Matching layer thin-films for an electromechanical systems reflective display device

Information

  • Patent Grant
  • 9081188
  • Patent Number
    9,081,188
  • Date Filed
    Thursday, April 3, 2014
    10 years ago
  • Date Issued
    Tuesday, July 14, 2015
    9 years ago
Abstract
This disclosure provides systems, methods and apparatus for an electromechanical systems reflective display device. In one aspect, an electromechanical systems display device includes a reflective layer and an absorber layer. The absorber layer is spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, and includes a metal layer. A plurality of matching layers are on a surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.
Description
TECHNICAL FIELD

This disclosure relates generally to electromechanical systems (EMS) reflective display devices and more particularly to material layers on an absorber layer of an EMS reflective display device.


DESCRIPTION OF THE RELATED TECHNOLOGY

Electromechanical systems (EMS) include devices having electrical and mechanical elements, actuators, transducers, sensors, optical components (including mirrors) and electronics. Electromechanical systems can be manufactured at a variety of scales including, but not limited to, microscales and nanoscales. For example, microelectromechanical systems (MEMS) devices can include structures having sizes ranging from about a micron to hundreds of microns or more. Nanoelectromechanical systems (NEMS) devices can include structures having sizes smaller than a micron including, for example, sizes smaller than several hundred nanometers. Electromechanical elements may be created using deposition, etching, lithography, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers, or that add layers to form electrical and electromechanical devices.


One type of EMS device is called an interferometric modulator (IMOD). As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In some implementations, an interferometric modulator may include a pair of conductive plates, one or both of which may be transparent and/or reflective, wholly or in part, and capable of relative motion upon application of an appropriate electrical signal. In an implementation, one plate may include a stationary layer deposited on a substrate and the other plate may include a reflective membrane separated from the stationary layer by an air gap. The position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Interferometric modulator devices have a wide range of applications, and are anticipated to be used in improving existing products and creating new products, especially those with display capabilities.


Additional layers of material on a layer (such as the stationary layer and/or the reflective membrane) of an IMOD device or other EMS reflective display device may change the optical properties of the layer. For example, the reflective and/or absorptive characteristics of a layer may be modified with the additional layers of material.


SUMMARY

The systems, methods and devices of the disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.


One innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus including a reflective layer, an absorber layer, and a plurality of matching layers. The absorber layer may be spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer may be capable of transmitting light into the cavity, absorbing light, and reflecting light. The absorber layer may include a metal layer. The plurality of matching layers may be on a surface of the absorber layer facing away from the cavity. The plurality of matching layers may include a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.


In some implementations, the first matching layer may have a first thickness and the second matching layer may have a second thickness. The first and the second thicknesses may be configured to modify at least one of an amplitude and a phase of reflected light and transmitted light to alter a red-green-blue color saturation of the apparatus.


In some implementations, the first matching layer may include a first material having a first refractive index and the second matching layer may include a second material having a second refractive index. The second refractive index may be greater than the first refractive index.


Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus including a reflective layer, an absorber layer, a first matching layer, and a second matching layer. The absorber layer may be spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer may be capable of transmitting light into the cavity, absorbing light, and reflecting light. The absorber layer may include a metal layer. The first matching layer may have a first refractive index and be disposed on the absorber layer. The second matching layer may have a second refractive index and be disposed on the first matching layer. The second refractive index may be greater than the first refractive index.


In some implementations, the first matching layer may have a first thickness and the second matching layer may have a second thickness. The first and the second thicknesses may be configured to modify at least one of an amplitude and a phase of reflected light and transmitted light to alter a red-green-blue color saturation of the apparatus.


In some implementations, the metal layer may include at least one of vanadium, chromium, tungsten, nickel, or an alloy of molybdenum-chromium. In some implementations, the reflective layer may be configured to be movable to vary a thickness of the cavity.


Another innovative aspect of the subject matter described in this disclosure can be implemented an apparatus including a reflective layer, an absorber layer, and a plurality of matching layers. The absorber layer may be spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer may be capable of transmitting light into the cavity, absorbing light, and reflecting light. The absorber layer may include a metal layer. The reflective layer may be configured to be movable to vary a thickness of the cavity. The plurality of matching layers may be on a surface of the absorber layer facing away from the cavity. The plurality of matching layers may include a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.


In some implementations, the first matching layer may have a first thickness and the second matching layer may have a second thickness. The first and the second thicknesses may be configured to modify at least one of an amplitude and a phase of reflected light and transmitted light to alter a red-green-blue color saturation of the apparatus.


In some implementations, the metal layer may include at least one of vanadium, chromium, tungsten, nickel, or an alloy of molybdenum-chromium. In some implementations, the first matching layer may include at least one of silicon dioxide, magnesium fluoride, aluminum oxide, or a plastic. In some implementations, the second matching layer may include at least one of silicon nitride, silicon oxynitride, titanium dioxide, zirconium dioxide, tantalum oxide, or antimony oxide.


Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Although the examples provided in this disclosure are primarily described in terms of electromechanical systems (EMS) and microelectromechanical systems (MEMS)-based displays, the concepts provided herein may apply to other types of displays, such as liquid crystal displays, organic light-emitting diode (“OLED”) displays and field emission displays. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example of an isometric view depicting two adjacent pixels in a series of pixels of an interferometric modulator (IMOD) display device.



FIG. 2 shows an example of a system block diagram illustrating an electronic device incorporating a 3×3 interferometric modulator display.



FIG. 3 shows an example of a diagram illustrating movable reflective layer position versus applied voltage for the interferometric modulator of FIG. 1.



FIG. 4 shows an example of a table illustrating various states of an interferometric modulator when various common and segment voltages are applied.



FIG. 5A shows an example of a diagram illustrating a frame of display data in the 3×3 interferometric modulator display of FIG. 2.



FIG. 5B shows an example of a timing diagram for common and segment signals that may be used to write the frame of display data illustrated in FIG. 5A.



FIG. 6A shows an example of a partial cross-section of the interferometric modulator display of FIG. 1.



FIGS. 6B-6E show examples of cross-sections of varying implementations of interferometric modulators.



FIG. 7 shows an example of a flow diagram illustrating a manufacturing process for an interferometric modulator.



FIGS. 8A-8E show examples of cross-sectional schematic illustrations of various stages in a method of making an interferometric modulator.



FIGS. 9 and 10 show examples of cross-sectional schematic diagrams of a portion of an EMS reflective display device.



FIG. 11 shows an example of a flow diagram illustrating a manufacturing process for matching layers of an EMS reflective display device.



FIGS. 12A and 12B show color space diagrams for the color palettes produced by EMS reflective display devices.



FIG. 13 shows a plot of the spectrum of the red color produced by the two EMS reflective display devices, one not including matching layers and one including matching layers.



FIGS. 14A and 14B show examples of system block diagrams illustrating a display device that includes a plurality of interferometric modulators.





Like reference numbers and designations in the various drawings indicate like elements.


DETAILED DESCRIPTION

The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. The described implementations may be implemented in any device or system that can be configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual, graphical or pictorial. More particularly, it is contemplated that the described implementations may be included in or associated with a variety of electronic devices such as, but not limited to: mobile telephones, multimedia Internet enabled cellular telephones, mobile television receivers, wireless devices, smartphones, Bluetooth® devices, personal data assistants (PDAs), wireless electronic mail receivers, hand-held or portable computers, netbooks, notebooks, smartbooks, tablets, printers, copiers, scanners, facsimile devices, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, electronic reading devices (i.e., e-readers), computer monitors, auto displays (including odometer and speedometer displays, etc.), cockpit controls and/or displays, camera view displays (such as the display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, microwaves, refrigerators, stereo systems, cassette recorders or players, DVD players, CD players, VCRs, radios, portable memory chips, washers, dryers, washer/dryers, parking meters, packaging (such as in electromechanical systems (EMS), microelectromechanical systems (MEMS) and non-MEMS applications), aesthetic structures (e.g., display of images on a piece of jewelry) and a variety of EMS devices. The teachings herein also can be used in non-display applications such as, but not limited to, electronic switching devices, radio frequency filters, sensors, accelerometers, gyroscopes, motion-sensing devices, magnetometers, inertial components for consumer electronics, parts of consumer electronics products, varactors, liquid crystal devices, electrophoretic devices, drive schemes, manufacturing processes and electronic test equipment. Thus, the teachings are not intended to be limited to the implementations depicted solely in the Figures, but instead have wide applicability as will be readily apparent to one having ordinary skill in the art.


An absorber layer of an EMS reflective display device by itself may not have the appropriate electromagnetic properties to realize the ideal spectrally selective absorption properties of the EMS reflective display device. The electromagnetic impedance of the absorber layer may vary with the wavelength of light due to the dispersion characteristics of the absorber layer (e.g., the extinction coefficient and the refractive index may vary with the wavelength of light). In particular, the reactive part of the electromagnetic impedance of the absorber layer may impart a variation in the reflection and transmission from/through the absorber layer which translates to a deterioration in the spectral filtering characteristics of the reflectance from the EMS reflective display device.


Some implementations described herein relate to material layers on an absorber layer of an EMS reflective display device. In some implementations, two or more material layers, also referred to as matching layers, may be formed on an absorber layer of an EMS reflective display device. In some implementations, a first matching layer disposed on the absorber layer may be a low refractive index material. A second matching layer disposed on the first matching layer may be a high refractive index material.


For example, in some implementations described herein, an EMS device includes a reflective layer and an absorber layer. The absorber layer may be spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer may absorb light completely, partially, or not at all, depending on the wavelength of the light and the spacing between the reflective layer and the absorber layer. The absorber layer also may include a metal layer which may provide the absorbing characteristics of the absorber layer. A plurality of matching layers may be on a surface of the absorber layer facing away from the cavity. The plurality of matching layers may include a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.


Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. Two or more matching layers on a surface of the absorber layer of an EMS reflective display device may improve the color saturation for a specific primary color or for the complete primary color set (i.e., the red-green-blue (RGB) color set) of the EMS reflective display device. Two or more matching layers also may allow for the improvement of a white-state of an EMS reflective display device.


Another advantage of including matching layers above and below the absorber layer may be to provide an extra degree of design freedom in tailoring the impedance properties of the absorber layer. The matching layers also may allow some freedom to adjust the spectral spacing and amplitude between peaks in the reflectance by introducing dispersion into the gap. This aspect is relevant for achieving a high purity of the red color, because the red reflectance spectrum typically involves some leakage from the blue portion of the spectrum.


An example of a suitable EMS or MEMS device, to which the described implementations may apply, is a reflective display device. Reflective display devices can incorporate interferometric modulators (IMODs) to selectively absorb and/or reflect light incident thereon using principles of optical interference. IMODs can include an absorber, a reflector that is movable with respect to the absorber, and an optical resonant cavity defined between the absorber and the reflector. The reflector can be moved to two or more different positions, which can change the size of the optical resonant cavity and thereby affect the reflectance of the interferometric modulator. The reflectance spectra of IMODs can create fairly broad spectral bands which can be shifted across the visible wavelengths to generate different colors. The position of the spectral band can be adjusted by changing the thickness of the optical resonant cavity, i.e., by changing the position of the reflector.



FIG. 1 shows an example of an isometric view depicting two adjacent pixels in a series of pixels of an interferometric modulator (IMOD) display device. The IMOD display device includes one or more interferometric MEMS display elements. In these devices, the pixels of the MEMS display elements can be in either a bright or dark state. In the bright (“relaxed,” “open” or “on”) state, the display element reflects a large portion of incident visible light, e.g., to a user. Conversely, in the dark (“actuated,” “closed” or “off”) state, the display element reflects little incident visible light. In some implementations, the light reflectance properties of the on and off states may be reversed. MEMS pixels can be configured to reflect predominantly at particular wavelengths allowing for a color display in addition to black and white.


