apr 2004 | A1 |
20040078236 | Stoodley et al. | Apr 2004 | A1 |
20040104271 | Martucci et al. | Jun 2004 | A1 |
20040122530 | Hansen | Jun 2004 | A1 |
20040128162 | Schlotterbeck et al. | Jul 2004 | A1 |
20040128163 | Goodman et al. | Jul 2004 | A1 |
20040133441 | Brady et al. | Jul 2004 | A1 |
20040145480 | Despotis | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167465 | Kohler | Aug 2004 | A1 |
20040167804 | Simpson | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040172283 | Vanderveen | Sep 2004 | A1 |
20040172301 | Mihai et al. | Sep 2004 | A1 |
20040172302 | Martucci et al. | Sep 2004 | A1 |
20040176667 | Mihai et al. | Sep 2004 | A1 |
20040176980 | Bulitta et al. | Sep 2004 | A1 |
20040176984 | White et al. | Sep 2004 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040189708 | Larcheveque et al. | Sep 2004 | A1 |
20040193325 | Bonderud | Sep 2004 | A1 |
20040193328 | Butterfield et al. | Sep 2004 | A1 |
20040193453 | Butterfield et al. | Sep 2004 | A1 |
20040204673 | Flaherty et al. | Oct 2004 | A1 |
20040215278 | Stegink et al. | Oct 2004 | A1 |
20040220517 | Starkweather et al. | Nov 2004 | A1 |
20040225252 | Gillespie, Jr. | Nov 2004 | A1 |
20040236240 | Kraus et al. | Nov 2004 | A1 |
20040243438 | Mintz | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050020886 | Hutchinson et al. | Jan 2005 | A1 |
20050021006 | Tonnies | Jan 2005 | A1 |
20050027560 | Cook | Feb 2005 | A1 |
20050027567 | Taha | Feb 2005 | A1 |
20050038311 | Kuth | Feb 2005 | A1 |
20050038669 | Sachdeva et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050040226 | Al-Sheikh | Feb 2005 | A1 |
20050043620 | Fallows et al. | Feb 2005 | A1 |
20050049910 | Lancaster et al. | Mar 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050055244 | Mullan et al. | Mar 2005 | A1 |
20050065465 | Lebel et al. | Mar 2005 | A1 |
20050065817 | Mihai et al. | Mar 2005 | A1 |
20050075544 | Shapiro et al. | Apr 2005 | A1 |
20050080801 | Kothandaraman et al. | Apr 2005 | A1 |
20050086071 | Fox, Jr. et al. | Apr 2005 | A1 |
20050086072 | Fox | Apr 2005 | A1 |
20050090808 | Malave et al. | Apr 2005 | A1 |
20050099624 | Staehr | May 2005 | A1 |
20050102162 | Blumenfeld | May 2005 | A1 |
20050102165 | Oshita et al. | May 2005 | A1 |
20050102669 | Marney et al. | May 2005 | A1 |
20050107923 | Vanderveen | May 2005 | A1 |
20050117529 | Ramos-Escano | Jun 2005 | A1 |
20050119788 | Engleson et al. | Jun 2005 | A1 |
20050119914 | Batch | Jun 2005 | A1 |
20050131739 | Rabinowitz et al. | Jun 2005 | A1 |
20050137522 | Aoki | Jun 2005 | A1 |
20050137573 | McLaughlin | Jun 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050160057 | Wefers et al. | Jul 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050171815 | Vanderveen | Aug 2005 | A1 |
20050177096 | Bollish et al. | Aug 2005 | A1 |
20050177395 | Blomquist | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182355 | Bui | Aug 2005 | A1 |
20050187950 | Parker | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197554 | Polcha | Sep 2005 | A1 |
20050197621 | Poulsen et al. | Sep 2005 | A1 |
20050210037 | Wefers et al. | Sep 2005 | A1 |
20050216479 | Wefers et al. | Sep 2005 | A1 |
20050216480 | Wefers et al. | Sep 2005 | A1 |
20050223045 | Funahashi et al. | Oct 2005 | A1 |
20050224083 | Crass | Oct 2005 | A1 |
20050234746 | Funahashi | Oct 2005 | A1 |
20050240305 | Bogash et al. | Oct 2005 | A1 |
20050246416 | Blomquist | Nov 2005 | A1 |
20050251418 | Fox, Jr. et al. | Nov 2005 | A1 |
20050261660 | Choi | Nov 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20050277873 | Stewart et al. | Dec 2005 | A1 |
20050277890 | Stewart et al. | Dec 2005 | A1 |
20050277911 | Stewart et al. | Dec 2005 | A1 |
20050278194 | Holland et al. | Dec 2005 | A1 |
20060004772 | Hagan et al. | Jan 2006 | A1 |
20060009727 | O'Mahony et al. | Jan 2006 | A1 |
20060009734 | Martin | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060042139 | Mendes | Mar 2006 | A1 |
20060047270 | Shelton | Mar 2006 | A1 |
20060053036 | Coffman et al. | Mar 2006 | A1 |
20060064020 | Burnes et al. | Mar 2006 | A1 |
20060074633 | Mahesh et al. | Apr 2006 | A1 |
20060074920 | Wefers et al. | Apr 2006 | A1 |
20060079831 | Gilbert | Apr 2006 | A1 |
20060089854 | Holland et al. | Apr 2006 | A1 |
20060089855 | Holland et al. | Apr 2006 | A1 |
20060100746 | Leibner-Druska | May 2006 | A1 |
20060100907 | Holland et al. | May 2006 | A1 |
20060106649 | Eggers et al. | May 2006 | A1 |
20060111943 | Wu | May 2006 | A1 |
20060116904 | Brem | Jun 2006 | A1 |
20060116907 | Rhodes et al. | Jun 2006 | A1 |
20060122481 | Sievenpiper et al. | Jun 2006 | A1 |
20060122867 | Eggers et al. | Jun 2006 | A1 |
20060129429 | Moubayed et al. | Jun 2006 | A1 |
20060129434 | Smitherman et al. | Jun 2006 | A1 |
20060129435 | Smitherman et al. | Jun 2006 | A1 |
20060136266 | Tarassenko et al. | Jun 2006 | A1 |
