Matching geometry generation and display of mammograms and tomosynthesis images

Information

  • Patent Grant
  • 10248882
  • Patent Number
    10,248,882
  • Date Filed
    Monday, November 6, 2017
    7 years ago
  • Date Issued
    Tuesday, April 2, 2019
    5 years ago
Abstract
A method and a system for using tomosynthesis projection images of a patient's breast to reconstruct slice tomosynthesis images such that anatomical structures that appear superimposed in a mammogram are at conforming locations in the reconstructed images.
Description
FIELD

This patent specification is in the field of x-ray imaging of patients for screening or other purposes, and more specifically is directed to methods and systems for generating and displaying mammograms and tomosynthesis x-ray images in ways that improve their usefulness.


BACKGROUND

Breast cancer remains a significant threat to women's health. X-ray mammograms have long been a standard in screening patients for breast cancer or other abnormalities and also are widely used in diagnosis and treatment planning. X-ray mammography typically records the breast image on x-ray film but more recently digital x-ray image receptors have come into use, as in the Selenia™ mammography system available from Hologic Inc. of Bedford, Mass. and its division Lorad of Danbury, Conn. For mammograms, a cone-shaped or pyramid-shaped x-ray beam passes through the compressed breast and forms a two-dimensional projection image. Any one of a number of orientations can be used, such as cranial-caudal (CC) or MLO (mediolateral-oblique) orientation. More recently, breast x-ray tomosynthesis has been proposed. The technology typically involves taking two-dimensional (2D) projection images of the immobilized breast at each of a number of angles of the x-ray beam relative to the breast and processing the resulting x-ray measurements to reconstruct images of breast slices that typically are in planes transverse to the x-ray beam axis, such as parallel to the image plane of a mammogram of the same breast. The range of angles is substantially less than in computerized tomography, i.e. substantially less than 180°, e.g. ±15°. Tomosynthesis technology is described in U.S. patent application Ser. No. 10/723,486 filed Nov. 26, 2003; a prototype of a unit with at least some of the described features was shown at the 2003 Radiological Society of North America meeting in Chicago, Ill. Additional prototypes are in clinical testing in this country as of the filing of this patent specification. Other approaches to tomosynthesis also have been proposed: see, e.g., U.S. Pat. Nos. 4,496,557, 5,051,904, 5,359,637, 6,289.235, and 6,647,092, published U.S. Patent Applications Nos. 2001/0038861, 2004/066882, 2004/0066884, and 2004/0066904, and Digital Clinical Reports, Tomosynthesis (GE Brochure 98-5493, November 1998). How to reconstruct tomosynthesis images is discussed in DG Grant, “Tomosynthesis: a three-dimensional imaging technique”, IEEE Trans. Biomed. Engineering, Vol BME-19, #1, (January 1972), pp 20-28. The patents, applications, brochures, and article cited above are hereby incorporated by reference in this patent specification as though fully set forth herein.


In clinical use, it can be desirable for a number of reasons to assess both tomosynthesis images and conventional mammograms of the patient's breasts. For example, the decades of conventional mammograms have enabled medical professionals to develop valuable interpretation expertise. Mammograms may offer good visualization of microcalcifications, and can otter higher spatial resolution compared with tomosynthesis. Tomosynthesis images may have different desirable characteristics—e.g., they may offer better visualization of structures that can be obscured by overlying or underlying tissue in a conventional mammogram. However, the inventors named herein have recognized that a challenge arises in assessing tomosynthesis images, either alone or in conjunction with mammograms of the same breast. Tomosynthesis images tend to look different from mammograms in that a given tomosynthesis image may not show anatomical structure seen in a mammogram or in another tomosynthesis image of the same breast; and, to the extent a tomosynthesis image shows structure that also is seen in the mammogram or in another tomosynthesis image, that structure may be at different relative places in the images. This can make it difficult to apply to tomosynthesis images the expertise built over years of experience reading mammograms, and difficult to visualize and assess the same structure from the different types of images. For these and other reasons, the inventors believe that a need exists for further improvements in the generation and presentation of such images to make them more useful to health professionals.


SUMMARY

The disclosed process and system generate and display tomosynthesis slice images of a patient's breast such that an object in the breast is at same or at least matching relative places in each slice image in which it is visible and, preferably, also at the same or at least matching place as in a conventional mammogram of the same breast. To achieve this, the method and system obtain 2D x-ray projection data for tomosynthesis images and, preferably, at least one 2D x-ray projection mammogram of a patient's breast, preferably using in each case a cone-shaped or pyramid-shaped imaging x-ray beam, and generate tomosynthesis images such that they conform to the same geometric coordinate system and, preferably, to the same coordinate system as a 2D projection mammogram. As a result, anatomical structures appear at geometrically matching or corresponding places in such tomosynthesis images and, preferably, in the mammogram. The tomosynthesis images can be generated in a two-step computer-implemented process that tirst reconstructs tomosynthesis images in an initial coordinate system in which objects are not or may not be at matching positions in different tomosynthesis images or in the mammogram, and then projects those images into another coordinate system, such as the coordinate system of the mammogram. Alternatively, the reconstruction can directly generate tomosynthesis images that match the appropriate coordinate system, e.g. the cone beam geometry of the mammogram. Still alternatively, the cone-shaped or pyramid-shaped beam can be simulated by scanning the breast with a fan-shaped x-ray beam or a beam having some other geometry. The term x-ray beam as used in this patent specification includes such simulated cone-shaped or pyramid-shaped beams.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a and 1b illustrate in simplified form an example of geometry used in obtaining x-ray mammograms and x-ray tomosynthesis measurements.