The IMOD display device can include a row/column array of IMODs. Each IMOD can include a pair of reflective layers, i.e., a movable reflective layer and a fixed partially reflective layer, positioned at a variable and controllable distance from each other to form an air gap (also referred to as an optical gap or cavity). The movable reflective layer may be moved between at least two positions. In a first position, i.e., a relaxed position, the movable reflective layer can be positioned at a relatively large distance from the fixed partially reflective layer. In a second position, i.e., an actuated position, the movable reflective layer can be positioned more closely to the partially reflective layer. Incident light that reflects from the two layers can interfere constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel. In some implementations, the IMOD may be in a reflective state when unactuated, reflecting light within the visible spectrum, and may be in a dark state when unactuated, reflecting light outside of the visible range (e.g., infrared light). In some other implementations, however, an IMOD may be in a dark state when unactuated, and in a reflective state when actuated. In some implementations, the introduction of an applied voltage can drive the pixels to change states. In some other implementations, an applied charge can drive the pixels to change states.


The depicted portion of the pixel array in FIG. 1 includes two adjacent interferometric modulators 12. In the IMOD 12 on the left (as illustrated), a movable reflective layer 14 is illustrated in a relaxed position at a predetermined distance from an optical stack 16, which includes a partially reflective layer. The voltage V0 applied across the IMOD 12 on the left is insufficient to cause actuation of the movable reflective layer 14. In the IMOD 12 on the right, the movable reflective layer 14 is illustrated in an actuated position near or adjacent the optical stack 16. The voltage Vbias applied across the IMOD 12 on the right is sufficient to maintain the movable reflective layer 14 in the actuated position.


In FIG. 1, the reflective properties of pixels 12 are generally illustrated with arrows 13 indicating light incident upon the pixels 12, and light 15 reflecting from the IMOD 12 on the left. Although not illustrated in detail, it will be understood by one having ordinary skill in the art that most of the light 13 incident upon the pixels 12 will be transmitted through the transparent substrate 20, toward the optical stack 16. A portion of the light incident upon the optical stack 16 will be transmitted through the partially reflective layer of the optical stack 16, and a portion will be reflected back through the transparent substrate 20. The portion of light 13 that is transmitted through the optical stack 16 will be reflected at the movable reflective layer 14, back toward (and through) the transparent substrate 20. Interference (constructive or destructive) between the light reflected from the partially reflective layer of the optical stack 16 and the light reflected from the movable reflective layer 14 will determine the wavelength(s) of light 15 reflected from the IMOD 12.


The optical stack 16 can include a single layer or several layers. The layer(s) can include one or more of an electrode layer, a partially reflective and partially transmissive layer and a transparent dielectric layer. In some implementations, the optical stack 16 is electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The electrode layer can be formed from a variety of materials, such as various metals, for example indium tin oxide (ITO). The partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals, e.g., chromium (Cr), semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials. In some implementations, the optical stack 16 can include a single semi-transparent thickness of metal or semiconductor which serves as both an optical absorber and conductor, while different, more conductive layers or portions (e.g., of the optical stack 16 or of other structures of the IMOD) can serve to bus signals between IMOD pixels. The optical stack 16 also can include one or more insulating or dielectric layers covering one or more conductive layers or a conductive/absorptive layer.


In some implementations, the layer(s) of the optical stack 16 can be patterned into parallel strips, and may form row electrodes in a display device as described further below. As will be understood by one having ordinary skill in the art, the term “patterned” is used herein to refer to masking as well as etching processes. In some implementations, a highly conductive and reflective material, such as aluminum (Al), may be used for the movable reflective layer 14, and these strips may form column electrodes in a display device. The movable reflective layer 14 may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of the optical stack 16) to form columns deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, a defined gap 19, or optical cavity, can be formed between the movable reflective layer 14 and the optical stack 16. In some implementations, the spacing between posts 18 may be approximately 1-1000 um, while the gap 19 may be less than 10,000 Angstroms (Å).


In some implementations, each pixel of the IMOD, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers. When no voltage is applied, the movable reflective layer 14 remains in a mechanically relaxed state, as illustrated by the IMOD 12 on the left in FIG. 1, with the gap 19 between the movable reflective layer 14 and optical stack 16. However, when a potential difference, e.g., voltage, is applied to at least one of a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the applied voltage exceeds a threshold, the movable reflective layer 14 can deform and move near or against the optical stack 16. A dielectric layer (not shown) within the optical stack 16 may prevent shorting and control the separation distance between the layers 14 and 16, as illustrated by the actuated IMOD 12 on the right in FIG. 1. The behavior is the same regardless of the polarity of the applied potential difference. Though a series of pixels in an array may be referred to in some instances as “rows” or “columns,” a person having ordinary skill in the art will readily understand that referring to one direction as a “row” and another as a “column” is arbitrary. Restated, in some orientations, the rows can be considered columns, and the columns considered to be rows. Furthermore, the display elements may be evenly arranged in orthogonal rows and columns (an “array”), or arranged in non-linear configurations, for example, having certain positional offsets with respect to one another (a “mosaic”). The terms “array” and “mosaic” may refer to either configuration. Thus, although the display is referred to as including an “array” or “mosaic,” the elements themselves need not be arranged orthogonally to one another, or disposed in an even distribution, in any instance, but may include arrangements having asymmetric shapes and unevenly distributed elements.



FIG. 2 shows an example of a system block diagram illustrating an electronic device incorporating a 3×3 interferometric modulator display. The electronic device includes a processor 21 that may be configured to execute one or more software modules. In addition to executing an operating system, the processor 21 may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or other software application.


The processor 21 can be configured to communicate with an array driver 22. The array driver 22 can include a row driver circuit 24 and a column driver circuit 26 that provide signals to, e.g., a display array or panel 30. The cross section of the IMOD display device illustrated in FIG. 1 is shown by the lines 1-1 in FIG. 2. Although FIG. 2 illustrates a 3×3 array of IMODs for the sake of clarity, the display array 30 may contain a very large number of IMODs, and may have a different number of IMODs in rows than in columns, and vice versa.



FIG. 3 shows an example of a diagram illustrating movable reflective layer position versus applied voltage for the interferometric modulator of FIG. 1. For MEMS interferometric modulators, the row/column (i.e., common/segment) write procedure may take advantage of a hysteresis property of these devices as illustrated in FIG. 3. An interferometric modulator may require, for example, about a 10-volt potential difference to cause the movable reflective layer, or mirror, to change from the relaxed state to the actuated state. When the voltage is reduced from that value, the movable reflective layer maintains its state as the voltage drops back below, e.g., 10 volts, however, the movable reflective layer does not relax completely until the voltage drops below 2 volts. Thus, a range of voltage, approximately 3 to 7 volts, as shown in FIG. 3, exists where there is a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the “hysteresis window” or “stability window.” For a display array 30 having the hysteresis characteristics of FIG. 3, the row/column write procedure can be designed to address one or more rows at a time, such that during the addressing of a given row, pixels in the addressed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of near zero volts. After addressing, the pixels are exposed to a steady state or bias voltage difference of approximately 5-volts such that they remain in the previous strobing state. In this example, after being addressed, each pixel sees a potential difference within the “stability window” of about 3-7 volts. This hysteresis property feature enables the pixel design, e.g., illustrated in FIG. 1, to remain stable in either an actuated or relaxed pre-existing state under the same applied voltage conditions. Since each IMOD pixel, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a steady voltage within the hysteresis window without substantially consuming or losing power. Moreover, essentially little or no current flows into the IMOD pixel if the applied voltage potential remains substantially fixed.


In some implementations, a frame of an image may be created by applying data signals in the form of “segment” voltages along the set of column electrodes, in accordance with the desired change (if any) to the state of the pixels in a given row. Each row of the array can be addressed in turn, such that the frame is written one row at a time. To write the desired data to the pixels in a first row, segment voltages corresponding to the desired state of the pixels in the first row can be applied on the column electrodes, and a first row pulse in the form of a specific “common” voltage or signal can be applied to the first row electrode. The set of segment voltages can then be changed to correspond to the desired change (if any) to the state of the pixels in the second row, and a second common voltage can be applied to the second row electrode. In some implementations, the pixels in the first row are unaffected by the change in the segment voltages applied along the column electrodes, and remain in the state they were set to during the first common voltage row pulse. This process may be repeated for the entire series of rows, or alternatively, columns, in a sequential fashion to produce the image frame. The frames can be refreshed and/or updated with new image data by continually repeating this process at some desired number of frames per second.


The combination of segment and common signals applied across each pixel (that is, the potential difference across each pixel) determines the resulting state of each pixel. FIG. 4 shows an example of a table illustrating various states of an interferometric modulator when various common and segment voltages are applied. As will be readily understood by one having ordinary skill in the art, the “segment” voltages can be applied to either the column electrodes or the row electrodes, and the “common” voltages can be applied to the other of the column electrodes or the row electrodes.


As illustrated in FIG. 4 (as well as in the timing diagram shown in FIG. 5B), when a release voltage VCREL is applied along a common line, all interferometric modulator elements along the common line will be placed in a relaxed state, alternatively referred to as a released or unactuated state, regardless of the voltage applied along the segment lines, i.e., high segment voltage VSH and low segment voltage VSL. In particular, when the release voltage VCREL is applied along a common line, the potential voltage across the modulator (alternatively referred to as a pixel voltage) is within the relaxation window (see FIG. 3, also referred to as a release window) both when the high segment voltage VSH and the low segment voltage VSL are applied along the corresponding segment line for that pixel.


When a hold voltage is applied on a common line, such as a high hold voltage VCHOLDH or a low hold voltage VCHOLDL, the state of the interferometric modulator will remain constant. For example, a relaxed IMOD will remain in a relaxed position, and an actuated IMOD will remain in an actuated position. The hold voltages can be selected such that the pixel voltage will remain within a stability window both when the high segment voltage VSH and the low segment voltage VSL are applied along the corresponding segment line. Thus, the segment voltage swing, i.e., the difference between the high VSH and low segment voltage VSL, is less than the width of either the positive or the negative stability window.


When an addressing, or actuation, voltage is applied on a common line, such as a high addressing voltage VCADDH or a low addressing voltage VCADDL, data can be selectively written to the modulators along that line by application of segment voltages along the respective segment lines. The segment voltages may be selected such that actuation is dependent upon the segment voltage applied. When an addressing voltage is applied along a common line, application of one segment voltage will result in a pixel voltage within a stability window, causing the pixel to remain unactuated. In contrast, application of the other segment voltage will result in a pixel voltage beyond the stability window, resulting in actuation of the pixel. The particular segment voltage which causes actuation can vary depending upon which addressing voltage is used. In some implementations, when the high addressing voltage VCADDH is applied along the common line, application of the high segment voltage VSH can cause a modulator to remain in its current position, while application of the low segment voltage VSL can cause actuation of the modulator. As a corollary, the effect of the segment voltages can be the opposite when a low addressing voltage VCADDL is applied, with high segment voltage VSH causing actuation of the modulator, and low segment voltage VSL having no effect (i.e., remaining stable) on the state of the modulator.


In some implementations, hold voltages, address voltages, and segment voltages may be used which always produce the same polarity potential difference across the modulators. In some other implementations, signals can be used which alternate the polarity of the potential difference of the modulators. Alternation of the polarity across the modulators (that is, alternation of the polarity of write procedures) may reduce or inhibit charge accumulation which could occur after repeated write operations of a single polarity.



FIG. 5A shows an example of a diagram illustrating a frame of display data in the 3×3 interferometric modulator display of FIG. 2. FIG. 5B shows an example of a timing diagram for common and segment signals that may be used to write the frame of display data illustrated in FIG. 5A. The signals can be applied to the, e.g., 3×3 array of FIG. 2, which will ultimately result in the line time 60e display arrangement illustrated in FIG. 5A. The actuated modulators in FIG. 5A are in a dark-state, i.e., where a substantial portion of the reflected light is outside of the visible spectrum so as to result in a dark appearance to, e.g., a viewer. Prior to writing the frame illustrated in FIG. 5A, the pixels can be in any state, but the write procedure illustrated in the timing diagram of FIG. 5B presumes that each modulator has been released and resides in an unactuated state before the first line time 60a.