20060136271 | Eggers et al. | Jun 2006 | A1 |
20060143051 | Eggers et al. | Jun 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173715 | Wang et al. | Aug 2006 | A1 |
20060190302 | Eggers et al. | Aug 2006 | A1 |
20060195022 | Trepagnier et al. | Aug 2006 | A1 |
20060200007 | Brockway et al. | Sep 2006 | A1 |
20060200369 | Batch et al. | Sep 2006 | A1 |
20060211404 | Cromp et al. | Sep 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060229918 | Fotsch et al. | Oct 2006 | A1 |
20060258985 | Russell | Nov 2006 | A1 |
20060259327 | Hoag | Nov 2006 | A1 |
20060264895 | Flanders | Nov 2006 | A1 |
20060265246 | Hoag | Nov 2006 | A1 |
20060267753 | Hussey et al. | Nov 2006 | A1 |
20060268710 | Appanna et al. | Nov 2006 | A1 |
20060277206 | Bailey et al. | Dec 2006 | A1 |
20060287885 | Frick | Dec 2006 | A1 |
20070015972 | Wang et al. | Jan 2007 | A1 |
20070016443 | Wachman et al. | Jan 2007 | A1 |
20070027506 | Stender et al. | Feb 2007 | A1 |
20070060796 | Kim | Mar 2007 | A1 |
20070060870 | Tolle et al. | Mar 2007 | A1 |
20070060871 | Istoc | Mar 2007 | A1 |
20070065363 | Dalal et al. | Mar 2007 | A1 |
20070073419 | Sesay | Mar 2007 | A1 |
20070078314 | Grounsell | Apr 2007 | A1 |
20070083870 | Kanakogi | Apr 2007 | A1 |
20070088333 | Levin et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100665 | Brown | May 2007 | A1 |
20070100667 | Bardy | May 2007 | A1 |
20070106126 | Mannheimer et al. | May 2007 | A1 |
20070112298 | Mueller et al. | May 2007 | A1 |
20070116037 | Moore | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070135866 | Baker | Jun 2007 | A1 |
20070136098 | Smythe et al. | Jun 2007 | A1 |
20070142822 | Remde | Jun 2007 | A1 |
20070156282 | Dunn | Jul 2007 | A1 |
20070156452 | Batch | Jul 2007 | A1 |
20070169008 | Varanasi et al. | Jul 2007 | A1 |
20070179448 | Lim et al. | Aug 2007 | A1 |
20070186923 | Poutiatine et al. | Aug 2007 | A1 |
20070191817 | Martin | Aug 2007 | A1 |
20070191973 | Holzbauer et al. | Aug 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070214003 | Holland et al. | Sep 2007 | A1 |
20070215545 | Bissler et al. | Sep 2007 | A1 |
20070229249 | McNeal et al. | Oct 2007 | A1 |
20070232867 | Hansmann | Oct 2007 | A1 |
20070233035 | Wehba et al. | Oct 2007 | A1 |
20070233049 | Wehba et al. | Oct 2007 | A1 |
20070233206 | Frikart | Oct 2007 | A1 |
20070233520 | Wehba et al. | Oct 2007 | A1 |
20070233521 | Wehba et al. | Oct 2007 | A1 |
20070251835 | Mehta et al. | Nov 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070254593 | Jollota et al. | Nov 2007 | A1 |
20070255125 | Moberg et al. | Nov 2007 | A1 |
20070257788 | Carlson | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070299687 | Palmer et al. | Dec 2007 | A1 |
20070299695 | Jung et al. | Dec 2007 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009684 | Corsetti et al. | Jan 2008 | A1 |
20080033361 | Evans et al. | Feb 2008 | A1 |
20080034323 | Blomquist | Feb 2008 | A1 |
20080041942 | Aissa | Feb 2008 | A1 |
20080052704 | Wysocki | Feb 2008 | A1 |
20080065007 | Peterson et al. | Mar 2008 | A1 |
20080065417 | Jung et al. | Mar 2008 | A1 |
20080071217 | Moubayed et al. | Mar 2008 | A1 |
20080071251 | Moubayed et al. | Mar 2008 | A1 |
20080091466 | Butler et al. | Apr 2008 | A1 |
20080095339 | Elliott | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080126969 | Blomquist | May 2008 | A1 |
20080139907 | Rao et al. | Jun 2008 | A1 |
20080149117 | Raghuram | Jun 2008 | A1 |
20080154177 | Moubayed et al. | Jun 2008 | A1 |
20080172337 | Banfield et al. | Jul 2008 | A1 |
20080184219 | Matsumoto | Jul 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080200870 | Palmroos | Aug 2008 | A1 |
20080214919 | Harmon et al. | Sep 2008 | A1 |
20080243055 | Fathallah et al. | Oct 2008 | A1 |
20080246748 | Cassidy et al. | Oct 2008 | A1 |
20080256305 | Kwon | Oct 2008 | A1 |
20080262469 | Bristol et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275384 | Mastrototaro et al. | Nov 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080320387 | Sasaki et al. | Dec 2008 | A1 |
20080320466 | Dias | Dec 2008 | A1 |
20090005703 | Fasciano | Jan 2009 | A1 |
20090005728 | Weinert et al. | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090006129 | Thukral | Jan 2009 | A1 |
20090006133 | Weinert | Jan 2009 | A1 |
20090018495 | Panduro | Jan 2009 | A1 |
20090051560 | Manning et al. | Feb 2009 | A1 |
20090054743 | Stewart | Feb 2009 | A1 |
20090054754 | McMahon et al. | Feb 2009 | A1 |
20090057399 | Sajkowsky | Mar 2009 | A1 |
20090069785 | Miller et al. | Mar 2009 | A1 |
20090099867 | Newman | Apr 2009 | A1 |
20090135196 | Holland et al. | May 2009 | A1 |
20090143662 | Estes et al. | Jun 2009 | A1 |
20090149743 | Barron et al. | Jun 2009 | A1 |
20090150174 | Buck et al. | Jun 2009 | A1 |
20090156991 | Roberts | Jun 2009 | A1 |
20090157695 | Roberts | Jun 2009 | A1 |