FIG. 2 illustrates image planes of a mammogram and tomosynthesis slice images.



FIGS. 3a, 3b, and 3c illustrate, respectively, a conventional mammogram and two tomosynthesis slice images, where two objects that are at different heights in the breast appear superimposed in the mammogram but at different relative locations in the tomosynthesis slice images.



FIGS. 4a, 4b, and 4c illustrate, respectively, a conventional mammogram and two tomosynthesis slice images, where two objects that are at different heights in the breast appear superimposed in the mammogram but at locations in the tomosynthesis slice images that match their locations in the mammogram.



FIGS. 5a and 5b illustrate, respectively, tomosynthesis reconstruction into a Cartesian and into a cone-beam geometry.



FIG. 6 is a block diagram of a system implementing an example of an embodiment of the disclosed methods and systems.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIGS. 1a and 1b illustrate in simplified view an example of geometry for CC (cranial-caudal) imaging of a patient's breast 10. Breast 10 is compressed between an image receptor 12, such as a flat panel digital imager, and a compression paddle 14, and is imaged with a cone-shaped or pyramid-shaped x-ray beam 16 from an x-ray source 18. FIG. 1a illustrates a front view where the long axis of the compressed breast 10 is normal to the sheet, and FIG. 1b illustrates a side view where the long axis of the breast is in the plane of the sheet and where the patient's chest (not shown) is to the right of the illustrated geometry. Respective coordinate systems are shown above FIGS. 1a and 1b. In pertinent respect, the illustrated geometry is similar to that used in the Selenia™ mammography system identified above as well as in the tomosynthesis system disclosed in said patent application Ser. No. 10/723,486. As is known, the breast can be compressed and imaged in other orientations as well.



FIG. 2 illustrates the same geometry as FIG. 1b, and the same coordinate system, except that it highlights a single raypath or x-ray trajectory 20 rather than illustrate the entire x-ray beam 16. In addition, FIG. 2 illustrates two objects in breast 10, object #1 at slice A and object #2 at slice B. The term object is used here to refer to any structure that can be imaged in a mammogram or a tomosynthesis image, such as a lesion in the breast, and the term slice is used to refer to a layer of the breast of a finite thickness, e.g. thickness in the z-direction, that is less than the total breast thickness. For example, a slice can be a few mm thick, or thinner or thicker.


In tomosynthesis images, the same objects #1 and #2 can appear at different locations relative to other structure in the breast as compared with a mammogram of the same breast, as illustrated in FIGS. 3a-3c. FIG. 3a illustrates a mammogram that can be obtained with the geometry of FIG. 2, while FIGS. 3b and 3c illustrate tomosynthesis images of slices A and B, respectively, obtained with a system as disclosed in said application Ser. No. 10/723,486. Because objects #1 and #2 are along the same x-ray trajectory 20, they appear superimposed in the mammogram of FIG. 3a. However, because x-ray trajectory 20 is not normal to the image plane of receptor 12, as is the general case with x-ray trajectories when using such cone-beam or pyramid-beam x-ray geometry, the two objects appear at different xy locations in the tomosynthesis images of FIGS. 3b and 3c. These tomosynthesis images can be conceptualized as vertical projections of slices A and B onto the image plane of the mammogram, e.g. the image plane of x-ray receptor 12. Another way to conceptualize such a tomosynthesis image is to imagine that slice A alone, with no other breast tissue above or below it, were laid directly on x-ray receptor 12 and imaged. For similar reasons, the same object #2 shows up at different xy locations in FIGS. 3a and 3c.


The new approach described in this patent specification achieves a different result. Given the same data acquisition geometry (FIG. 2), the new approach generates images as illustrated in FIGS. 4b and 4c rather than those of FIGS. 3b and 3c.



FIG. 4a is the same as FIG. 3a—a mammogram that shows the same objects #1 and #2 superimposed. However, FIG. 4b differs significantly from FIG. 3b, and FIG. 4c differs significantly from FIG. 3c. In particular, FIGS. 4b and 4c show the images of objects #1 and #2 at xy locations that are in the same coordinate system. Moreover, in this example this is the same coordinate system as that of the mammogram of FIGS. 4a (and 3a). Both FIGS. 4b and 3b are tomosynthesis images of slice A, but FIG. 4c shows object #2 in slice image A′ at the correct xy location that matches the location of the same object in the mammogram of FIG. 4a. Similarly, both FIGS. 4c and 3c are tomosynthesis images of slice B, but FIG. 4c shows object #2 in slice image B′ at the correct xy location that matches the location of the same object in the mammogram of FIG. 4a.