During the first line time 60a, a release voltage 70 is applied on common line 1; the voltage applied on common line 2 begins at a high hold voltage 72 and moves to a release voltage 70; and a low hold voltage 76 is applied along common line 3. Thus, the modulators (common 1, segment 1), (1,2) and (1,3) along common line 1 remain in a relaxed, or unactuated, state for the duration of the first line time 60a, the modulators (2,1), (2,2) and (2,3) along common line 2 will move to a relaxed state, and the modulators (3,1), (3,2) and (3,3) along common line 3 will remain in their previous state. With reference to FIG. 4, the segment voltages applied along segment lines 1, 2 and 3 will have no effect on the state of the interferometric modulators, as none of common lines 1, 2 or 3 are being exposed to voltage levels causing actuation during line time 60a (i.e., VCREL—relax and VCHOLDL—stable).


During the second line time 60b, the voltage on common line 1 moves to a high hold voltage 72, and all modulators along common line 1 remain in a relaxed state regardless of the segment voltage applied because no addressing, or actuation, voltage was applied on the common line 1. The modulators along common line 2 remain in a relaxed state due to the application of the release voltage 70, and the modulators (3,1), (3,2) and (3,3) along common line 3 will relax when the voltage along common line 3 moves to a release voltage 70.


During the third line time 60c, common line 1 is addressed by applying a high address voltage 74 on common line 1. Because a low segment voltage 64 is applied along segment lines 1 and 2 during the application of this address voltage, the pixel voltage across modulators (1,1) and (1,2) is greater than the high end of the positive stability window (i.e., the voltage differential exceeded a predefined threshold) of the modulators, and the modulators (1,1) and (1,2) are actuated. Conversely, because a high segment voltage 62 is applied along segment line 3, the pixel voltage across modulator (1,3) is less than that of modulators (1,1) and (1,2), and remains within the positive stability window of the modulator; modulator (1,3) thus remains relaxed. Also during line time 60c, the voltage along common line 2 decreases to a low hold voltage 76, and the voltage along common line 3 remains at a release voltage 70, leaving the modulators along common lines 2 and 3 in a relaxed position.


During the fourth line time 60d, the voltage on common line 1 returns to a high hold voltage 72, leaving the modulators along common line 1 in their respective addressed states. The voltage on common line 2 is decreased to a low address voltage 78. Because a high segment voltage 62 is applied along segment line 2, the pixel voltage across modulator (2,2) is below the lower end of the negative stability window of the modulator, causing the modulator (2,2) to actuate. Conversely, because a low segment voltage 64 is applied along segment lines 1 and 3, the modulators (2,1) and (2,3) remain in a relaxed position. The voltage on common line 3 increases to a high hold voltage 72, leaving the modulators along common line 3 in a relaxed state.


Finally, during the fifth line time 60e, the voltage on common line 1 remains at high hold voltage 72, and the voltage on common line 2 remains at a low hold voltage 76, leaving the modulators along common lines 1 and 2 in their respective addressed states. The voltage on common line 3 increases to a high address voltage 74 to address the modulators along common line 3. As a low segment voltage 64 is applied on segment lines 2 and 3, the modulators (3,2) and (3,3) actuate, while the high segment voltage 62 applied along segment line 1 causes modulator (3,1) to remain in a relaxed position. Thus, at the end of the fifth line time 60e, the 3×3 pixel array is in the state shown in FIG. 5A, and will remain in that state as long as the hold voltages are applied along the common lines, regardless of variations in the segment voltage which may occur when modulators along other common lines (not shown) are being addressed.


In the timing diagram of FIG. 5B, a given write procedure (i.e., line times 60a-60e) can include the use of either high hold and address voltages, or low hold and address voltages. Once the write procedure has been completed for a given common line (and the common voltage is set to the hold voltage having the same polarity as the actuation voltage), the pixel voltage remains within a given stability window, and does not pass through the relaxation window until a release voltage is applied on that common line. Furthermore, as each modulator is released as part of the write procedure prior to addressing the modulator, the actuation time of a modulator, rather than the release time, may determine the necessary line time. Specifically, in implementations in which the release time of a modulator is greater than the actuation time, the release voltage may be applied for longer than a single line time, as depicted in FIG. 5B. In some other implementations, voltages applied along common lines or segment lines may vary to account for variations in the actuation and release voltages of different modulators, such as modulators of different colors.


The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, FIGS. 6A-6E show examples of cross-sections of varying implementations of interferometric modulators, including the movable reflective layer 14 and its supporting structures. FIG. 6A shows an example of a partial cross-section of the interferometric modulator display of FIG. 1, where a strip of metal material, i.e., the movable reflective layer 14 is deposited on supports 18 extending orthogonally from the substrate 20. In FIG. 6B, the movable reflective layer 14 of each IMOD is generally square or rectangular in shape and attached to supports at or near the corners, on tethers 32. In FIG. 6C, the movable reflective layer 14 is generally square or rectangular in shape and suspended from a deformable layer 34, which may include a flexible metal. The deformable layer 34 can connect, directly or indirectly, to the substrate 20 around the perimeter of the movable reflective layer 14. These connections are herein referred to as support posts. The implementation shown in FIG. 6C has additional benefits deriving from the decoupling of the optical functions of the movable reflective layer 14 from its mechanical functions, which are carried out by the deformable layer 34. This decoupling allows the structural design and materials used for the reflective layer 14 and those used for the deformable layer 34 to be optimized independently of one another.



FIG. 6D shows another example of an IMOD, where the movable reflective layer 14 includes a reflective sub-layer 14a. The movable reflective layer 14 rests on a support structure, such as support posts 18. The support posts 18 provide separation of the movable reflective layer 14 from the lower stationary electrode (i.e., part of the optical stack 16 in the illustrated IMOD) so that a gap 19 is formed between the movable reflective layer 14 and the optical stack 16, for example when the movable reflective layer 14 is in a relaxed position. The movable reflective layer 14 also can include a conductive layer 14c, which may be configured to serve as an electrode, and a support layer 14b. In this example, the conductive layer 14c is disposed on one side of the support layer 14b, distal from the substrate 20, and the reflective sub-layer 14a is disposed on the other side of the support layer 14b, proximal to the substrate 20. In some implementations, the reflective sub-layer 14a can be conductive and can be disposed between the support layer 14b and the optical stack 16. The support layer 14b can include one or more layers of a dielectric material, for example, silicon oxynitride (SiON) or silicon dioxide (SiO2). In some implementations, the support layer 14b can be a stack of layers, such as, for example, an SiO2/SiON/SiO2 tri-layer stack. Either or both of the reflective sub-layer 14a and the conductive layer 14c can include, e.g., an aluminum (Al) alloy with about 0.5% copper (Cu), or another reflective metallic material. Employing conductive layers 14a, 14c above and below the dielectric support layer 14b can balance stresses and provide enhanced conduction. In some implementations, the reflective sub-layer 14a and the conductive layer 14c can be formed of different materials for a variety of design purposes, such as achieving specific stress profiles within the movable reflective layer 14.


As illustrated in FIG. 6D, some implementations also can include a black mask structure 23. The black mask structure 23 can be formed in optically inactive regions (e.g., between pixels or under posts 18) to absorb ambient or stray light. The black mask structure 23 also can improve the optical properties of a display device by inhibiting light from being reflected from or transmitted through inactive portions of the display, thereby increasing the contrast ratio. Additionally, the black mask structure 23 can be conductive and be configured to function as an electrical bussing layer. In some implementations, the row electrodes can be connected to the black mask structure 23 to reduce the resistance of the connected row electrode. The black mask structure 23 can be formed using a variety of methods, including deposition and patterning techniques. The black mask structure 23 can include one or more layers. For example, in some implementations, the black mask structure 23 includes a molybdenum-chromium (MoCr) layer that serves as an optical absorber, an SiO2 layer, and an aluminum alloy that serves as a reflector and a bussing layer, with a thickness in the range of about 30-80 Å, 500-1000 Å, and 500-6000 Å, respectively. The one or more layers can be patterned using a variety of techniques, including photolithography and dry etching, including, for example, carbon tetrafluoromethane (CF4) and/or oxygen (O2) for the MoCr and SiO2 layers and chlorine (Cl2) and/or boron trichloride (BCl3) for the aluminum alloy layer. In some implementations, the black mask 23 can be an etalon or interferometric stack structure. In such interferometric stack black mask structures 23, the conductive absorbers can be used to transmit or bus signals between lower, stationary electrodes in the optical stack 16 of each row or column. In some implementations, a spacer layer 35 can serve to generally electrically isolate the absorber layer 16a from the conductive layers in the black mask 23.



FIG. 6E shows another example of an IMOD, where the movable reflective layer 14 is self-supporting. In contrast with FIG. 6D, the implementation of FIG. 6E does not include support posts 18. Instead, the movable reflective layer 14 contacts the underlying optical stack 16 at multiple locations, and the curvature of the movable reflective layer 14 provides sufficient support that the movable reflective layer 14 returns to the unactuated position of FIG. 6E when the voltage across the interferometric modulator is insufficient to cause actuation. The optical stack 16, which may contain a plurality of several different layers, is shown here for clarity including an optical absorber 16a, and a dielectric 16b. In some implementations, the optical absorber 16a may serve both as a fixed electrode and as a partially reflective layer.


In implementations such as those shown in FIGS. 6A-6E, the IMODs function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, i.e., the side opposite to that upon which the modulator is arranged. In these implementations, the back portions of the device (that is, any portion of the display device behind the movable reflective layer 14, including, for example, the deformable layer 34 illustrated in FIG. 6C) can be configured and operated upon without impacting or negatively affecting the image quality of the display device, because the reflective layer 14 optically shields those portions of the device. For example, in some implementations a bus structure (not illustrated) can be included behind the movable reflective layer 14 which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as voltage addressing and the movements that result from such addressing. Additionally, the implementations of FIGS. 6A-6E can simplify processing, such as patterning.



FIG. 7 shows an example of a flow diagram illustrating a manufacturing process 80 for an interferometric modulator, and FIGS. 8A-8E show examples of cross-sectional schematic illustrations of corresponding stages of such a manufacturing process 80. In some implementations, the manufacturing process 80 can be implemented to manufacture, e.g., interferometric modulators of the general type illustrated in FIGS. 1 and 6, in addition to other blocks not shown in FIG. 7. With reference to FIGS. 1, 6 and 7, the process 80 begins at block 82 with the formation of the optical stack 16 over the substrate 20. FIG. 8A illustrates such an optical stack 16 formed over the substrate 20. The substrate 20 may be a transparent substrate such as glass or plastic, it may be flexible or relatively stiff and unbending, and may have been subjected to prior preparation processes, e.g., cleaning, to facilitate efficient formation of the optical stack 16. As discussed above, the optical stack 16 can be electrically conductive, partially transparent and partially reflective and may be fabricated, for example, by depositing one or more layers having the desired properties onto the transparent substrate 20. In FIG. 8A, the optical stack 16 includes a multilayer structure having sub-layers 16a and 16b, although more or fewer sub-layers may be included in some other implementations. In some implementations, one of the sub-layers 16a, 16b can be configured with both optically absorptive and conductive properties, such as the combined conductor/absorber sub-layer 16a. Additionally, one or more of the sub-layers 16a, 16b can be patterned into parallel strips, and may form row electrodes in a display device. Such patterning can be performed by a masking and etching process or another suitable process known in the art. In some implementations, one of the sub-layers 16a, 16b can be an insulating or dielectric layer, such as sub-layer 16b that is deposited over one or more metal layers (e.g., one or more reflective and/or conductive layers). In addition, the optical stack 16 can be patterned into individual and parallel strips that form the rows of the display.