20090158274 | Roberts | Jun 2009 | A1 |
20090177146 | Nesbitt et al. | Jul 2009 | A1 |
20090177769 | Roberts | Jul 2009 | A1 |
20090177992 | Rubalcaba et al. | Jul 2009 | A1 |
20090183147 | Davis et al. | Jul 2009 | A1 |
20090209938 | Aalto-Setala | Aug 2009 | A1 |
20090210250 | Prax et al. | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090231249 | Wang et al. | Sep 2009 | A1 |
20090270833 | DeBelser | Oct 2009 | A1 |
20090275886 | Bloomquist et al. | Nov 2009 | A1 |
20090275896 | Kamen et al. | Nov 2009 | A1 |
20090284691 | Marhefka et al. | Nov 2009 | A1 |
20090326340 | Wang | Dec 2009 | A1 |
20090326516 | Bangera et al. | Dec 2009 | A1 |
20100022988 | Wochner | Jan 2010 | A1 |
20100036310 | Hillman | Feb 2010 | A1 |
20100056992 | Hayter | Mar 2010 | A1 |
20100095229 | Dixon et al. | Apr 2010 | A1 |
20100121170 | Rule | May 2010 | A1 |
20100121415 | Skelton et al. | May 2010 | A1 |
20100121654 | Portnoy et al. | May 2010 | A1 |
20100130933 | Holland et al. | May 2010 | A1 |
20100131434 | Magent et al. | May 2010 | A1 |
20100138523 | Umess et al. | Jun 2010 | A1 |
20100146137 | Wu et al. | Jun 2010 | A1 |
20100156633 | Buck et al. | Jun 2010 | A1 |
20100160854 | Gauthier | Jun 2010 | A1 |
20100160860 | Celentano et al. | Jun 2010 | A1 |
20100191525 | Rabenko et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198196 | Wei | Aug 2010 | A1 |
20100200506 | Ware et al. | Aug 2010 | A1 |
20100212675 | Walling et al. | Aug 2010 | A1 |
20100217621 | Schoenberg | Aug 2010 | A1 |
20100234708 | Buck et al. | Sep 2010 | A1 |
20100250732 | Bucknell | Sep 2010 | A1 |
20100271479 | Heydlauf | Oct 2010 | A1 |
20100273738 | Valcke et al. | Oct 2010 | A1 |
20100280486 | Khair et al. | Nov 2010 | A1 |
20100292634 | Kircher | Nov 2010 | A1 |
20100292645 | Hungerford et al. | Nov 2010 | A1 |
20100298765 | Budiman et al. | Nov 2010 | A1 |
20100318025 | John | Dec 2010 | A1 |
20110001605 | Kiani et al. | Jan 2011 | A1 |
20110021898 | Wei | Jan 2011 | A1 |
20110040158 | Katz et al. | Feb 2011 | A1 |
20110060758 | Schlotterbeck et al. | Mar 2011 | A1 |
20110071844 | Cannon et al. | Mar 2011 | A1 |
20110072379 | Gannon | Mar 2011 | A1 |
20110078608 | Gannon et al. | Mar 2011 | A1 |
20110093284 | Dicks et al. | Apr 2011 | A1 |
20110099313 | Bolanowski | Apr 2011 | A1 |
20110125095 | Lebel et al. | May 2011 | A1 |
20110175728 | Baker, Jr. | Jul 2011 | A1 |
20110178462 | Moberg et al. | Jul 2011 | A1 |
20110231216 | Fyke et al. | Sep 2011 | A1 |
20110257496 | Terashima et al. | Oct 2011 | A1 |
20110257798 | Ali et al. | Oct 2011 | A1 |
20110259954 | Bartz et al. | Oct 2011 | A1 |
20110264043 | Kotnick et al. | Oct 2011 | A1 |
20110264044 | Bartz et al. | Oct 2011 | A1 |
20110266221 | Ware et al. | Nov 2011 | A1 |
20110270045 | Lebel et al. | Nov 2011 | A1 |
20110275904 | Lebel et al. | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110289497 | Kiaie et al. | Nov 2011 | A1 |
20110295196 | Chazot et al. | Dec 2011 | A1 |
20110295341 | Estes et al. | Dec 2011 | A1 |
20110296051 | Vange | Dec 2011 | A1 |
20110296411 | Tang et al. | Dec 2011 | A1 |
20110313789 | Karmen et al. | Dec 2011 | A1 |
20110319813 | Kamen et al. | Dec 2011 | A1 |
20110320049 | Chossat et al. | Dec 2011 | A1 |
20120011253 | Friedman et al. | Jan 2012 | A1 |
20120016295 | Tsoukalis | Jan 2012 | A1 |
20120016305 | Jollota | Jan 2012 | A1 |
20120029941 | Malave et al. | Feb 2012 | A1 |
20120070045 | Vesper et al. | Mar 2012 | A1 |
20120095437 | Hemmerling | Apr 2012 | A1 |
20120112903 | Kaib et al. | May 2012 | A1 |
20120130198 | Beaule | May 2012 | A1 |
20120130308 | Silkaitis et al. | May 2012 | A1 |
20120143116 | Ware et al. | Jun 2012 | A1 |
20120150556 | Galasso et al. | Jun 2012 | A1 |
20120179135 | Rinehart et al. | Jul 2012 | A1 |
20120179136 | Rinehart et al. | Jul 2012 | A1 |
20120203177 | Lanier | Aug 2012 | A1 |
20120245554 | Kawamura | Sep 2012 | A1 |
20120259978 | Petersen et al. | Oct 2012 | A1 |
20120277716 | Ali et al. | Nov 2012 | A1 |
20120284734 | McQuaid et al. | Nov 2012 | A1 |
20120323212 | Murphy | Dec 2012 | A1 |
20130006666 | Schneider | Jan 2013 | A1 |
20130006702 | Wu | Jan 2013 | A1 |
20130012880 | Blomquist | Jan 2013 | A1 |
20130015980 | Evans et al. | Jan 2013 | A1 |
20130035633 | Chawla | Feb 2013 | A1 |
20130036403 | Geist | Feb 2013 | A1 |
20130036412 | Birtwhistle et al. | Feb 2013 | A1 |
20130066265 | Grant | Mar 2013 | A1 |
20130072872 | Yodfat et al. | Mar 2013 | A1 |
20130085689 | Sur et al. | Apr 2013 | A1 |
20130096444 | Condurso et al. | Apr 2013 | A1 |
20130096648 | Benson | Apr 2013 | A1 |
20130102963 | Marsh et al. | Apr 2013 | A1 |
20130138452 | Cork et al. | May 2013 | A1 |
20130144206 | Lee et al. | Jun 2013 | A1 |
20130150824 | Estes | Jun 2013 | A1 |
20130158504 | Ruchti et al. | Jun 2013 | A1 |
20130167245 | Birtwhistle et al. | Jun 2013 | A1 |