The reason for the difference between FIGS. 3b and 4b, and between FIGS. 3c and 4c, is not in how the underlying x-ray measurements are derived but in how the tomosynthesis images are reconstructed and displayed. All relevant x-ray measurements can be obtained as disclosed in said patent application Ser. No. 10/723,486, as one example, typically as respective 2D sets of pixel values (x-ray measurements for elemental picture areas) at each of several different angles of x-ray beam 16 relative to breast 10, e.g. at several equidistant angles over a range of ±15°. Other raw x-ray data acquisition techniques can be used in the alternative. After pre-processing of the type known in the mammography and breast tomosynthesis art, those pixel values can be reconstructed into a rectangular Cartesian coordinate system (30 in FIG. 5a) using known reconstruction algorithms such as filtered back projection, iterative reconstruction, maximum likelihood reconstruction, or others, for example as taught in said patent application Ser. No. 10/723,486. As illustrated in FIG. 5a, the voxels (elemental volume elements) that are imaged as respective pixels in the tomosynthesis slice images are aligned along lines normal to the image plane of receptor 12. The result can be conceptualized as a set of pixel values representing x-ray properties of the voxels that are in the 3D space bound by the image plane of receptor 12 at the bottom, compression paddle 14 on top, and on the sides by the boundaries of x-ray beam 16 that impinges on receptor 12, and are uniformly spaced in xy planes. However, because x-ray beam 16 is cone-shaped or pyramid-shaped, the sides of this 3D space slope at least on three sides of the beam, and the x-ray trajectories from source 18 to receptor 12 diverge in the general case. Thus, in the general case each x-ray trajectory such as trajectory 20 is non-normal to the image plane of receptor 12. As a result, the height of an object in breast 10 influences where the image of that object will be in a mammogram taken with receptor 12. Stated differently, if two objects in the breast are along the same line normal to the image plane, in general they will appear spaced from each other in the mammogram but if the same two objects are along one of the sloping x-ray trajectory, they will appear superimposed in the mammogram. When tomosynthesis reconstruction directly or indirectly calculates a pixel image of a slice that is both parallel to the mammogram image plane and is in the same coordinate system as the mammogram, as disclosed in this patent specification, the resulting tomosynthesis image in general can show the image of an object in the breast at the same position relative to other tissue in the same slice in the breast in all tomosynthesis slice images and will better match the mammogram image.


Conceptually, images such as in FIGS. 4b and 4c can be obtained by projecting each of several horizontal breast slices separately onto the image plane of the mammography image, along the actual x-ray trajectories included in x-ray beam 16. This can be conceptualized by imagining that a slice such as slice A keeps its physical position illustrated in FIG. 2, all other breast tissue is absent, and a projection image is taken of slice A alone, using the geometry of FIG. 2. Of course, this cannot be done literally because of the presence of breast tissue above and/or below the slice. In the methods and systems disclosed in this patent specification, this result can be achieved directly or indirectly, by implementing a reconstruction algorithm of the type described in the Grant article cited above, adapted to the geometry and other characteristics of a particular x-ray data acquisition system without undue experimentation by a programmer of ordinary skill in the art. For a cone beam x-ray illumination, the reconstruction geometry can be a cone beam coordinate system 31 shown in FIG. 5b, where the voxels that correspond to pixels in the tomosynthesis slice images are at different xy spacings (and differ in size at least in the xy plane) in different slices and corresponding voxels of different slices are along the same (generally sloping) x-ray trajectory. Alternatively, the desired result can be achieved indirectly, by first reconstructing tomosynthesis images that together represent a three dimensional space having at least three sloping sides matching the geometry of the imaging x-ray beam (as in the coordinate system of FIG. 5a), and then geometrically projecting the pixel values of such tomosynthesis images onto the image plane of the mammogram along the directions of respective x-ray trajectories in the x-ray beam, again using a computer-implemented process adapted without undue experimentation to a particular x-ray data acquisition geometry by a programmer of ordinary skill in the art.


Tomosynthesis slice images such as in FIGS. 4b and 4c can facilitate assessment of breast features by allowing more direct and simplified comparison between different tomosynthesis slice images and between tomosynthesis slice images on the one hand and conventional mammograms on the other hand. With images such as in FIGS. 4a-4c, the health professional can read a mammogram (FIG. 4a) in a conventional manner, but can also display and view any one or several of a number of tomosynthesis slice images of the same breast to visualize and assess structures that can be at different heights in the breast but appear at the same or at least matching relative locations in each image in which they show. The mammogram and the tomosynthesis slice images can be displayed on the same monitor or screen, displaying one image at a time by alternating from one image to another with a suitable switch or other interface controlled by the health professional. Alternatively, one or more tomosynthesis and/or mammogram images can be displayed on one monitor or screen while one or more other images can be displayed on another monitor or screen, to allow for simultaneous viewing. As another approach, two or more tomosynthesis and/or mammogram images can displayed at respective locations on the same monitor or screen. In each case, a control interface can allow the health professional to select the images for display and the locations for display of those images.