The process 80 continues at block 84 with the formation of a sacrificial layer 25 over the optical stack 16. The sacrificial layer 25 is later removed (e.g., at block 90) to form the cavity 19 and thus the sacrificial layer 25 is not shown in the resulting interferometric modulators 12 illustrated in FIG. 1. FIG. 8B illustrates a partially fabricated device including a sacrificial layer 25 formed over the optical stack 16. The formation of the sacrificial layer 25 over the optical stack 16 may include deposition of a xenon difluoride (XeF2)-etchable material such as molybdenum (Mo) or amorphous silicon (Si), in a thickness selected to provide, after subsequent removal, a gap or cavity 19 (see also FIGS. 1 and 8E) having a desired design size. Deposition of the sacrificial material may be carried out using deposition techniques such as physical vapor deposition (PVD, e.g., sputtering), plasma-enhanced chemical vapor deposition (PECVD), thermal chemical vapor deposition (thermal CVD), or spin-coating.


The process 80 continues at block 86 with the formation of a support structure e.g., a post 18 as illustrated in FIGS. 1, 6 and 8C. The formation of the post 18 may include patterning the sacrificial layer 25 to form a support structure aperture, then depositing a material (e.g., a polymer or an inorganic material, e.g., silicon oxide) into the aperture to form the post 18, using a deposition method such as PVD, PECVD, thermal CVD, or spin-coating. In some implementations, the support structure aperture formed in the sacrificial layer can extend through both the sacrificial layer 25 and the optical stack 16 to the underlying substrate 20, so that the lower end of the post 18 contacts the substrate 20 as illustrated in FIG. 6A. Alternatively, as depicted in FIG. 8C, the aperture formed in the sacrificial layer 25 can extend through the sacrificial layer 25, but not through the optical stack 16. For example, FIG. 8E illustrates the lower ends of the support posts 18 in contact with an upper surface of the optical stack 16. The post 18, or other support structures, may be formed by depositing a layer of support structure material over the sacrificial layer 25 and patterning to remove portions of the support structure material located away from apertures in the sacrificial layer 25. The support structures may be located within the apertures, as illustrated in FIG. 8C, but also can, at least partially, extend over a portion of the sacrificial layer 25. As noted above, the patterning of the sacrificial layer 25 and/or the support posts 18 can be performed by a patterning and etching process, but also may be performed by alternative etching methods.


The process 80 continues at block 88 with the formation of a movable reflective layer or membrane such as the movable reflective layer 14 illustrated in FIGS. 1, 6 and 8D. The movable reflective layer 14 may be formed by employing one or more deposition processes, e.g., reflective layer (e.g., aluminum, aluminum alloy) deposition, along with one or more patterning, masking, and/or etching processes. The movable reflective layer 14 can be electrically conductive, and referred to as an electrically conductive layer. In some implementations, the movable reflective layer 14 may include a plurality of sub-layers 14a, 14b, 14c as shown in FIG. 8D. In some implementations, one or more of the sub-layers, such as sub-layers 14a, 14c, may include highly reflective sub-layers selected for their optical properties, and another sub-layer 14b may include a mechanical sub-layer selected for its mechanical properties. Since the sacrificial layer 25 is still present in the partially fabricated interferometric modulator formed at block 88, the movable reflective layer 14 is typically not movable at this stage. A partially fabricated IMOD that contains a sacrificial layer 25 also may be referred to herein as an “unreleased” IMOD. As described above in connection with FIG. 1, the movable reflective layer 14 can be patterned into individual and parallel strips that form the columns of the display.


The process 80 continues at block 90 with the formation of a cavity, e.g., cavity 19 as illustrated in FIGS. 1, 6 and 8E. The cavity 19 may be formed by exposing the sacrificial material 25 (deposited at block 84) to an etchant. For example, an etchable sacrificial material such as Mo or amorphous Si may be removed by dry chemical etching, e.g., by exposing the sacrificial layer 25 to a gaseous or vaporous etchant, such as vapors derived from solid XeF2 for a period of time that is effective to remove the desired amount of material, typically selectively removed relative to the structures surrounding the cavity 19. Other combinations of etchable sacrificial material and etching methods, e.g. wet etching and/or plasma etching, also may be used. Since the sacrificial layer 25 is removed during block 90, the movable reflective layer 14 is typically movable after this stage. After removal of the sacrificial material 25, the resulting fully or partially fabricated IMOD may be referred to herein as a “released” IMOD.


The reflectance spectrum of an IMOD or other EMS reflective display device can create a relatively broad spectral band which can be shifted across the wavelengths of the visible spectrum to generate different colors. The visible spectrum, that is, the range of wavelengths that humans can perceive, ranges from about 390 nanometers (nm) to about 750 nm. Within the visible spectrum, the approximate wavelengths of colors in the spectrum are as follows: red, about 700 nm to 635 nm; orange, about 635 nm to 590 nm; yellow, about 590 nm to 560 nm; green, about 560 nm to 490 nm; blue, about 490 nm to 450 nm; and violet, about 450 nm to 400 nm. As noted above, the position of the spectral band for an IMOD or other EMS reflective display device can be adjusted by changing the thickness of the optical cavity. This may be accomplished by changing the position of the movable reflective layer.


Depending on the material of the absorber layer, also referred to as a partially reflective layer, a thickness of the absorber layer may exist that increases the color gamut and yields good saturation at the primary color settings (i.e., red, green, and blue (RGB)) of the IMOD or other EMS reflective display device. Color gamut refers to the various levels of colors that can potentially be displayed by a device. Saturation refers to a dominance of a hue in a color or to how pure the color is. For example, a fully saturated blue would be pure blue color.


One issue posed by some EMS reflective display devices, however, is poor red color (i.e., about 700 nm to 635 nm) performance. For example, to obtain a red color with an EMS reflective display device, the reflective layer may be positioned such that the standing wave formed by light transmitted though the absorber layer and the light reflected from the reflective layer has a first node at half of the red color wavelength (i.e., about half of 700 nm to 635 nm) where the absorber layer is located. The red color wavelength may experience a minimum absorption and the display may reflect a red color. The first node of the red color wavelength, however, coincides with a portion of the second node of the blue color, which may corrupt the saturation of the red color produced by the EMS reflective display device.


One or more matching layers may be included on the absorber layer and may improve the red color performance of an EMS reflective display device. With certain thicknesses of each of the one or more matching layers, the light interference produced by the EMS reflective display device can be modified. For example, one or more matching layers may reduce extraneous reflection from the absorber layer. This may increase the absorption (and consequently, decrease the reflection) of a color that may be corrupting the saturation of the desired color through the destructive interference between the reflected and transmitted light. Consequently, an enhancement of the color saturation for a specific primary color or for the complete primary color set (i.e., RGB color set) may be achieved.


When a single matching layer is included on the absorber layer, the thickness of the matching layer may be varied to modify both the amplitude and the phase of the light. This may reduce the reflection of the “corrupting” color (and consequently, increase the absorption) from the EMS reflective display device. In the case of a single matching layer, the refractive index of the matching layer may be about (n1×n2)1/2, where n1 is the refractive index of the absorber layer and n2 is the refractive index of the incident medium above the matching layer (e.g., glass or air). Varying the thickness of a single matching layer, however, may not provide sufficient degrees of freedom for optimizing both the amplitude and the phase of the light.


Two or more matching layers on the absorber layer may provide additional degrees of freedom for modifying the amplitude and the phase of the light. In the case of more than one matching layer, a high refractive index matching layer and a low refractive index matching layer may be deposited on the absorber layer. In some implementations, the low refractive index matching layer may be in contact with the absorber and the high refractive index matching layer may be in contact with the incident medium (e.g., glass or air).



FIGS. 9 and 10 show examples of cross-sectional schematic diagrams of a portion of an EMS reflective display device. Turning first to FIG. 9, the EMS reflective display device 900 includes a reflective layer 902 and an absorber layer 906, with the reflective layer 902 and the absorber layer 906 defining a cavity or gap 904. A first matching layer 908 is disposed on the surface of the absorber layer 906 facing away from the cavity. A second matching layer 910 is disposed on the first matching layer 908.


The absorber layer 906 of the EMS reflective display device 900 may be formed from a variety of materials that are partially absorptive and partially reflective, such as various metals, including chromium (Cr), tungsten (W), nickel (Ni), vanadium (V), and an alloy of molybdenum-chromium (MoCr). In some implementations, the absorber layer 906 may be less than about 20 nm thick. In some other implementations, the absorber layer 906 can be thicker than about 20 nm. In some implementations, the absorber layer may include dyes or nanoparticles embedded in a host matrix.


In some other implementations, the absorber layer 906 may include two materials that are partially absorptive and partially reflective that are separated with dielectric spacers. The thickness of such an absorber layer may be about the same thickness as an absorber layer that includes a single layer of material that is partially absorptive and partially reflective. Such an absorber layer may be adjusted (e.g., the materials of the absorber layer and the thicknesses of the materials) to make small changes in the reflectance characteristics of the EMS reflective display device.


In some implementations of the EMS reflective display device 900, the first matching layer 908 may include a low refractive index material and the second matching layer 910 may include a high refractive index material. That is, in some implementations, the material of the second matching layer 910 may have a refractive index that is greater than the refractive index of the material of the first matching layer 908. The refractive index of a material is a measure of the speed of light in that material. Examples of low refractive index materials include silicon oxide (SiO2) magnesium fluoride (MgF2), aluminum oxide (Al2O3), other dielectric materials, and different plastics. Example of low refractive index plastics include various polymer materials, including as acrylates. Examples of high refractive index materials include titanium oxide (TiO2), silicon oxynitride (SiON), silicon nitride (Si3N4) zirconium dioxide (ZrO2), tantalum oxide (Ta2O5), antimony oxide (Sb2O3), and other dielectric materials.


Each of the matching layers has a thickness. The thicknesses of the matching layers may be specified such that the amplitude and the phase of light reflected from the absorber layer 906 and the amplitude and the phase of light transmitted though the absorber layer 906 is modified to alter or improve the RGB color saturation of the EMS reflective display device 900. In some implementations, the optical thickness the first matching layer 908 and the second matching layer 910 may be about one quarter of the wavelength of interest in the first matching layer to reduce the Fresnel reflection from the absorber layer. In some implementations, the thickness of the first matching layer 908 and the second matching layer 910 may be specified to suppress spurious wavelengths (i.e., wavelengths not of interest or outside the preferred range of the visible spectrum) through destructive interference. In some implementations, the thickness of the first matching layer 908 and the second matching layer 910 may be specified to increase the wavelength of interest through constructive interference. Thus, the thickness of a matching layer depends in part on the refractive index of the matching layer. For visible light, each of the thicknesses of the first matching layer 908 and the second matching layer 910 may be about 4 nm to 120 nm or about 120 to 170 nm, in some implementations.


The thicknesses of the first matching layer 908 and the second matching layer 910 also may depend on the dispersion properties and the thickness of the absorber layer 906 and the dispersion properties of each of the matching layers 908 and 910. Further, the thicknesses of each the matching layers 908 and 910 may depend on the design of the EMS device, including the thickness and dispersion properties of the reflective layer 902 and of any passivation layers, if present, on the absorber layer 906. Nominally, the thicknesses of the matching layers may be about one quarter of a wavelength of interest, after taking into account to the refractive indexes of the matching layers.


These thicknesses of the matching layers may reduce the Fresnel reflection from the absorber layer. In some other implementations, the thicknesses of the matching layers may be greater or less than one quarter of the wavelength of interest in the matching layers. This may be because the destructive interference may include all the reflections, and these thicknesses of the matching layers may reduce the spurious reflection of a particular wavelength band. An appropriate thickness for a matching layer may be determined after accounting for the dispersion of the matching layer as well as the dispersion of the absorber layer itself.