20130191770 | Bartz et al. | Jul 2013 | A1 |
20130204188 | Kamen et al. | Aug 2013 | A1 |
20130218080 | Peterfreund et al. | Aug 2013 | A1 |
20130261993 | Ruchti et al. | Oct 2013 | A1 |
20130274669 | Stempfle et al. | Oct 2013 | A1 |
20130275539 | Gross et al. | Oct 2013 | A1 |
20130291116 | Homer | Oct 2013 | A1 |
20130296823 | Melker et al. | Nov 2013 | A1 |
20130296984 | Burnett et al. | Nov 2013 | A1 |
20140039446 | Day | Feb 2014 | A1 |
20140058350 | Stewart | Feb 2014 | A1 |
20140194817 | Lee | Jul 2014 | A1 |
20140221959 | Gray et al. | Aug 2014 | A1 |
20140257251 | Bush et al. | Sep 2014 | A1 |
20140266790 | Al-Ali et al. | Sep 2014 | A1 |
20140269643 | Sun | Sep 2014 | A1 |
20140350513 | Oruklu et al. | Nov 2014 | A1 |
20140358077 | Oruklu et al. | Dec 2014 | A1 |
20140366878 | Baron | Dec 2014 | A1 |
20150001285 | Halbert et al. | Jan 2015 | A1 |
20150005935 | Bae et al. | Jan 2015 | A1 |
20150058044 | Butler et al. | Feb 2015 | A1 |
20150066531 | Jacobson et al. | Mar 2015 | A1 |
20150100038 | McCann et al. | Apr 2015 | A1 |
20150134265 | Kohlbrecher et al. | May 2015 | A1 |
20150141955 | Ruchti et al. | May 2015 | A1 |
20150151051 | Tsoukalis | Jun 2015 | A1 |
20150379237 | Mills et al. | Dec 2015 | A1 |
20160051749 | Istoc | Feb 2016 | A1 |
20160051751 | Silkaitis et al. | Feb 2016 | A1 |
20160103960 | Hume et al. | Apr 2016 | A1 |
20160228633 | Welsch et al. | Aug 2016 | A1 |
20160350513 | Jacobson et al. | Dec 2016 | A1 |
20170024534 | Arrizza et al. | Jan 2017 | A1 |
20170246388 | Kohlbrecher | Aug 2017 | A1 |
20170274140 | Howard et al. | Sep 2017 | A1 |
20170286637 | Arrizza et al. | Oct 2017 | A1 |
20170319780 | Belkin et al. | Nov 2017 | A1 |
20170331735 | Jha et al. | Nov 2017 | A1 |
20180008772 | Wehba et al. | Jan 2018 | A1 |
20180028742 | Day et al. | Feb 2018 | A1 |
20180043094 | Day et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2 060 151 | Aug 1997 | CA |
2 125 300 | Oct 1999 | CA |
31 12 762 | Jan 1983 | DE |
34 35 647 | Jul 1985 | DE |
198 44 252 | Mar 2000 | DE |
199 32 147 | Jan 2001 | DE |
103 52 456 | Jul 2005 | DE |
0 319 267 | Jun 1989 | EP |
0 380 061 | Aug 1990 | EP |
0 384 155 | Aug 1990 | EP |
0 460 533 | Dec 1991 | EP |
0 564 127 | Jun 1993 | EP |
0 633 035 | Jan 1995 | EP |
0 652 528 | May 1995 | EP |
0 672 427 | Sep 1995 | EP |
0 683 465 | Nov 1995 | EP |
0 880 936 | Dec 1998 | EP |
1 157 711 | Nov 2001 | EP |
1 174 817 | Jan 2002 | EP |
0 664 102 | Apr 2002 | EP |
1 197 178 | Apr 2002 | EP |
0 830 775 | Aug 2002 | EP |
1 500 025 | Apr 2003 | EP |
2 113 842 | Nov 2009 | EP |
2 228 004 | Sep 2010 | EP |
2 243 506 | Oct 2010 | EP |
2 410 448 | Jan 2012 | EP |
2 742 961 | Jun 2014 | EP |
2 717 919 | Sep 1995 | FR |
2 285 135 | Jun 1995 | GB |
04-161139 | Jun 1992 | JP |
07-502678 | Mar 1995 | JP |
11-500643 | Jan 1999 | JP |
2000-316820 | Nov 2000 | JP |
2002-531154 | Sep 2002 | JP |
2003-016183 | Jan 2003 | JP |
2003-296173 | Oct 2003 | JP |
2005-021463 | Jan 2005 | JP |
2005-527284 | Sep 2005 | JP |
2005-284846 | Oct 2005 | JP |
2006-047319 | Feb 2006 | JP |
2006-520949 | Sep 2006 | JP |
2007-518479 | Jul 2007 | JP |
2008-516303 | May 2008 | JP |
2008-158622 | Jul 2008 | JP |
2008-529675 | Aug 2008 | JP |
2009-163534 | Jul 2009 | JP |
2010-502361 | Jan 2010 | JP |
2012-070991 | Apr 2012 | JP |
WO 84001719 | May 1984 | WO |
WO 91016416 | Oct 1991 | WO |
WO 92010985 | Jul 1992 | WO |
WO 92013322 | Aug 1992 | WO |
WO 94005355 | Mar 1994 | WO |
WO 96008755 | Mar 1996 | WO |
WO 96025186 | Aug 1996 | WO |
WO 98012670 | Mar 1998 | WO |
WO 98019263 | May 1998 | WO |
WO 99051003 | Oct 1999 | WO |
WO 00013580 | Mar 2000 | WO |
WO 00053243 | Sep 2000 | WO |
WO 01014974 | Mar 2001 | WO |
WO 01033484 | May 2001 | WO |
WO 01045014 | Jun 2001 | WO |
WO 02005702 | Jan 2002 | WO |
WO 02036044 | May 2002 | WO |
WO 02049153 | Jun 2002 | WO |
WO 02049279 | Jun 2002 | WO |
WO 02069099 | Sep 2002 | WO |
WO 02081015 | Oct 2002 | WO |
WO 02088875 | Nov 2002 | WO |
WO 03006091 | Jan 2003 | WO |
WO 03050917 | Jun 2003 | WO |
WO 03091836 | Nov 2003 | WO |
WO 03094092 | Nov 2003 | WO |
WO 2004060455 | Jul 2004 | WO |
WO 2004070557 | Aug 2004 | WO |
WO 2004070562 | Aug 2004 | WO |
WO 2004072828 | Aug 2004 | WO |
WO 2005036447 | Apr 2005 | WO |
WO 2005050526 | Jun 2005 | WO |
WO 2005057175 | Jun 2005 | WO |
WO 2005066872 | Jul 2005 | WO |
WO 2007087443 | Aug 2007 | WO |
WO 2007117705 | Oct 2007 | WO |
WO 2007127879 | Nov 2007 | WO |
WO 2007127880 | Nov 2007 | WO |
WO 2008057729 | May 2008 | WO |
WO 2008067245 | Jun 2008 | WO |
WO 2008082854 | Jul 2008 | WO |
WO 2008088490 | Jul 2008 | WO |
WO 2008097316 | Aug 2008 | WO |
WO 2008103915 | Aug 2008 | WO |
WO 2008124478 | Oct 2008 | WO |
WO 2008134146 | Nov 2008 | WO |
WO 2009016504 | Feb 2009 | WO |
WO 2009023406 | Feb 2009 | WO |
WO 2009023407 | Feb 2009 | WO |
WO 2009023634 | Feb 2009 | WO |
WO 2009036327 | Mar 2009 | WO |