Reconstructing and displaying tomosynthesis slice images (FIGS. 4b and 4c) as described above is particularly suitable for use in conjunction with computer-aided diagnosis (CAD) of breast images. In CAD, as currently practiced through equipment and/or software provided by companies such as R2 Technology, Inc. of Sunnyvale, Calif., an x-ray breast image is computer-analyzed and image markers are generated and displayed to indicate the location of suspected abnormalities and, in some cases, the likely type of abnormality. When the tomosynthesis slice images are as in FIGS. 4b and 4c, such markers can be accurately and easily displayed at correct locations relative to the tomosynthesis slice image, even when such markers are generated based solely or mainly on the appropriate mammogram. In addition, fusion images can be generated and selectively displayed under the control of a health professional. For example, a mammogram such as in FIG. 4a and a slice image such as in FIG. 4b or 4c can be superimposed for display, for example with the mammogram in gray scale or in a first selected color or set of colors and the tomosynthesis image in a second selected color or set of colors. The fused image can further include CAD markers displayed at the appropriate locations.


Another display method is to select a region of interest in a mammogram, for example by the health professional drawing or otherwise indicating a region of interest (ROI), and replacing the ROI with the corresponding portion of a selected tomosynthesis slice image. The particular tomosynthesis slice image or succession of such images can be selected by the health professions through an appropriate interface such a track ball or mouse buttons or wheel. The health professional can scroll up and down the height of the imaged breast and see tomosynthesis images within the ROI without losing landmark orientation relative to other parts of the breast that are still seen in the portion of the mammogram outside the ROI. Still in addition, the tomosynthesis x-ray measurements and/or images described above can be used to reconstruct or reformat slice images conforming to planes that are not parallel to the image plane of a mammogram, using image processing techniques known in technologies such as CT (computerized tomography) scanning, and to reconstruct or reformat 3D displays of the imaged breast or selected portions of the breast, for display alone or in conjunction with the display of one or more mammograms and/or 3D tomosynthesis slice images.



FIG. 6 illustrates in block diagram form an example of a system implementing technology described above. An x-ray data acquisition unit 50 acquires x-ray measurements for tomosynthesis and/or mammogram images, for example as described in patent application Ser. No. 10/723,486. A pre-processing unit 52 applies known gain and offset corrections to the raw x-ray measurements from unit 50, and known normalization/log conversion of the corrected data. Image reconstruction unit 54 uses the pre-processed x-ray measurements to generate appropriate tomosynthesis and/or mammographic images. Such images are displayed at unit 56, under the control of a user interface 58 that includes controls such a keyboard, mouse, etc. to select and manipulate the displayed images as well as to control units 50-58 for other purposes.


For the reconstruction processing carried out in unit 54, a geometry matrix can be defined from a geometry calibration file and input projection angles appropriate to unit 50 for use in backprojection, from fits to the matrix elements determined from a geometry calibration of unit 50 and input projection angles measured by an encoder in unit 50. Image processing and filtering can be carried out on the images prior to reconstruction, using image processing techniques known in technologies such as CT scanning and tomosynthesis. A known skin line correction can also be applied at this stage. A backprojection can then be carried out, one tomosynthesis slice at a time, using the geometry matrix as follows,











(



u




v




s



)

=


(

M
i

)



(



x




y




z




1



)










d
x

=

u
/
s









d
y

=

v
/
s






Equation





1








where Mi is the 3×4 geometry matrix for projection i, (x,y,z) is the location of an image pixel, and (dx,dy) is the location on the x-ray detector element or area for the line that connects a focal spot in source 18 and the image pixel. This method of backprojection is described, for example, in section 3.4 in Faugeras, O., Three-Dimensional Computer Vision, A Geometric Viewpoint, (MIT Press, 2001), hereby incorporated by reference in this specification.


In a first method, using Cartesian coordinates as in FIG. 5a, the reconstructed slices are parallel to the breast plate, or parallel to the image plane of receptor 12 at 0° projection angle. Voxels and their corresponding image pixels are equally spaced in x-y (in-plane). The x-y pixel spacing is the same for each image slice. The z-pixel spacing is the desired output slice separation. In a second method, using cone beam coordinates as in FIG. 5b, the in-slice pixel spacing varies as a function of slice number, or distance from the focal spot in source 18. The image slices are confined to the volume defined by a given source/detector location, that is, the volume defined by the four lines connecting the x-ray source point to the four corners of image receptor 12 (or any four points on receptor 12). M is first transformed by another matrix to obtain reconstructed planes that are parallel to receptor 12 at some other arbitrary projection angle. This rotation matrix is obtained from the geometry matrix of that projection. In addition, a pixel size scale factor and pixel starting location (corner of a given slice) are calculated for each slice. The scale factor depends on the number of projections that intersect the given pixel. That is, some pixels are not ‘seen’ by all projections. This scaling reduces band artifacts near the edge of the image.


The tomosynthesis image slices to be reconstructed can be parallel to a “default” reference plane as suggested by Equation 1 above. Alternatively, they can be at other preferred orientations, defined by a 4×4 matrix multiplication operation applied to the original 3×4 matrix M, according to:










(



u




v




s



)

=



(

M
i

)



(




R

3
×




3





T
3






O
3
T




I
1




)



(




x







y







z






1



)






where






(



x




y




z




1



)


=


(




R

3
×




3





T
3






O
3
T




I
1




)



(




x







y







z






1



)







Equation





2







For example, a preferred orientation can be an orientation in which a particular mammogram is taken.