Turning now to FIG. 10, FIG. 10 shows another example of a cross-sectional schematic diagram of a portion of an EMS reflective display device. The EMS reflective display device 1000 includes a reflective layer 1002 and an absorber layer 1006. The reflective layer 1002 and the absorber layer 1006 define a cavity or gap 1004. A first matching layer 1008 is disposed on the surface of the absorber layer 1006 facing away from the cavity. A second matching layer 1010 is disposed on the first matching layer 1008.


The EMS reflective display device further includes a dielectric layer 1012 disposed on the surface of the absorber layer 1006 facing towards the cavity. In some implementations, the dielectric layer 1012 may be aluminum oxide (Al2O3). In some other implementations, the dielectric layer 1012 may be Ta2O5, hafnium oxide (HfO2), or aluminum nitride (AlN). In some implementations, the dielectric layer 1012 may be less than about 5 nm thick, about 9 nm thick, or about 5 nm to 15 nm thick. The dielectric layer 1012 may serve to passivate the absorber layer 1006 or to aid in preventing stiction in the EMS reflective display device 1000, in some implementations. The dielectric layer 1012 also may serve to protect the absorber layer 1006 from etchants used to remove sacrificial material from the EMS reflective display device 1000 and/or as an etch stop during the manufacturing process for the EMS reflective display device.


In some implementations, the absorber assembly, including the dielectric layer 1012, the absorber layer 1006, the first matching layer 1008, and the second matching layer 1010, may be on a substrate 1014. The substrate 1014 may be a transparent substrate such as glass (e.g., a display glass or a borosilicate glass) or plastic, and it may be flexible or relatively stiff and unbending. In some implementations, a glass substrate may be about 400 microns to 1000 microns thick, or about 700 microns thick.


In some implementations, the absorber layer 1006 may be vanadium (V) that may be about 7.5 nm thick. With such an absorber layer 1006, the first matching layer 1008 may be a layer of SiO2 that is about 27 nm thick. The second matching layer 1010 may be a layer of Si3N4 that is about 22 nm thick. These thicknesses of a vanadium absorber layer combined with the first matching layer 1008 of SiO2 and the second matching layer 1010 of Si3N4 are specified to improve the RGB color saturation of the EMS reflective display device 1000. This combination of the absorber layer 1006, the first matching layer 1008, and the second matching layer 1010 may, e.g., improve the red color saturation by reducing the spurious blue-green light when the cavity 1004 is in a position for reflecting red light. In some other implementations, other materials may be used for the first matching layer 1008 and the second matching layer 1010. Such materials may include the materials listed above for the matching layers in the EMS reflective display device 900. When other materials are used for the first matching layer 1008 and the second matching layer 1010, the thicknesses of these layers may be adjusted to achieve the desired optical response, as the thicknesses of the matching layers depend on the index of refraction of each of the matching layers.


In some implementations, the reflective layer 1002 may be Al. In some implementations, the reflective layer 1002 may include dielectric layers on the surface of the reflective layer. As shown in FIG. 10, the reflective layer 1002 includes a first dielectric layer 1016 disposed on the surface of the reflective layer 1002 facing the cavity. A second dielectric layer 1018 is disposed on the surface of the first dielectric layer 1016. In some implementations, the first dielectric layer 1016 may include a low refractive index material and the second dielectric layer 1018 may include a high refractive index material. For example, in some implementations, the first dielectric layer 1016 may be a SiON layer having a thickness of about 50 to 90 nm, or about 72 nm. In some implementations, the second dielectric layer 1018 may be a TiO2 layer having a thickness of about 15 to 35 nm, or about 24 nm. In some other implementations, the first dielectric layer 1016 may include SiO2, MgF2, or different plastics and the second dielectric layer 1018 may include Si3N4, Ta2O5, ZrO2, or other dielectric materials. The dielectric layers 1016 and 1018 may serve to reduce the spatial separation of standing wave first order nodes of different wavelengths for achieving good white color. The dielectric layers 1016 and 1018 also may serve as passivation layers to aid in preventing stiction in the EMS reflective display device 1000, in some implementations. The dielectric layers 1016 and 1018 also may serve to protect the reflective layer 1002 from etchants used to remove sacrificial material from the EMS reflective display device 1000 and/or as an etch stop during the manufacturing process for the EMS reflective display device.


In further implementations of matching layers on an absorber layer, two or more matching layers may be included. For example, in some implementations, a first matching layer may be disposed on the surface of the absorber layer, a second matching layer may be disposed on the first matching layer, and a third matching layer may be disposed on the second matching layer. A third matching layer may provide further degrees of freedom for the modifying of the amplitude and the phase of the light. For example, in some implementations, the third matching layer may include any of the low refractive index materials or high refractive index materials described herein. In some implementations, the third matching layer may be about 5 nm to 50 nm thick. When three matching layers are included on an absorber layer, the thicknesses of each of the matching layers may be specified such that the amplitude and the phase of light reflected from the absorber layer and the amplitude and the phase of light transmitted though the absorber layer is modified to alter or improve the RGB color saturation of the EMS reflective display device in which absorber layer is incorporated.


In the above-described implementations, a first matching layer may include a low refractive index material disposed on the surface of the absorber layer facing away from the cavity and a second matching layer may include a high refractive index material disposed on the first matching layer. In some other implementations, a first matching layer may include a high refractive index material disposed on the surface of the absorber layer facing away from the cavity and a second matching layer may include a low refractive index material disposed on the first matching layer. For example, the first matching layer may include a high refractive index material and the second matching layer may include a low refractive index material disposed on the first matching layer when the first matching layer includes a metal with non-uniform absorption properties.



FIG. 11 shows an example of a flow diagram illustrating a manufacturing process for matching layers of an EMS reflective display device. The manufacturing process 1100 in FIG. 11 may be part of the manufacturing process for forming an optical stack over a substrate of the an EMS reflective display device, as described with respect to block 82 of the process 80 in FIG. 7.


Starting with block 1102, a first matching layer is formed over a substrate. The first matching layer may be formed using deposition processes including PVD processes, CVD processes, liquid phase deposition processes, and atomic layer deposition (ALD) processes. At block 1104, a second matching layer is formed on the first matching layer. The second matching layer may be formed using similar deposition processes that may be used to form the first matching layer, including PVD processes, CVD processes, liquid phase deposition processes, and ALD processes. At block 1106, the absorber layer is formed on the second matching layer. The absorber layer may be a metal and may be formed using deposition processes including PVD processes, CVD processes, liquid phase deposition processes, and ALD processes. In implementations in which the first matching layer or the second matching layer is a plastic, organic material based thin film techniques may be used to form the first matching layer or the second matching layer.


The manufacturing process for an EMS reflective display device may include further operations associated with the substrate, as described above with reference to FIG. 7. After the formation of the optical stack at block 82, the manufacturing process for an EMS reflective display device may continue with the operation at block 84, as described above with reference to FIG. 7.


Examples of the improvements in the performance of an EMS reflective display device including matching layers on the absorber layer versus an EMS reflective display device without matching layers on the absorber layer are shown in FIGS. 12A and 12B. The EMS reflective display devices included a V absorber layer having a thickness of about 7.5 nm on a glass substrate. For the display device including matching layers, a first matching layer of SiO2 having a thickness of about 27 nm thick was on the V absorber layer and a second matching layer of Si3N4 having a thickness of about 22 nm was on the SiO2 matching layer, with the Si3N4 matching layer also on a glass substrate. Other absorber layers and other matching layers of appropriate thicknesses may be used to obtain similar results.



FIGS. 12A and 12B show International Commission on Illumination (CIE) xy chromaticity diagrams for the color palettes produced by the EMS reflective display devices. FIG. 12A shows the color palette 1201 produced by the EMS reflective display device not including matching layers. FIG. 12B shows the color palette 1202 produced by the EMS reflective display device including the matching layers. Also shown on each of the CIE xy chromaticity diagrams are the boundaries 1210 of the CIE 1931 color space and the boundaries 1220 of the standard RGB (sRGB) color space (i.e., the triangle formed by sRGB primaries). The CIE 1931 color space is a mathematically define color space. The sRBG color space is a color space commonly used with computing applications, including monitors, printers, e-readers, tablet devices, smartphones and Internet applications. For the sRGB color space, the point 1232 corresponds to the red color, the point 1234 corresponds to the blue color, and the point 1236 corresponds to the green color. A color palette extending to the edges of the boundaries 1210 of the CIE 1931 color space would have the most saturated colors.


Comparing FIGS. 12A and 12B, the color palette 1201 shown in FIG. 12A (EMS reflective display device with no matching layers) does not extend to the red color 1232 of the sRBG color space as the color palette 1202 shown in FIG. 12B (EMS reflective display device with matching layers) does. Further, the color palette 1202 shown in FIG. 12B extends closer to the blue color 1234 and past the green color 1236 compared to the color palette 1201 shown in FIG. 12A. The color palette 1202 shown in FIG. 12B thus has an improvement in the RGB color saturation, with slight improvements in the blue and green color saturation and a large improvement in the red color saturation, for the EMS reflective display device including the matching layers.



FIG. 13 shows a plot of the spectrum of the red color produced by the two EMS reflective display devices discussed with respect to FIGS. 12A and 12B, i.e., one not including matching layers (12A) and one including matching layers (12B). The solid lines are the reflection spectra and the dashed lines are the absorption spectra. The grey lines are the reflection and absorption spectra of the EMS reflective display device without matching layers. The black lines are the reflection and absorption spectra of the EMS reflective display device with matching layers. Comparing the reflection spectra of the EMS reflective display devices at wavelengths of about 400 nm to 550 nm, the reflection spectrum of the EMS reflective display device with matching layers is reduced compared to the reflection spectrum of the EMS reflective display device without matching layers. The wavelength range of about 400 nm to 500 nm includes the colors violet (about 400 nm to 450 nm) and blue (about 450 nm to 490 nm). The improvement in the red color saturation shown in FIG. 12B versus FIG. 12A is the result of the suppression of the reflection at the wavelengths of about 400 nm to 550 nm.


For an optical device, the reflection, transmission, and absorption of a wavelength of light will generally account for all of the interactions of the wavelength of light with the device. Thus, the sum of the reflection, transmission, and absorption of a wavelength of light will generally be equal to one, i.e., the reflection, transmission, and absorption of the wavelength of light will account for all or 100% of the interactions of the wavelength of light with the device. Thus, comparing the absorption spectra of the EMS reflective display devices at a wavelength range of about 400 nm to 550 nm, the absorption spectrum of the EMS reflective display device with matching layers is increased compared to the absorption spectrum of the EMS reflective display device without matching layers (e.g., when the transmission of a wavelength of light remains about the same, reducing the reflection will increase the absorption of the wavelength of light). The wavelength range of about 400 nm to 500 nm includes the colors violet (about 400 nm to 450 nm) and blue (about 450 nm to 490 nm). The improvement in the red color saturation shown in FIG. 12B versus FIG. 12A also is the result of the increase of the absorption at the wavelengths of about 400 nm to 550 nm.


Implementations of the IMODs and other EMS reflective display devices described herein were described with respect to the visible spectrum, that is, the range of wavelengths from about 390 nm to about 750 nm. The matching layers disposed on an absorber layer also may be tailored for use in IMODs and other EMS reflective display devices that function with different wavelengths of electromagnetic radiation, such as infrared light or ultraviolet light, for example.



FIGS. 14A and 14B show examples of system block diagrams illustrating a display device 40 that includes a plurality of interferometric modulators. The display device 40 can be, for example, a smart phone, a cellular or mobile telephone. However, the same components of the display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions, tablets, e-readers, hand-held devices and portable media players.