WO 2009049252 | Apr 2009 | WO |
WO 2010017279 | Feb 2010 | WO |
WO 2010033919 | Mar 2010 | WO |
WO 2010053703 | May 2010 | WO |
WO 2010075371 | Jul 2010 | WO |
WO 2010099313 | Sep 2010 | WO |
WO 2010114929 | Oct 2010 | WO |
WO 2010119409 | Oct 2010 | WO |
WO 2010124127 | Oct 2010 | WO |
WO 2010130992 | Nov 2010 | WO |
WO 2010135646 | Nov 2010 | WO |
WO 2010135654 | Nov 2010 | WO |
WO 2010135686 | Nov 2010 | WO |
WO 2011005633 | Jan 2011 | WO |
WO 2011022549 | Feb 2011 | WO |
WO 2012048833 | Apr 2012 | WO |
WO 2012049214 | Apr 2012 | WO |
WO 2012049218 | Apr 2012 | WO |
WO 2012120078 | Sep 2012 | WO |
WO 2012140547 | Oct 2012 | WO |
WO 2012164556 | Dec 2012 | WO |
WO 2012170942 | Dec 2012 | WO |
WO 2013045506 | Apr 2013 | WO |
WO 2014100736 | Jun 2014 | WO |
WO 2014131729 | Sep 2014 | WO |
WO 2014131730 | Sep 2014 | WO |
WO 2017176928 | Oct 2017 | WO |
Entry |
---|
Akridge, Jeannie, “New Pumps Outsmart User Error”, Healthcare Purchasing News, Apr. 2011, pp. 10, http://web.archive.org/web/20110426122450/http://www.hpnonline.com/inside/2011-04/1104-OR-Pumps.html. |
Alur et al., “Formal Specifications and Analysis of the Computer-Assisted Resuscitation Algorithm (CARA) Infusion Pump Control System”, International Journal on Software Tools for Technology Transfer, Feb. 2004, vol. 5, No. 4, pp. 308-319. |
Aragon, Daleen RN, Ph.D., CCRN, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control”, American Journal of Critical Care, Jul. 2006, vol. 15, No. 4, pp. 370-377. |
ASHP Advantage, “Improving Medication Safety in Health Systems Through Innovations in Automation Technology”, Proceedings of Educational Symposium and Educational Sessions during the 39th ASHP Midyear Clinical Meeting, Dec. 5-9, 2004, Orlando, FL, pp. 28. |
Beard et al., “Total Quality Pain Management: History, Background, Resources”, Abbott Laboratories, TQPM Survey History, available Feb. 2015 or earlier, pp. 1-3. |
Bektas et al., “Bluetooth Communication Employing Antenna Diversity”, Proceedings of Eight IEEE International Symposium on Computers and Communication, Jul. 2003, pp. 6. |
Bequette, Ph.D., “A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas”, Diabetes Technology & Therapeutics, Feb. 28, 2005, vol. 7, No. 1, pp. 28-47. |
Bequette, B. Wayne, Ph.D., “Analysis of Algorithms for Intensive Care Unit Blood Glucose Control”, Journal of Diabetes Science and Technology, Nov. 2007, vol. 1, No. 6, pp. 813-824. |
Braun, “Infusomat® Space and Accessories”, Instructions for Use, Nov. 2010, pp. 68. http://corp.bbraun.ee/Extranet/infusioonipumbad/Kasutusjuhendid/Vanad/Kasutusjuend-Infusomat_Space(vers688J.inglise_k).pdf. |
Brownlee, Seth, “Product Spotlight: The Plum A+ with Hospira MedNet Infusion System”, PP&P Magazine, Dec. 2005, vol. 2, No. 7, pp. 2. |
Cannon, MD et al., “Automated Heparin-Delivery System to Control Activated Partial Thromboplastin Time”, Circulation, Feb. 16, 1999, vol. 99, pp. 751-756. |
Cardinal Health, “Alaris® Syringe Pumps” Technical Service Manual, Copyright 2002-2006, Issue 9, pp. 1-88, http://www.frankshospitalworkshop.com/equipment/documents/infusion_pumps/service_manuals/Cardinal_Alaris-Service_Manual.pdf. |
“CareAware® Infusion Management”, Cerner Store, as printed May 12, 2011, pp. 3, https://store.cerner.com/items/7. |
Chen et al., “Enabling Location-Based Services on Wireless LANs”, The 11th IEEE International Conference on Networks, ICON 2003, Sep. 28-Oct. 1, 2003, pp. 567-572. |
“Computer Dictionary”, Microsoft Press, Third Edition, Microsoft Press, 1997, pp. 430 & 506. |
Crawford, Anne J., MSN, RNC, “Building a Successful Quality Pain Service: Using Patient Satisfaction Data and the Clinical Practice Guideline”, USA, 1995, pp. 1-6. |
Crocker et al., “Augmented BNF for Syntax Specifications: ABNF”, Network Working Group, Standards Track, Jan. 2008, pp. 16. |
Davidson et al., “A Computer-Directed Intravenous Insulin System Shown to be Safe, Simple, and Effective in 120,618 h of Operation”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2418-2423. |
Davies, T., “Cordless Data Acquisition in a Hospital Environment”, IEE Colloquium on Cordless Computing—Systems and User Experience, 1993, pp. 4. |
Dayhoff et al., “Medical Data Capture and Display: The Importance of Clinicians' Workstation Design”, AMIA, Inc., 1994, pp. 541-545. |
Diabetes Close Up, Close Concerns AACE Inpatient Management Conference Report, Consensus Development Conference on Inpatient Diabetes and Metabolic Control, Washington, D.C., Dec. 14-16, 2003, pp. 1-32. |
East PhD et al., “Digital Electronic Communication Between ICU Ventilators and Computers and Printers”, Respiratory Care, Sep. 1992, vol. 37, No. 9, pp. 1113-1122. |
Einhorn, George W., “Total Quality Pain Management: A Computerized Quality Assessment Tool for Postoperative Pain Management”, Abbott Laboratories, Chicago, IL, Mar. 2, 2000, pp. 1-4. |