Thus, the backprojection for reconstructing tomosynthesis slice images can involve:

    • 1.) The selection of the orientation of image slices to be reconstructed. The slice can be either parallel to the “default” reference plane as suggested by Equation 1, or at another more preferred orientation, which is defined by a 4×4 matrix multiplication operation to the original 3×4 matrix M, as expressed by Equation 2; and
    • 2.) Selection of the reconstruction voxel grid in space, which can be either a Cartesian grid (FIG. 5a) or a Cone beam grid (FIG. 5b).


It should be clear to those skilled in the relevant technology that the above description is only one example of implementing the new approach and that numerous variations are possible that are within the scope of the description above.


Thus, in one non-limiting example, this patent specification discloses a method comprising: obtaining tomosynthesis x-ray measurements and at least one 2D x-ray projection mammogram of a patient's breast, wherein the mammogram image and the tomosynthesis measurements are obtained using a cone-shaped or pyramid-shaped imaging x-ray beam, and reconstructing 2D tomosynthesis images from the tomosynthesis measurements, wherein the tomosynthesis images conform to the same geometric coordinate system as the 2D projection mammogram, whereby anatomical structures that appear in the mammogram appear at geometrically corresponding places in respective ones of the tomosynthesis images. The step or steps of reconstructing 2D tomosynthesis images can comprise using a computer-implemented cone beam reconstruction algorithm directly generating the tomosynthesis images. Alternatively, the step or steps of reconstructing the 2D tomosynthesis images can comprise generating information describing initial tomosynthesis images, in which tissue or objects in the breast that are at different heights in the breast but overlap in the mammogram appear at mismatched positions in the initial tomosynthesis images, and using the information describing the initial tomosynthesis images to generate final tomosynthesis images in which said tissue or objects appear at positions that match their positions in the mammogram. This alternative can be implemented by generating the initial tomosynthesis images in an initial coordinate system different from that of the mammogram, and processing the information describing the initial tomosynthesis images into tomosynthesis images that match the coordinate system of the mammogram. In the initial coordinate system, the initial tomosynthesis images may differ in pixel spacing while the final tomosynthesis images may have the same pixel spacing. The final pixel spacing may be the same as in the mammogram.


This patent specification also discloses, as another non-limiting example, an x-ray system comprising an x-ray data acquisition unit that uses a cone-shaped or pyramid shaped x-ray beam and an x-ray receptor to obtain tomosynthesis x-ray measurements and x-ray measurements for at least one 2D x-ray projection mammogram of a patient's breast, a pre-processor that receives said measurements from the x-ray receptor and subjects them to pre-processing operations, a tomo/mammo image reconstruction unit that receives the pre-processed images and subjects them to further processing to reconstructing 2D tomosynthesis images and a mammogram, wherein tissue or objects in the breast that are at different heights in the breast but appear superimposed in the mammogram appear at locations in the tomosynthesis images that are the same as or at least match their location in the mammogram, and a display unit that selectively displays one or more of the tomosynthesis images and the mammogram and is under the control of a used interface operated by a health professional. The image reconstruction unit can use a computer-implemented cone beam reconstruction algorithm directly generating the tomosynthesis images. Alternatively, the image reconstruction unit can generate information describing initial tomosynthesis images, in which tissue or objects in the breast that are at different heights in the breast but overlap in the mammogram appear at mismatched positions in the initial tomosynthesis images, and can use the information describing the initial tomosynthesis images to generate final tomosynthesis images in which said objects appear at positions that are the same as or at least match their positions in the mammogram. This alternative can be implemented by generating the initial tomosynthesis images in an initial coordinate system different from that of the mammogram, and processing the information describing the initial tomosynthesis images into tomosynthesis images that match the coordinate system of the mammogram. In the initial coordinate system, the initial tomosynthesis images may differ in pixel spacing while the final tomosynthesis images may have the same pixel spacing. The final pixel spacing may be the same as in the mammogram.