The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48 and a microphone 46. The housing 41 can be formed from any of a variety of manufacturing processes, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to: plastic, metal, glass, rubber and ceramic, or a combination thereof. The housing 41 can include removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.


The display 30 may be any of a variety of displays, including a bi-stable or analog display, as described herein. The display 30 also can be configured to include a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD, or a non-flat-panel display, such as a CRT or other tube device. In addition, the display 30 can include an interferometric modulator display, as described herein.


The components of the display device 40 are schematically illustrated in FIG. 14B. The display device 40 includes a housing 41 and can include additional components at least partially enclosed therein. For example, the display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47. The transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52. The conditioning hardware 52 may be configured to condition a signal (e.g., filter a signal). The conditioning hardware 52 is connected to a speaker 45 and a microphone 46. The processor 21 is also connected to an input device 48 and a driver controller 29. The driver controller 29 is coupled to a frame buffer 28, and to an array driver 22, which in turn is coupled to a display array 30. In some implementations, a power supply 50 can provide power to substantially all components in the particular display device 40 design.


The network interface 27 includes the antenna 43 and the transceiver 47 so that the display device 40 can communicate with one or more devices over a network. The network interface 27 also may have some processing capabilities to relieve, for example, data processing requirements of the processor 21. The antenna 43 can transmit and receive signals. In some implementations, the antenna 43 transmits and receives RF signals according to the IEEE 16.11 standard, including IEEE 16.11(a), (b), or (g), or the IEEE 802.11 standard, including IEEE 802.11a, b, g, n, and further implementations thereof. In some other implementations, the antenna 43 transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna 43 is designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile communications (GSM), GSM/General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Terrestrial Trunked Radio (TETRA), Wideband-CDMA (W-CDMA), Evolution Data Optimized (EV-DO), 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Access (HSPA+), Long Term Evolution (LTE), AMPS, or other known signals that are used to communicate within a wireless network, such as a system utilizing 3G or 4G technology. The transceiver 47 can pre-process the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also can process signals received from the processor 21 so that they may be transmitted from the display device 40 via the antenna 43.


In some implementations, the transceiver 47 can be replaced by a receiver. In addition, in some implementations, the network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. The processor 21 can control the overall operation of the display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 can send the processed data to the driver controller 29 or to the frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation and gray-scale level.


The processor 21 can include a microcontroller, CPU, or logic unit to control operation of the display device 40. The conditioning hardware 52 may include amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. The conditioning hardware 52 may be discrete components within the display device 40, or may be incorporated within the processor 21 or other components.


The driver controller 29 can take the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and can re-format the raw image data appropriately for high speed transmission to the array driver 22. In some implementations, the driver controller 29 can re-format the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as an LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. For example, controllers may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.


The array driver 22 can receive the formatted information from the driver controller 29 and can re-format the video data into a parallel set of waveforms that are applied many times per second to the hundreds, and sometimes thousands (or more), of leads coming from the display's x-y matrix of pixels.


In some implementations, the driver controller 29, the array driver 22, and the display array 30 are appropriate for any of the types of displays described herein. For example, the driver controller 29 can be a conventional display controller or a bi-stable display controller (such as an IMOD controller). Additionally, the array driver 22 can be a conventional driver or a bi-stable display driver (such as an IMOD display driver). Moreover, the display array 30 can be a conventional display array or a bi-stable display array (such as a display including an array of IMODs). In some implementations, the driver controller 29 can be integrated with the array driver 22. Such an implementation can be useful in highly integrated systems, for example, mobile phones, portable-electronic devices, watches or small-area displays.


In some implementations, the input device 48 can be configured to allow, for example, a user to control the operation of the display device 40. The input device 48 can include a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a rocker, a touch-sensitive screen, a touch-sensitive screen integrated with display array 30, or a pressure- or heat-sensitive membrane. The microphone 46 can be configured as an input device for the display device 40. In some implementations, voice commands through the microphone 46 can be used for controlling operations of the display device 40.


The power supply 50 can include a variety of energy storage devices. For example, the power supply 50 can be a rechargeable battery, such as a nickel-cadmium battery or a lithium-ion battery. In implementations using a rechargeable battery, the rechargeable battery may be chargeable using power coming from, for example, a wall socket or a photovoltaic device or array. Alternatively, the rechargeable battery can be wirelessly chargeable. The power supply 50 also can be a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell or solar-cell paint. The power supply 50 also can be configured to receive power from a wall outlet.


In some implementations, control programmability resides in the driver controller 29 which can be located in several places in the electronic display system. In some other implementations, control programmability resides in the array driver 22. The above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.


The various illustrative logics, logical blocks, modules, circuits and algorithm steps described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and steps described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.


The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular steps and methods may be performed by circuitry that is specific to a given function.


In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.


Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein. The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other possibilities or implementations. Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of an IMOD as implemented.


Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings in a particular order, a person having ordinary skill in the art will readily recognize that such operations need not be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims
  • 1. An apparatus comprising: a reflective layer;an absorber layer spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer, wherein the absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, the absorber layer including a metal layer;a plurality of matching layers on a first surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer; anda dielectric layer disposed on a second surface of the absorber layer facing the cavity.
  • 2. The apparatus of claim 1, the first matching layer having a first thickness, the second matching layer having a second thickness, the first and the second thicknesses configured to modify at least one of an amplitude and a phase of reflected light and transmitted light to alter a red-green-blue color saturation of the apparatus.
  • 3. The apparatus of claim 1, wherein the first matching layer includes a first material having a first refractive index, wherein the second matching layer includes a second material having a second refractive index, and wherein the second refractive index is greater than the first refractive index.
  • 4. The apparatus of claim 1, wherein the metal layer includes at least one of vanadium, chromium, tungsten, nickel, or an alloy of molybdenum-chromium.
  • 5. The apparatus of claim 1, wherein the first matching layer includes at least one of silicon dioxide, magnesium fluoride, aluminum oxide, or a plastic.
  • 6. The apparatus of claim 1, wherein the second matching layer includes at least one of silicon nitride, silicon oxynitride, titanium dioxide, zirconium dioxide, tantalum oxide, or antimony oxide.
  • 7. The apparatus of claim 1, wherein the reflective layer is configured to be movable to vary a thickness of the cavity.
  • 8. The apparatus of claim 1, wherein the plurality of matching layers further includes a third matching layer disposed on the second matching layer.
  • 9. The apparatus of claim 1, wherein the dielectric layer includes at least one material selected from the list of materials comprising aluminum oxide, hafnium oxide and aluminum nitride.
  • 10. The apparatus of claim 1, further comprising: a display;a processor that is configured to communicate with the display, the processor being configured to process image data; anda memory device that is configured to communicate with the processor.
  • 11. The apparatus of claim 10, further comprising: a driver circuit configured to send at least one signal to the display; anda controller configured to send at least a portion of the image data to the driver circuit.
  • 12. The apparatus of claim 10, further comprising: an image source module configured to send the image data to the processor, wherein the image source module includes at least one of a receiver, transceiver, and transmitter.
  • 13. The apparatus of claim 10, further comprising: an input device configured to receive input data and to communicate the input data to the processor.
  • 14. An apparatus comprising: a reflective layer;an absorber layer spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer, wherein the absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, the absorber layer including a metal layer;a first matching layer having a first refractive index disposed on a first surface of the absorber layer;a second matching layer having a second refractive index disposed on the first matching layer, the second refractive index being greater than the first refractive index; anda dielectric layer disposed on a second surface of the absorber layer, the second surface of the absorber layer facing the cavity.
  • 15. The apparatus of claim 14, the first matching layer having a first thickness, the second matching layer having a second thickness, the first and the second thicknesses configured to modify at least one of an amplitude and a phase of reflected light and transmitted light to alter a red-green-blue color saturation of the apparatus.
  • 16. The apparatus of claim 14, wherein the metal layer includes at least one of vanadium, chromium, tungsten, nickel, or an alloy of molybdenum-chromium.
  • 17. The apparatus of claim 14, wherein the reflective layer is configured to be movable to vary a thickness of the cavity.
  • 18. An apparatus comprising: a reflective layer;an absorber layer spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer, wherein the absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, the absorber layer including a metal layer, wherein the reflective layer is configured to be movable to vary a thickness of the cavity;a plurality of matching layers on a first surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer; anda dielectric layer disposed on a second surface of the absorber layer facing the cavity.
  • 19. The apparatus of claim 18, the first matching layer having a first thickness, the second matching layer having a second thickness, the first and the second thicknesses configured to modify at least one of an amplitude and a phase of reflected light and transmitted light to alter a red-green-blue color saturation of the apparatus.
  • 20. The apparatus of claim 18, wherein the metal layer includes at least one of vanadium, chromium, tungsten, nickel, or an alloy of molybdenum-chromium.
  • 21. The apparatus of claim 18, wherein the first matching layer includes at least one of silicon dioxide, magnesium fluoride, aluminum oxide, or a plastic.
  • 22. The apparatus of claim 18, wherein the second matching layer includes at least one of silicon nitride, silicon oxynitride, titanium dioxide, zirconium dioxide, tantalum oxide, or antimony oxide.
  • 23. An apparatus comprising: a reflective layer;an absorber layer spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer, wherein the absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, the absorber layer including a metal layer;
  • 24. The apparatus of claim 23, wherein the modifying means includes a plurality of matching layers on a first surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.
  • 25. The apparatus of claim 24, wherein the modifying means includes a dielectric layer disposed on a second surface of the absorber layer facing the cavity.
PRIORITY CLAIM

This application claims priority to, and is a continuation of, U.S. patent application Ser. No. 13/289,937, filed on Nov. 4, 2011 and entitled “MATCHING LAYER THIN-FILMS FOR AN ELECTROMECHANICAL SYSTEMS REFLECTIVE DISPLAY DEVICE,” which is hereby incorporated by reference.