Eskew et al., “Using Innovative Technologies to Set New Safety Standards for the Infusion of Intravenous Medications”, Hospital Pharmacy, 2002, vol. 37, No. 11, pp. 1179-1189. |
Philips, “IntelliSpace Event Management and IntelliVue Patient Monitoring”, Release 10, 2011, http://incenter.medical.philips.com/doclib/enc/fetch/2000/4504/577242/577243/577247/582646/283147/8359175/Philips_Paient_Monitoring_and_IntelliSpace_Event_Management_Interoperability.pdf%3inodeid%3d8508574%26vernum%3d-2, pp. 2. |
Felleiter et al., “Data Processing in Prehospital Emergency Medicine”, International journal of Clinical Monitoring and Computing, Feb. 1995, vol. 12, No. 1, pp. 37-41. |
Fogt et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, 1978, vol. 24, No. 8, pp. 1366-1372. |
Gage et al., “Automated Anesthesia Surgery Medical Record System”, International Journal of Clinical Monitoring and Computing, Dec. 1990, vol. 7, No. 4, pp. 259-263. |
Galt et al. “Personal Digital Assistant-Based Drug Information Sources: Potential to Improve Medication Safety”, Journal of Medical Library Association, Apr. 2005, vol. 93, No. 2, pp. 229-236. |
Gardner, Ph.D. et al., “Real Time Data Acquisition: Recommendations for the Medical Information Bus (MIB)”, 1992, pp. 813-817. |
“General-Purpose Infusion Pumps”, Health Devices, EXRI Institute, Oct. 1, 2002, vol. 31, No. 10, pp. 353-387. |
Givens et al., “Exploring the Internal State of User Interfaces by Combining Computer Vision Techniques with Grammatical Inference”, Proceedings of the 2013 International Conference on Software Engineering, San Francisco, CA, May 18-26, 2013, pp. 1165-1168. |
Glaeser, “A Hierarchical Minicomputer System for Continuous Post-Surgical Monitoring”, Computers and Biomedical Research, Aug. 31, 1975, pp. 336-361. |
Goldberg et al., “Clinical Results of an Updated Insulin Infusion Protocol in Critically Ill Patients”, Diabetes Spectrum, 2005, vol. 18, No. 3, pp. 188-191. |
Gomez et al., “CLAM: Connection-Less, Lightweight, and Multiway Communication Support for Distributed Computing”, Computer Science, 1997, vol. 1199, pp. 227-240. |
“GPS Tracker for Medical Equipment”, http://www.trackingsystem.com/forbusinesses/corporate-trackingsystem/1098-gps-tracker-formedicalequipment.html, Mar. 15, 2015, pp. 2. |
Graseby, “Model 3000/500 and Micro 3100/505: Volumetric Infusion Pump”, Technical Service Manual, Graseby Medical Ltd., Apr. 2002, Issue A, pp. 160. |
Graseby, “Model 3000/500 and Micro 3100/505: Volumetric Infusion Pump: Illustrated Parts List for Pump Serial Numbers from 3000 to 59,999”, Technical Service Manual, Graseby Medical Ltd., Apr. 2002, Issue A, pp. 71. |
Halpern et al., “Changes in Critical Care Beds and Occupancy in the United States 1985-2000: Differences Attributable to Hospital Size”, Critical Care Medical, Aug. 2006, vol. 34, No. 8, pp. 2105-2112. |
Hamann et al., “PUMPSIM: A Software Package for Simulating Computer-Controlled Drug Infusion Pumps”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1990, vol. 12, No. 5, pp. 2019-2020. |
Hasegawa et al., “On a Portable Memory Device for Physical Activities and Informations of Maternal Perception”, Journal of Perinatal Medicine, 1988, vol. 16, No. 4, pp. 349-356. |
Hawley et al., “Clinical Implementation of an Automated Medical Information Bus in an Intensive Care Unit”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 9, 1988, pp. 621-624. |
Hayes-Roth et al., “Guardian: A Prototype Intelligent Agent for Intensive-Care Monitoring”, Artificial Intelligence in Medicine, vol. 4, Dec. 31, 1992, pp. 165-185. |
Hospira, GemStar® Pain Management Infusion System 9-084-PR1-2-2, www.hospira.com/products/gemstar_painmanagement.aspx, Jan. 28, 2010, pp. 1-2. |
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2015/050128, dated Mar. 30, 2017 in 10 pages. |
International Search Report and Written Opinion received in PCT Application No. PCT/US2015/050128, dated Jan. 4, 2016 in 11 pages. |
Introducing Abbott TQPM (Total Quality Pain Management), Abbott Laboratories, Abbott Park, IL, May 2000, pp. 1-4. |
“Infusion Pump”, Wikipedia.org, https://web.archive.org/web/20140703024932/https://en.wikipedia.org/wiki/Infusion_pump, as last modified Mar. 27, 2014, pp. 3. |
Isaka et al. “Control Strategies for Arterial Blood Pressure Regulation”, IEEE Transactions on Biomedical Engineering, Apr. 1993, vol. 40, No. 4, pp. 353-363. |
Johnson et al., “Using BCMA Software to Improve Patient Safety in Veterans Administration Medical Centers”, Journal of Healthcare Information Management, Dec. 6, 2004, vol. 16, No. 1, pp. 46-51. |
Kent Displays, “Reflex™ Electronic Skins”, Product Brief 25127B, 2009, pp. 2. |
Kent Displays, “Reflex Electronic Skins Engineering Evaluation Kit”, 25136A, Mar. 10, 2009. |