Claims
  • 1. A method comprising: imaging a breast so as to acquire digital information corresponding to a plurality of x-ray tomosynthesis projection images of the breast taken at different angles;generating, from the digital information, a plurality of reconstructed tomosynthesis images representative of respective breast layers;obtaining a mammogram image of the breast;receiving a selection of a region of interest in the mammogram image of the breast; anddisplaying a portion of at least one of the plurality of reconstructed tomosynthesis images corresponding to the selected region of interest.
  • 2. The method of claim 1, further comprising displaying a portion of the mammogram image of the breast.
  • 3. The method of claim 2, further comprising simultaneously: displaying the portion of the mammogram image; anddisplaying the portion of the at least one of the plurality of reconstructed tomosynthesis images.
  • 4. The method of claim 3, wherein the portion of the at least one of the plurality of reconstructed tomosynthesis images is displayed within the selected region of interest.
  • 5. The method of claim 4, further comprising: receiving an input; andin response to the received input, displaying sequentially at least a portion of each of at least two of the plurality of reconstructed tomosynthesis images.
  • 6. The method of claim 5, wherein the at least a portion of each of at least two of the plurality of reconstructed tomosynthesis images are displayed within the selected region of interest.
  • 7. The method of claim 1, wherein each of the plurality of reconstructed tomosynthesis images are parallel to an image plane of the mammogram image of the breast.
  • 8. The method of claim 1, wherein the obtaining operation comprises directing an x-ray at the breast.
  • 9. The method of claim 1, wherein each of the plurality of reconstructed tomosynthesis images is representative of respective breast layers and has a layer thickness corresponding to a thickness of a breast that is less than a total thickness of the breast.
  • 10. The method of claim 1, wherein the selection of the region of interest comprises a drawing of a region of interest.
  • 11. A method comprising: displaying a mammogram image of a compressed breast, wherein the mammogram image corresponds to substantially an entire thickness of the compressed breast;receiving an input corresponding to a region of interest in the mammogram image;displaying, within the region of interest, at least a portion of a first reconstructed tomosynthesis image, wherein the first reconstructed tomosynthesis image corresponds to less than substantially the entire thickness of the compressed breast.
  • 12. The method of claim 11, further comprising displaying at least a portion of the mammogram image.
  • 13. The method of claim 12, wherein the a portion of the mammogram image within the region of interest is not displayed.
  • 14. The method of claim 13, further comprising receiving an input and, based at least in part on the input, displaying sequentially the portion of first reconstructed tomosynthesis image and a portion of a second reconstructed tomosynthesis image.
  • 15. The method of claim 14, further comprising: receiving a marker input when the first reconstructed tomosynthesis image is displayed; anddisplaying the marker on the first reconstructed tomosynthesis image.
  • 16. The method of claim 15, further comprising displaying the marker on the second reconstructed tomosynthesis image.
  • 17. The method of claim 15, wherein the marker corresponds to a location of a suspected abnormality.
  • 18. The method of claim 11, wherein the first reconstructed tomosynthesis image corresponds to a first reconstructed tomosynthesis image plane that is substantially parallel to a mammogram image plane.
  • 19. The method of claim 11, further comprising obtaining the mammogram image and the first reconstructed tomosynthesis image.
  • 20. The method of claim 19, wherein at least one of the mammogram image and the first reconstructed tomosynthesis image is obtained by directing x-rays at the compressed breast.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/744,930, filed Jun. 19, 2015, now U.S. Pat. No. 9,811,758, which is a continuation of U.S. patent application Ser. No. 14/263,216, filed Apr. 18, 2014, now U.S. Pat. No. 9,084,579, which is a continuation of U.S. patent application Ser. No. 13/418,851, filed Mar. 13, 2012, now U.S. Pat. No. 8,712,127, which is a continuation of U.S. patent application Ser. No. 12/535,343, filed Aug. 4, 2009, now U.S. Pat. No. 8,155,421, which is a continuation of U.S. patent application Ser. No. 11/667,650, filed Nov. 30, 2007, now U.S. Pat. No. 7,702,142, which is a National Stage Application of PCT/US200541941 filed Nov. 15, 2005, which claims priority to and the benefit of U.S. Provisional Patent Application No. 60/628,516, filed Nov. 15, 2004, the disclosures of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (173)