US Referenced Citations (447)
Number Name Date Kind
2590906 Tripp Apr 1952 A
2677714 Auwarter May 1954 A
3247392 Thelen Apr 1966 A
3679313 Rosenberg Jul 1972 A
3728030 Hawes Apr 1973 A
3886310 Guldberg et al. May 1975 A
3955190 Teraishi May 1976 A
4403248 Te Velde Sep 1983 A
4421381 Ueda et al. Dec 1983 A
4441789 Pohlack Apr 1984 A
4441791 Hornbeck Apr 1984 A
4497974 Deckman et al. Feb 1985 A
4498953 Cook et al. Feb 1985 A
4560435 Brown et al. Dec 1985 A
4655554 Armitage Apr 1987 A
4705361 Frazier et al. Nov 1987 A
4779959 Saunders Oct 1988 A
4786128 Birnbach Nov 1988 A
4822993 Dillon et al. Apr 1989 A
4859060 Katagiri et al. Aug 1989 A
4925259 Emmett May 1990 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
4973131 Carnes Nov 1990 A
4982184 Kirkwood Jan 1991 A
5022745 Zayhowski et al. Jun 1991 A
5028939 Hornbeck et al. Jul 1991 A
5062689 Koehler Nov 1991 A
5091983 Lukosz Feb 1992 A
5096279 Hornbeck et al. Mar 1992 A
5170283 O'Brien et al. Dec 1992 A
5315370 Bulow May 1994 A
5337191 Austin Aug 1994 A
5381232 Van Wijk Jan 1995 A
5452138 Mignardi et al. Sep 1995 A
5471341 Warde et al. Nov 1995 A
5526172 Kanack Jun 1996 A
5550373 Cole et al. Aug 1996 A
5559358 Burns et al. Sep 1996 A
5561523 Blomberg et al. Oct 1996 A
5597736 Sampsell Jan 1997 A
5600383 Hornbeck Feb 1997 A
5636052 Arney et al. Jun 1997 A
5646729 Koskinen et al. Jul 1997 A
5646768 Kaeriyama Jul 1997 A
5661592 Bornstein et al. Aug 1997 A
5665997 Weaver et al. Sep 1997 A
5699181 Choi Dec 1997 A
5710656 Goossen Jan 1998 A
5719068 Suzawa et al. Feb 1998 A
5734177 Sakamoto Mar 1998 A
5771116 Miller et al. Jun 1998 A
5786927 Greywall Jul 1998 A
5808781 Arney et al. Sep 1998 A
5818095 Sampsell Oct 1998 A
5825528 Goossen Oct 1998 A
5838484 Goossen Nov 1998 A
5867302 Fleming Feb 1999 A
5870221 Goossen Feb 1999 A
5914804 Goossen Jun 1999 A
5920418 Shiono et al. Jul 1999 A
5961848 Jacquet et al. Oct 1999 A
6028689 Michalicek et al. Feb 2000 A
6031653 Wang Feb 2000 A
6040937 Miles Mar 2000 A
6046659 Loo et al. Apr 2000 A
6055090 Miles Apr 2000 A
6100861 Cohen et al. Aug 2000 A
6124851 Jacobson Sep 2000 A
6242932 Hembree Jun 2001 B1
6262697 Stephenson Jul 2001 B1
6301000 Johnson Oct 2001 B1
6323987 Rinaudo et al. Nov 2001 B1
6327071 Kimura Dec 2001 B1
6335235 Bhakta et al. Jan 2002 B1
6351329 Greywall Feb 2002 B1
6356378 Huibers Mar 2002 B1
6377233 Colgan et al. Apr 2002 B2
6381022 Zavracky Apr 2002 B1
6384952 Clark et al. May 2002 B1
6400738 Tucker et al. Jun 2002 B1
6433917 Mei et al. Aug 2002 B1
6437583 Tartagni et al. Aug 2002 B1
6438282 Takeda et al. Aug 2002 B1
6452712 Atobe et al. Sep 2002 B2
6466354 Gudeman Oct 2002 B1
6519073 Goossen Feb 2003 B1
6556338 Han et al. Apr 2003 B2
6574033 Chui et al. Jun 2003 B1
6597490 Tayebati Jul 2003 B2
6608268 Goldsmith Aug 2003 B1
6632698 Ives Oct 2003 B2
6650455 Miles Nov 2003 B2
6657832 Williams et al. Dec 2003 B2
6661561 Fitzpatrick et al. Dec 2003 B2
6674562 Miles Jan 2004 B1
6680792 Miles Jan 2004 B2
6698295 Sherrer Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6738194 Ramirez et al. May 2004 B1
6768555 Chen et al. Jul 2004 B2
6794119 Miles Sep 2004 B2
6813059 Staker et al. Nov 2004 B2
6836366 Hunter et al. Dec 2004 B1
6841081 Chang et al. Jan 2005 B2
6844959 Huibers et al. Jan 2005 B2
6849471 Patel et al. Feb 2005 B2
6862127 Ishii Mar 2005 B1
6867896 Miles Mar 2005 B2
6870654 Lin et al. Mar 2005 B2
6882458 Lin et al. Apr 2005 B2
6882461 Tsai et al. Apr 2005 B1
6888661 Islam et al. May 2005 B1
6912022 Lin et al. Jun 2005 B2
6913942 Patel et al. Jul 2005 B2
6940630 Xie Sep 2005 B2
6947200 Huibers Sep 2005 B2
6952303 Lin et al. Oct 2005 B2
6958847 Lin Oct 2005 B2
6960305 Doan et al. Nov 2005 B2
6980350 Hung et al. Dec 2005 B2
6982820 Tsai Jan 2006 B2
6983820 Boast et al. Jan 2006 B2
7002726 Patel et al. Feb 2006 B2
7006272 Tsai Feb 2006 B2
7009754 Huibers Mar 2006 B2
7027204 Trisnadi et al. Apr 2006 B2
7034981 Makigaki Apr 2006 B2
7046422 Kimura et al. May 2006 B2
7072093 Piehl et al. Jul 2006 B2
7113339 Taguchi et al. Sep 2006 B2
7119945 Kothari et al. Oct 2006 B2
7123216 Miles Oct 2006 B1
7126738 Miles Oct 2006 B2
7130104 Cummings Oct 2006 B2
7184195 Yang Feb 2007 B2
7184202 Miles et al. Feb 2007 B2
7198973 Lin et al. Apr 2007 B2
7221495 Miles et al. May 2007 B2
7236284 Miles Jun 2007 B2
7245285 Yeh et al. Jul 2007 B2
7269325 Hou Sep 2007 B2
7289259 Chui et al. Oct 2007 B2
7302157 Chui Nov 2007 B2
7304784 Chui et al. Dec 2007 B2
7321456 Cummings Jan 2008 B2
7321457 Heald Jan 2008 B2
7327510 Cummings et al. Feb 2008 B2
7372613 Chui et al. May 2008 B2
7372619 Miles May 2008 B2
7385744 Kogut et al. Jun 2008 B2
7385762 Cummings Jun 2008 B2
7400488 Lynch et al. Jul 2008 B2
7405852 Hagood, IV et al. Jul 2008 B2
7417746 Lin et al. Aug 2008 B2
7420725 Kothari Sep 2008 B2
7436573 Doan et al. Oct 2008 B2
7459402 Doan et al. Dec 2008 B2
7460291 Sampsell et al. Dec 2008 B2
7460292 Chou Dec 2008 B2
7476327 Tung et al. Jan 2009 B2
7477440 Huang Jan 2009 B1
7492503 Chui Feb 2009 B2
7508566 Feenstra et al. Mar 2009 B2
7515327 Cummings Apr 2009 B2
7527995 Sampsell May 2009 B2
7532377 Miles May 2009 B2
7535621 Chiang May 2009 B2
7542198 Kothari Jun 2009 B2
7550794 Miles et al. Jun 2009 B2
7550810 Mignard et al. Jun 2009 B2
7554711 Miles Jun 2009 B2
7554714 Chui et al. Jun 2009 B2
7561321 Heald Jul 2009 B2
7564612 Chui Jul 2009 B2
7566664 Yan et al. Jul 2009 B2
7567373 Chui et al. Jul 2009 B2
7569488 Rafanan Aug 2009 B2
7612932 Chui et al. Nov 2009 B2
7612933 Djordjev Nov 2009 B2
7629197 Luo et al. Dec 2009 B2
7630119 Tung et al. Dec 2009 B2
7630121 Endisch et al. Dec 2009 B2
7643199 Lan Jan 2010 B2
7643202 Sasagawa Jan 2010 B2
7649671 Kothari et al. Jan 2010 B2
7663794 Cummings Feb 2010 B2
7672035 Sampsell et al. Mar 2010 B2
7692844 Miles Apr 2010 B2
7704772 Tung et al. Apr 2010 B2
7715079 Kogut et al. May 2010 B2
7715085 Sasagawa May 2010 B2
7719500 Chui May 2010 B2
7738157 Miles Jun 2010 B2
7742220 Kogut et al. Jun 2010 B2
7746539 Sampsell Jun 2010 B2
7768690 Sampsell Aug 2010 B2
7773286 Mignard Aug 2010 B2
7782517 Griffiths et al. Aug 2010 B2
7782523 Ishii Aug 2010 B2
7787173 Chui Aug 2010 B2
7808694 Miles Oct 2010 B2
7813029 Kothari et al. Oct 2010 B2
7826120 Miles Nov 2010 B2
7830586 Miles Nov 2010 B2
7830587 Miles Nov 2010 B2
7830588 Miles Nov 2010 B2
7835061 Kogut et al. Nov 2010 B2
7839557 Chui et al. Nov 2010 B2
7847999 Lee et al. Dec 2010 B2
7848003 Kothari et al. Dec 2010 B2
7852544 Sampsell et al. Dec 2010 B2
7852545 Miles Dec 2010 B2
7855826 De Groot et al. Dec 2010 B2
7859740 Tung Dec 2010 B2
7872792 Miles Jan 2011 B2
7884989 Gally et al. Feb 2011 B2
7889415 Kothari Feb 2011 B2
7889417 Sasagawa Feb 2011 B2
7893919 Kothari et al. Feb 2011 B2
7898722 Miles Mar 2011 B2
7898723 Khazeni et al. Mar 2011 B2
7924494 Tung et al. Apr 2011 B2
7936497 Chui et al. May 2011 B2
7944599 Chui et al. May 2011 B2
7944604 Ganti et al. May 2011 B2
7948671 Tung et al. May 2011 B2
7952787 Tung et al. May 2011 B2
7969638 Xu et al. Jun 2011 B2
7982700 Chui et al. Jul 2011 B2
7999993 Chui et al. Aug 2011 B2
8008736 Kothari Aug 2011 B2
8023167 Sampsell Sep 2011 B2
8035883 Kothari Oct 2011 B2
8035884 Miles Oct 2011 B2
8054527 Khazeni et al. Nov 2011 B2
8059326 Miles Nov 2011 B2
8068269 Djordjev Nov 2011 B2
8072402 Xu Dec 2011 B2
8081369 Miles Dec 2011 B2
8081370 Sampsell Dec 2011 B2
8736939 Hong et al. May 2014 B2
20010003487 Miles Jun 2001 A1
20010028503 Flanders et al. Oct 2001 A1
20010043171 Van Gorkom et al. Nov 2001 A1
20020054424 Miles May 2002 A1
20020070931 Ishikawa Jun 2002 A1
20020075555 Miles Jun 2002 A1
20020126364 Miles Sep 2002 A1
20020146200 Kudrle et al. Oct 2002 A1
20020149828 Miles et al. Oct 2002 A1
20020149834 Mei et al. Oct 2002 A1
20020154422 Sniegowski et al. Oct 2002 A1
20020197761 Patel et al. Dec 2002 A1
20030011864 Flanders Jan 2003 A1
20030016428 Kato et al. Jan 2003 A1
20030035196 Walker Feb 2003 A1
20030043157 Miles Mar 2003 A1
20030053078 Missey et al. Mar 2003 A1
20030119221 Cunningham et al. Jun 2003 A1
20030123125 Little Jul 2003 A1
20030138669 Kojima et al. Jul 2003 A1
20030173504 Cole et al. Sep 2003 A1
20030179383 Chen et al. Sep 2003 A1
20030202265 Reboa et al. Oct 2003 A1
20030202266 Ring et al. Oct 2003 A1
20040008396 Stappaerts Jan 2004 A1
20040008438 Sato Jan 2004 A1
20040027671 Wu et al. Feb 2004 A1
20040027701 Ishikawa Feb 2004 A1
20040043552 Strumpell et al. Mar 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040058532 Miles et al. Mar 2004 A1
20040066477 Morimoto et al. Apr 2004 A1
20040075967 Lynch et al. Apr 2004 A1
20040076802 Tompkin et al. Apr 2004 A1
20040080035 Delapierre Apr 2004 A1
20040100594 Huibers et al. May 2004 A1
20040100677 Huibers et al. May 2004 A1
20040125281 Lin Jul 2004 A1
20040125282 Lin et al. Jul 2004 A1
20040145811 Lin et al. Jul 2004 A1
20040147198 Lin et al. Jul 2004 A1
20040175577 Lin et al. Sep 2004 A1