Lefkowitz et al., “A Trial of the Use of Bar Code Technology to Restructure a Drug Distribution and Administration System”, Hospital Pharmacy, Mar. 31, 1991, vol. 26, No. 3, pp. 239-242. |
Lenssen et al., “Bright Color Electronic Paper Technology and Applications”, IDS '09 Publication EP1-2 (Phillips Research), 2009, pp. 529-532. |
Leveson, Nancy, “Medical Devices: The Therac-25”, Appendix A, University of Washington, 1995, pp. 49. |
Linkens, D.A. “Computer Control for Patient Care”, Computer Control of Real-Time Processes, IEE Control Engineering Series 41, 1990, Ch. 13, pp. 216-238. |
Mako Hill et al., “The Official Ubuntu Book”, Shoeisha Co., Ltd., 1st Edition, Jun. 11, 2007, pp. 115 to 125. |
Marshall, et al., “New Microprocessor-Based Insulin Controller”, IEEE Transactions on Biomedical Engineering, Nov. 1983, vol. BME-30, No. 11, pp. 689-695. |
Martino et al., “Automation of a Medical Intensive Care Environment with a Flexible Configuration of Computer Systems”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 5, 1980, vol. 3, pp. 1562-1568. |
Matsunaga et al., “On the Use of Machine Learning to Predict the Time and Resources Consumed by Applications”, 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), May 17-20, 2010, pp. 495-504. |
Mauseth et al., “Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor ”, Journal of Diabetes Science and Technology, Jul. 2010, vol. 4, No. 4, pp. 913-922. |
Medfusion™, “Medfusion Syringe Infusion Pump Model 4000”, Operator's Manual, Software Version V1.1, Sep. 2011, pp. 154. http://www.medfusionpump.com/assets/literature/manuals/Operators_Manial_4000_40-5760-51A.pdf. |
Metnitz et al., “Computer Assisted Data Analysis in Intensive Care: the ICDEV Project-Development of a Scientific Database System for Intensive Care”, International Journal of Clinical Monitoring and Computing, Aug. 1995, vol. 12, No. 3, pp. 147-159. |
Micrel Medical Devices, “MP Daily +” http://web.archive.org/web/20130803235715/http://micreImed.com/Index.aspx?productid=9 as archived, Aug. 3 , 2013, in 1 page. |
Moghissi, Etie, MD, FACP, FACE, “Hyperglycemia in Hospitalized Patients”, A Supplement to ACP Hospitalist, Jun. 15, 2008, pp. 32. |
Murray, Jr. et al., “Automated Drug Identification System (during surgery)”, IEEE Proceedings of Southeastcon '91, Apr. 7-10, 1991, pp. 265. |
Nicholson et al., “‘Smart’ Infusion Apparatus for Computation and Automated Delivery of Loading, Tapering, and Maintenance Infusion Regimens of Lidocaine, Procainamide, and Theophylline”, Proceedings of the Seventh Annual Symposium on Computer Applications in Medical Care, Oct. 1983, pp. 212-213. |
Nolan et al., “The P1073 Medical Information Bus Standard: Overview and Benefits for Clinical Users”, 1990, pp. 216-219. |
Omnilink Systems, Inc., “Portable Medical Equipment Tracking”, http://www.omnilink.com/portablemedicalequipmenttracking/, Mar. 15, 2015, pp. 2. |
O'Shea, Kristen L., “Infusion Management: Working Smarter, Not Harder”, Hospital Pharmacy, Apr. 2013, vol. 48, No. 3, pp. S1-S14. |
Package Management in Debian GNU/Linux, Debian GNU/Linux Expert Desktop Use Special, Giutsu-Hyohron Co., Ltd., First Edition, Sep. 25, 2004, pp. 183-185. |
Passos et al., “Distributed Software Platform for Automation and Control of General Anaesthesia”, Eighth International Symposium on Parallel and Distributed Computing, ISPDC '09, Jun. 30-Jul. 4, 2009, pp. 8. |
Pretty et al., “Hypoglycemia Detection in Critical Care Using Continuous Glucose Monitors: An in Silico Proof of Concept Analysis”, Journal of Diabetes Science and Technology, Jan. 2010, vol. 4, No. 1, pp. 15-24. |
Rappoport, Arthur E., “A Hospital Patient and Laboratory machine-Readable Identification System (MRIS) Revisited”, Journal of Medical Systems, Apr. 1984, vol. 8, Nos. 1/2, pp. 133-156. |
Ritchie et al., “A Microcomputer Based Controller for Neuromuscular Block During Surgery”, Annals of Biomedical Engineering, Jan. 1985, vol. 13, No. 1, pp. 3-15. |
Saager et al., “Computer-Guided Versus Standard Protocol for Insulin Administration in Diabetic Patients Undergoing Cardiac Surgery”, Annual Meeting of the American Society of Critical Care Anesthesiologists, Oct. 13, 2006. |
Sanders et al., “The Computer in a Programmable Implantable Medication System (PIMS)”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 2, 1982, pp. 682-685. |
Schilling et al., “Optimizing Outcomes! Error Prevention and Evidence-Based Practice with IV Medications”, A Pro-Ce Publication, Hospira, Inc., Feb. 6, 2012, pp. 56. |
Schulze et al., “Advanced Sensors Technology Survey”, Final Report, Feb. 10, 1992, pp. 161. |
Scott, et al., “Using Bar-Code Technology to Capture Clinical Intervention Data in a Hospital with a Stand-Alone Pharmacy Computer System”, Mar. 15, 1996, American Journal of Health-System Pharmacy, vol. 53, No. 6, pp. 651-654. |
Sebald et al., “Numerical Analysis of a Comprehensive in Silico Subcutaneous Insulin Absorption Compartmental Model”, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2-6, 2009, pp. 3901-3904. |