Number Name Date Kind
3502878 Stewart Mar 1970 A
3863073 Wagner Jan 1975 A
3971950 Evans et al. Jul 1976 A
4160906 Daniels et al. Jul 1979 A
4310766 Finkenzeller et al. Jan 1982 A
4496557 Malen et al. Jan 1985 A
4559641 Caugant et al. Dec 1985 A
4706269 Reina et al. Nov 1987 A
4744099 Huettenrauch et al. May 1988 A
4773086 Fujita et al. Sep 1988 A
4773087 Plewes Sep 1988 A
4819258 Kleinman et al. Apr 1989 A
4821727 Levene et al. Apr 1989 A
4969174 Scheid et al. Nov 1990 A
4989227 Tirelli et al. Jan 1991 A
5018176 Romeas et al. May 1991 A
RE33634 Yanaki Jul 1991 E
5029193 Saffer Jul 1991 A
5051904 Griffith Sep 1991 A
5078142 Siczek et al. Jan 1992 A
5163075 Lubinsky et al. Nov 1992 A
5164976 Scheid et al. Nov 1992 A
5199056 Darrah Mar 1993 A
5240011 Assa Aug 1993 A
5289520 Pellegrino et al. Feb 1994 A
5359637 Webbe Oct 1994 A
5365562 Toker Nov 1994 A
5415169 Siczek et al. May 1995 A
5426685 Pellegrino et al. Jun 1995 A
5452367 Bick et al. Sep 1995 A
5506877 Niklason et al. Apr 1996 A
5526394 Siczek et al. Jun 1996 A
5539797 Heidsieck et al. Jul 1996 A
5553111 Moore et al. Sep 1996 A
5592562 Rooks Jan 1997 A
5594769 Pellegrino et al. Jan 1997 A
5596200 Sharma et al. Jan 1997 A
5598454 Franetzki et al. Jan 1997 A
5609152 Pellegrino et al. Mar 1997 A
5627869 Andrew et al. May 1997 A
5657362 Giger et al. Aug 1997 A
5668889 Hara Sep 1997 A
5719952 Rooks Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5769086 Ritchart et al. Jun 1998 A
5803912 Siczek et al. Sep 1998 A
5818898 Tsukamoto et al. Oct 1998 A
5828722 Ploetz et al. Oct 1998 A
5872828 Niklason et al. Feb 1999 A
5878104 Ploetz Mar 1999 A
5896437 Ploetz Apr 1999 A
5986662 Argiro et al. Nov 1999 A
6005907 Ploetz Dec 1999 A
6022325 Siczek et al. Feb 2000 A
6075879 Roehrig et al. Jun 2000 A
6091841 Rogers et al. Jul 2000 A
6137527 Abdel-Malek et al. Oct 2000 A
6141398 He et al. Oct 2000 A
6149301 Kautzer et al. Nov 2000 A
6175117 Komardin et al. Jan 2001 B1
6196715 Nambu et al. Mar 2001 B1
6216540 Nelson et al. Apr 2001 B1
6219059 Argiro Apr 2001 B1
6233473 Shepherd et al. May 2001 B1
6243441 Zur Jun 2001 B1
6256370 Yavuz Jul 2001 B1
6272207 Tang Aug 2001 B1
6289235 Webber et al. Sep 2001 B1
6292530 Yavus et al. Sep 2001 B1
6327336 Gingold et al. Dec 2001 B1
6341156 Baetz et al. Jan 2002 B1
6375352 Hewes et al. Apr 2002 B1
6411836 Patel et al. Jun 2002 B1
6415015 Nicolas et al. Jul 2002 B2
6442288 Haerer et al. Aug 2002 B1
6459925 Nields et al. Oct 2002 B1
6501819 Unger et al. Dec 2002 B2
6556655 Chichereau et al. Apr 2003 B1
6597762 Ferrant et al. Jul 2003 B1
6611575 Alyassin et al. Aug 2003 B1
6620111 Stephens et al. Sep 2003 B2
6626849 Huitema et al. Sep 2003 B2
6633674 Barnes et al. Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6647092 Eberhard et al. Nov 2003 B2
6744848 Stanton et al. Jun 2004 B2
6748044 Sabol et al. Jun 2004 B2
6751285 Eberhard et al. Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6813334 Koppe et al. Nov 2004 B2
6882700 Wang et al. Apr 2005 B2
6885724 Li et al. Apr 2005 B2
6912319 Barnes et al. Jun 2005 B1
6940943 Claus et al. Sep 2005 B2
6978040 Berestov Dec 2005 B2
6999554 Mertelmeier Feb 2006 B2
7025725 Dione et al. Apr 2006 B2
7110490 Eberhard Sep 2006 B2
7110502 Tsuji Sep 2006 B2
7123684 Jing et al. Oct 2006 B2
7127091 Op De Beek et al. Oct 2006 B2
7142633 Eberhard et al. Nov 2006 B2
7245694 Jing et al. Jul 2007 B2
7315607 Ramsauer Jan 2008 B2
7319735 Defreitas et al. Jan 2008 B2
7323692 Rowlands et al. Jan 2008 B2
7430272 Jing et al. Sep 2008 B2
7443949 Defreitas et al. Oct 2008 B2
7630533 Ruth et al. Dec 2009 B2
7702142 Ren Apr 2010 B2
8712127 Ren et al. Apr 2014 B2
9084579 Ren Jul 2015 B2
9811758 Ren Nov 2017 B2
20010038681 Stanton et al. Nov 2001 A1
20010038861 Hsu et al. Nov 2001 A1
20020012450 Tsujii Jan 2002 A1
20020050986 Inoue et al. May 2002 A1
20020075997 Unger et al. Jun 2002 A1
20030018272 Treado et al. Jan 2003 A1
20030073895 Nields et al. Apr 2003 A1
20030095624 Eberhard et al. May 2003 A1
20030194050 Eberhard et al. Oct 2003 A1
20030194051 Wang et al. Oct 2003 A1
20030194121 Eberhard et al. Oct 2003 A1
20030210254 Doan et al. Nov 2003 A1
20030215120 Uppaluri et al. Nov 2003 A1
20040008809 Webber Jan 2004 A1
20040066882 Eberhard et al. Apr 2004 A1
20040066884 Hermann Claus et al. Apr 2004 A1
20040066904 Eberhard et al. Apr 2004 A1
20040094167 Brady et al. May 2004 A1
20040101095 Jing et al. May 2004 A1
20040109529 Eberhard et al. Jun 2004 A1
20040171986 Tremaglio, Jr. et al. Sep 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050049521 Miller et al. Mar 2005 A1
20050063509 Defreitas et al. Mar 2005 A1
20050078797 Danielsson et al. Apr 2005 A1
20050105679 Wu et al. May 2005 A1
20050113681 DeFreitas May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050129172 Mertelmeier Jun 2005 A1
20050135555 Claus et al. Jun 2005 A1
20050135664 Kaufhold et al. Jun 2005 A1
20050226375 Eberhard et al. Oct 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074288 Kelly et al. Apr 2006 A1
20060098855 Gkanatsios et al. May 2006 A1
20060129062 Nicoson et al. Jun 2006 A1
20060155209 Miller et al. Jul 2006 A1
20060291618 Eberhard et al. Dec 2006 A1
20070030949 Jing et al. Feb 2007 A1
20070036265 Jing et al. Feb 2007 A1
20070076844 Defreitas et al. Apr 2007 A1
20070223651 Wagenaar et al. Sep 2007 A1
20070225600 Weibrecht et al. Sep 2007 A1
20070242800 Jing et al. Oct 2007 A1
20080019581 Gkanatsios et al. Jan 2008 A1
20080045833 Defreitas et al. Feb 2008 A1
20080130979 Ren et al. Jun 2008 A1
20090003519 Defreitas et al. Jan 2009 A1
20090010384 Jing et al. Jan 2009 A1
20090080594 Brooks et al. Mar 2009 A1
20090080602 Brooks et al. Mar 2009 A1
20090135997 Defreitas et al. May 2009 A1
20090268865 Ren et al. Oct 2009 A1
20090296882 Gkanatsios et al. Dec 2009 A1
20090304147 Jing et al. Dec 2009 A1
20100054400 Ren et al. Mar 2010 A1
20100086188 Ruth et al. Apr 2010 A1
20100135558 Ruth et al. Jun 2010 A1
20100195882 Ren et al. Aug 2010 A1
20100226475 Smith et al. Sep 2010 A1
Foreign Referenced Citations (12)
Number Date Country
775467 May 1997 EP
982001 Mar 2000 EP
1428473 Jun 2004 EP
WO 9005485 May 1990 WO
WO 9816903 Apr 1998 WO
WO 0051484 Sep 2000 WO
WO 03020114 Mar 2003 WO
WO 2005051197 Jun 2005 WO
WO 2005110230 Nov 2005 WO
WO 2005 112767 Dec 2005 WO
WO 2006055830 May 2006 WO
WO 2006058160 Jun 2006 WO
Non-Patent Literature Citations (16)
Entry
Cole, Elodia, et al., “The Effects of Gray Seale Image Processing on Digital Mammography Interpretation Performance”, Academic Radiology, vol. 12, No. 5, pp. 585-595, May 2005.
Digital Clinical Reports, Tomosynthesis, GE Brochure 98/5493, Nov. 1998.
Dobbins JT et al. “Digital x-ray tomosynthesis: current state of the art and clinical potential” Physics in Medicine and Biology vol. 48, No. 19, pp. 65-81 (2003).
Essentials for life: Senographe Essential Full-Field Digital Mammography System, GE Health-care Brochure, MM-0132-05.06-ENUS, 2006.
European search report in connection with corresponding European patent application No. EP 06 25 5790, dated Aug. 17, 2007.
European search report in connection with counterpart European Patent Application No. 05824734, dated May 9, 2011.
Filtered Back Projection, (Nygren) published May 8, 2007; URL: http://web.archive.org/web/1999101013 I 715/http://www.owlnet.rice.edu/-elec539/Projects97/cult/node2.html.
Grant, DG, “Tomosynthesis, a three dimensional imagine technique”, IEEE Trans. Biomed Engineering, vol. BME-19, #1, Jan. 1972, pp. 20-28.
Heang-Ping Chan et al., “ROC study of the effect of stereoscopic imaging on assessment of breast lesions”, Medical Physics, vol. 32, No. 4, Apr. 2005.
Kita et al., “Correspondence between different view breast X-rays using simulation of breast deformation”, Proceedings 1998 IEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, Jun. 23-25, 1998, pp. 700-707.
Lorad Selenia Document B-BI-SEO US/Intl (May 2006) copyright Hologic 2006.
Mammographic Accreditation Phantom, http://www.cirsinc.com/pdfs/015cp.pdf.
PCT International Search Report and Written Opinion in International Application PCT/US2005/041941, dated Sep. 25, 2008, 6 pgs.
Pediconi, Federica et al., “Color-coded automated signal intensity curve for detection and characterization of breast lesions: Preliminary evaluation of a new software for MR-based breast imaging”, International Congress Series 1281 (2005) 1081-1086.
Senographe 700 & 8OOT (GE); 2-page download on Jun. 22, 2006 from www.gehealthcare.com/inen/rad/whe/products/mswh800t.html.; Figures 1-7 on 4 sheets relateral shift compression paddle.
Smith, A., “Fundamentals of Breast Tomosynthesis”, White Paper, Hologic Inc., WP-00007, Jun. 2008.
Related Publications (1)
Number Date Country
20180137385 A1 May 2018 US
Provisional Applications (1)
Number Date Country
60628516 Nov 2004 US
Continuations (5)
Number Date Country
Parent 14744930 Jun 2015 US
Child 15804915 US
Parent 14263216 Apr 2014 US
Child 14744930 US
Parent 13418851 Mar 2012 US
Child 14263216 US
Parent 12535343 Aug 2009 US
Child 13418851 US
Parent 11667650 US
Child 12535343 US