Shabot, M. Michael, “Standardized Acquisition of Bedside Data: The IEEE P1073 Medical Information Bus”, International Journal of Clinical Monitoring and Computing, vol. 6, Sep. 27, 1989, pp. 197-204. |
Sheppard, Louis, Ph.D., “Automation of the Infusion of Drugs Using Feedback Control”, Journal of Cardiothoracic and Vascular Anesthesia, Feb. 28, 1989, vol. 3, No. 1, pp. 1-3. |
Sheppard, Louis, Ph.D., “Computer Control of the Infusion of Vasoactive Drugs”, Annals of Biomedical Engineering, Jul. 1980, vol. 8, No. 4-6, pp. 431-444. |
Sheppard, Louis, Ph.D., “The Application of Computers to the Measurement, Analysis, and Treatment of Patients Following Cardiac Surgical Procedures”, The University of Alabama in Birmingham, Oct. 31, 1977, pp. 297-300. |
Sheppard, Louis, Ph.D., “The Computer in the Care of Critically Ill Patients”, Proceedings of the IEEE, Sep. 1979, vol. 67, No. 9, pp. 1300-1306. |
“Sigma Spectrum: Operator's Manual”, Oct. 2009, pp. 72. http://static.medonecapital.com/manuals/userManuals/Sigma-Spectrum-Operator-Manual-October-2009.pdf. |
Simonsen, Michael Ph.D., POC Testing, New Monitoring Strategies on Fast Growth Paths in European Healthcare Arenas, Biomedical Business & Technology, Jan. 2007, vol. 30, No. 1, pp. 1-36. |
Siv-Lee et al., “Implementation of Wireless ‘Intelligent’ Pump IV Infusion Technology in a Not-for-Profit Academic Hospital Setting”, Hospital Pharmacy, Sep. 2007, vol. 42, No. 9, pp. 832-840. http://www.thomasland.com/hpj4209-832.pdf. |
Slack, W.V., “Information Technologies for Transforming Health Care”, http://www.andrew.cmu.edu/course/90-853/medis.dir/otadocs.dir/03ch2.pdf, Ch. 2, 1995, pp. 29-78. |
Smith, Joe, “Infusion Pump Informatics”, CatalyzeCare: Transforming Healthcare, as printed May 12, 2011, pp. 2. |
Sodder, Lisa, “A Center Keeps Medicine in Right Hands”, Dec. 4, 1999, pp. 1-2. |
Stitt, F.W., “The Problem-Oriented Medical Synopsis: a Patient-Centered Clinical Information System”, Proceedings of the Annual Symposium on Computer Application in Medical Care, 1994, pp. 88-92. |
Stokowski, Laura A. RN, MS, “Using Technology to Improve Medication Safety in the Newborn Intensive Care Unit”, Advances in Neonatal Care, Dec. 2001, vol. 1, No. 2, pp. 70-83. |
Szeinbach et al., “Automated Dispensing Technologies: Effect on Managed Care”, Journal of Managed Care Pharmacy (JMCP), Sep./Oct. 1995, vol. 1, No. 2, pp. 121-127. |
Szolovits et al., “Guardian Angel: Patient-Centered Health Information Systems”, Technical Report MIT/LCS/TR-604, Massachusetts Institute of Technology Laboratory for Computer Science, May 1994, pp. 39. |
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in Critically Ill Patients”, The New England Journal of Medicine, Nov. 8, 2001, vol. 345, No. 19, pp. 1359-1367. |
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in the Medical ICU”, The New England Journal of Medicine, Feb. 2, 2006, vol. 354, No. 5, pp. 449-461. |
Van Der Maas et al., “Requirements for Medical Modeling Languages”, Journal of the American Medical Informatics Association, Mar./Apr. 2001, vol. 8, No. 2, pp. 146-162. |
Villalobos et al., “Computerized System in Intensive Care medicine”, Medical Informatics, vol. 11, No. 3, 1986, pp. 269-275. |
Wilkins et al., “A Regular Language: The Annotated Case Report Form”, PPD Inc., PharmaSUG2011—Paper CD18, 2011, pp. 1-9. |
Ying et al., “Regulating Mean Arterial Pressure in Postsurgical Cardiac Patients. A Fuzzy Logic System to Control Administration of Sodium Nitroprusside”, IEEE Engineering in Medicine and Biology Magazine, vol. 13, No. 5, Nov.-Dec. 1994, pp. 671-677. |
Yue, Ying Kwan, “A Healthcare Failure Mode and Effect Analysis on the Safety of Secondary Infusions”, Thesis, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 2012, pp. 168. |
Yurkonis et al., “Computer Simulation of Adaptive Drug Infusion”, IEEE Transactions on Biomedical Engineering, vol. BME-34, No. 8, Aug. 1987, pp. 633-635. |
Zakariah et al., “Combination of Biphasic Transmittance Waveform with Blood Procalcitonin Levels for Diagnosis of Sepsis in Acutely Ill Patients”, Critical Care Medicine, 2008, vol. 36, No. 5, pp. 1507-1512. |
Gabel et al., “Camp: A Common API for Measuring Performance”, 21st Large Installations System Administration Conference (LISA '07), 2007, pp. 49-61. |
Sutton et al., “The Syntax and Semantics of the PROforma Guideline Modeling Language”, Journal of the American Medical Informatics Association, Sep./Oct. 2003, vol. 10, No. 5, pp. 433-443. |
Number | Date | Country | |
---|---|---|---|
20190269852 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62050536 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15511193 | US | |
Child | 16296806 | US | |
Parent | 14853198 | Sep 2015 | US |
Child | 15511193 | US |