20040184134 Makigaki Sep 2004 A1
20040188599 Viktorovitch et al. Sep 2004 A1
20040207897 Lin Oct 2004 A1
20040209195 Lin Oct 2004 A1
20040217264 Wood et al. Nov 2004 A1
20040217919 Piehl et al. Nov 2004 A1
20040218251 Piehl et al. Nov 2004 A1
20040240032 Miles Dec 2004 A1
20040259010 Kanbe Dec 2004 A1
20050002082 Miles Jan 2005 A1
20050003667 Lin et al. Jan 2005 A1
20050024557 Lin Feb 2005 A1
20050035699 Tsai Feb 2005 A1
20050036095 Yeh et al. Feb 2005 A1
20050046919 Taguchi et al. Mar 2005 A1
20050046922 Lin et al. Mar 2005 A1
20050046948 Lin Mar 2005 A1
20050068627 Nakamura et al. Mar 2005 A1
20050078348 Lin Apr 2005 A1
20050117190 Iwauchi et al. Jun 2005 A1
20050117623 Shchukin et al. Jun 2005 A1
20050128543 Phillips et al. Jun 2005 A1
20050133761 Thielemans Jun 2005 A1
20050168849 Lin Aug 2005 A1
20050179378 Oooka et al. Aug 2005 A1
20050195462 Lin Sep 2005 A1
20050249966 Tung et al. Nov 2005 A1
20050275930 Patel et al. Dec 2005 A1
20060007517 Tsai Jan 2006 A1
20060017379 Su et al. Jan 2006 A1
20060017689 Faase et al. Jan 2006 A1
20060024880 Chui et al. Feb 2006 A1
20060038643 Xu et al. Feb 2006 A1
20060065940 Kothari Mar 2006 A1
20060066599 Chui Mar 2006 A1
20060066640 Kothari et al. Mar 2006 A1
20060066641 Gally et al. Mar 2006 A1
20060066926 Kwak et al. Mar 2006 A1
20060066936 Chui et al. Mar 2006 A1
20060066938 Chui Mar 2006 A1
20060067633 Gally et al. Mar 2006 A1
20060067649 Tung et al. Mar 2006 A1
20060067651 Chui Mar 2006 A1
20060077152 Chui et al. Apr 2006 A1
20060077155 Chui et al. Apr 2006 A1
20060077156 Chui et al. Apr 2006 A1
20060079048 Sampsell Apr 2006 A1
20060082588 Mizuno et al. Apr 2006 A1
20060082863 Piehl et al. Apr 2006 A1
20060132927 Yoon Jun 2006 A1
20060180886 Tsang Aug 2006 A1
20060220160 Miles Oct 2006 A1
20060262126 Miles Nov 2006 A1
20060262380 Miles Nov 2006 A1
20060268388 Miles Nov 2006 A1
20060274398 Chou Dec 2006 A1
20070020948 Piehl et al. Jan 2007 A1
20070077525 Davis et al. Apr 2007 A1
20070086078 Hagood et al. Apr 2007 A1
20070097694 Faase et al. May 2007 A1
20070115415 Piehl et al. May 2007 A1
20070121118 Gally et al. May 2007 A1
20070138608 Ikehashi Jun 2007 A1
20070153860 Chang-Hasnain et al. Jul 2007 A1
20070177247 Miles Aug 2007 A1
20070194630 Mignard et al. Aug 2007 A1
20070216987 Hagood et al. Sep 2007 A1
20070253054 Miles Nov 2007 A1
20070279729 Kothari et al. Dec 2007 A1
20070279730 Heald Dec 2007 A1
20070285761 Zhong et al. Dec 2007 A1
20080002299 Thurn Jan 2008 A1
20080013144 Chui et al. Jan 2008 A1
20080013145 Chui et al. Jan 2008 A1
20080013154 Chui Jan 2008 A1
20080030657 Wu et al. Feb 2008 A1
20080037093 Miles Feb 2008 A1
20080055705 Kothari Mar 2008 A1
20080055706 Chui et al. Mar 2008 A1
20080055707 Kogut et al. Mar 2008 A1
20080068697 Haluzak et al. Mar 2008 A1
20080080043 Chui et al. Apr 2008 A1
20080088904 Miles Apr 2008 A1
20080088910 Miles Apr 2008 A1
20080088911 Miles Apr 2008 A1
20080088912 Miles Apr 2008 A1
20080094690 Luo et al. Apr 2008 A1
20080106782 Miles May 2008 A1
20080110855 Cummings May 2008 A1
20080112035 Cummings May 2008 A1
20080112036 Cummings May 2008 A1
20080158645 Chiang Jul 2008 A1
20080186581 Bita et al. Aug 2008 A1
20080239455 Kogut et al. Oct 2008 A1
20080247028 Chui et al. Oct 2008 A1
20080278787 Sasagawa Nov 2008 A1
20080278788 Sasagawa Nov 2008 A1
20080285165 Wu et al. Nov 2008 A1
20080297880 Steckl et al. Dec 2008 A1
20080316566 Lan Dec 2008 A1
20080316568 Griffiths et al. Dec 2008 A1
20090009845 Endisch et al. Jan 2009 A1
20090021884 Nakamura Jan 2009 A1
20090059346 Xu Mar 2009 A1
20090068781 Tung et al. Mar 2009 A1
20090073534 Lee et al. Mar 2009 A1
20090073539 Mignard Mar 2009 A1
20090078316 Khazeni et al. Mar 2009 A1
20090080060 Sampsell et al. Mar 2009 A1
20090101192 Kothari et al. Apr 2009 A1
20090103166 Khazeni et al. Apr 2009 A1
20090122384 Felnhofer et al. May 2009 A1
20090135465 Chui May 2009 A1
20090147343 Kogut et al. Jun 2009 A1
20090159123 Kothari et al. Jun 2009 A1
20090201566 Kothari Aug 2009 A1
20090211885 Steeneken et al. Aug 2009 A1
20090213450 Sampsell Aug 2009 A1
20090213451 Tung et al. Aug 2009 A1
20090225395 Ganti et al. Sep 2009 A1
20090231666 Gudlavalleti et al. Sep 2009 A1
20090251761 Khazeni et al. Oct 2009 A1
20090256218 Mignard et al. Oct 2009 A1
20090257105 Xu et al. Oct 2009 A1
20090273823 Tung et al. Nov 2009 A1
20090273824 Sasagawa Nov 2009 A1
20090279162 Chui Nov 2009 A1
20090293955 Kothari et al. Dec 2009 A1
20100039370 Miles Feb 2010 A1
20100051089 Khazeni et al. Mar 2010 A1
20100053148 Khazeni et al. Mar 2010 A1
20100080890 Tung et al. Apr 2010 A1
20100085626 Tung et al. Apr 2010 A1
20100096006 Griffiths et al. Apr 2010 A1
20100096011 Griffiths et al. Apr 2010 A1
20100118382 Kothari et al. May 2010 A1
20100126777 Hallundbaek May 2010 A1
20100236624 Khazeni et al. Sep 2010 A1
20100238572 Tao et al. Sep 2010 A1
20100302660 Hirokubo et al. Dec 2010 A1
20100309572 Mignard Dec 2010 A1
20110019380 Miles Jan 2011 A1
20110026095 Kothari et al. Feb 2011 A1
20110026096 Miles Feb 2011 A1
20110038027 Miles Feb 2011 A1
20110044496 Chui et al. Feb 2011 A1
20110063712 Kothari et al. Mar 2011 A1
20110069371 Kothari et al. Mar 2011 A1
20110075241 Mienko et al. Mar 2011 A1
20110075245 Hashimura et al. Mar 2011 A1
20110080632 Miles Apr 2011 A1
20110090554 Tung Apr 2011 A1
20110116156 Kothari May 2011 A1
20110134505 Sasagawa Jun 2011 A1
20110169724 Tao et al. Jul 2011 A1
20110170166 Miles Jul 2011 A1
20110170167 Miles Jul 2011 A1
20110170168 Endisch et al. Jul 2011 A1
20110188109 Chui et al. Aug 2011 A1
20110188110 Miles Aug 2011 A1
20110286072 Liu et al. Nov 2011 A1
20120085731 Miles Apr 2012 A1
20130114121 Hong et al. May 2013 A1
Foreign Referenced Citations (64)
Number Date Country
102006039071 Feb 2008 DE
0035299 Sep 1981 EP
0668490 Aug 1995 EP
0695959 Feb 1996 EP
0879991 Nov 1998 EP
0969306 Jan 2000 EP
0986077 Mar 2000 EP
1122577 Aug 2001 EP
1205782 May 2002 EP
1227346 Jul 2002 EP
1275997 Jan 2003 EP
1403212 Mar 2004 EP
1473581 Nov 2004 EP
1928028 Jun 2008 EP
2030947 Mar 2009 EP
2224275 Sep 2010 EP
56088111 Jul 1981 JP
05049238 Feb 1993 JP
05281479 Oct 1993 JP
8051230 Feb 1996 JP
11211999 Aug 1999 JP
2000147262 May 2000 JP
2001221913 Aug 2001 JP
2001249283 Sep 2001 JP
2002062490 Feb 2002 JP
2002221678 Aug 2002 JP
2003177336 Jun 2003 JP
2003340795 Dec 2003 JP
2004012642 Jan 2004 JP
2004205973 Jul 2004 JP
2004212638 Jul 2004 JP
2004212680 Jul 2004 JP
2005279831 Oct 2005 JP
2005308871 Nov 2005 JP
2007027150 Feb 2007 JP
2009539143 Nov 2009 JP
2010049269 Mar 2010 JP
2010198018 Sep 2010 JP
2011008225 Jan 2011 JP
2011517491 Jun 2011 JP
2011191474 Sep 2011 JP
2013528833 Jul 2013 JP
20100138974 Dec 2010 KR
20110004396 Jan 2011 KR
200951059 Dec 2009 TW
9717628 May 1997 WO
9814804 Apr 1998 WO
9843129 Oct 1998 WO
0153113 Jul 2001 WO
0224570 Mar 2002 WO
02086582 Oct 2002 WO
03105198 Dec 2003 WO
2006035698 Apr 2006 WO
2007036422 Apr 2007 WO
2007045875 Apr 2007 WO
2007053438 May 2007 WO
2007072998 Jun 2007 WO
2007142978 Dec 2007 WO
2008062363 May 2008 WO
2009032525 Mar 2009 WO
2009114323 Sep 2009 WO
2009120610 Oct 2009 WO
2011146413 Nov 2011 WO
2013066689 May 2013 WO
Non-Patent Literature Citations (39)
Entry
International Preliminary Report on Patentability (Chapter II) prepared for PCT/US2012/61661 on May 4, 2014.
Billard C, “Tunable Capacitor,” 5th Annual Review of LETI, Jun. 24, 2003, p. 7.
Brosnihan, et al., “Optical MEMS—A Fabrication Process for MEMS Optical Switches With Integrated On-Chip Electronics,” 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Jun. 8-12, 2003, vol. 2, pp. 1638-1642.
Cacharelis, et al., “A Reflective-Mode PDLC Light Valve Display Technology,” Proceedings of European Solid State Device Research Conference (ESSDERC), Sep. 1997, pp. 596-599.
Conner, “Hybrid Color Display using Optical Interference Filter Array,” SID Digest, Jun. 1993, pp. 577-580.
Dokmeci, et al., “Two-Axis Single-Crytal Silicon Micromirror Arrays,” Journal of Microelectromechanical Systems, Dec. 2004, 13(6), 1006-1017.
Feenstra, et al., “Electrowetting displays,” Liquavista BV, Jan. 2006, 16 pp.
Hohlfeld, et al., “Micro-Machined Tunable Optical Filters With Optimized Band-Pass Spectrum,” 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Jun. 8-12, 2003, vol. 2, pp. 1494-1497.
International Preliminary Report on Patentability—PCT/US2012/061661, The International Bureau of WIPO—Geneva, Switzerland, Feb. 17, 2014.
International Search Report and Written Opinion—PCT/US2012/061661—ISA/EPO—Jan. 17, 2013.
IPRP dated Mar. 16, 2010 in PCT/US09/037881.
ISR and WO dated Jul. 17, 2009 in PCT/US09/037881.
Jerman et al., “A Miniature Fabry-Perot Interferometer with a Corrugated Silicon Diaphragm Support”, IEEE Electron Devices Society, pp. 140-144, Jun. 1990.
Jerman, et al., “Miniature Fabry-Perot Interferometers Micromachined in Silicon for use in Optical Fiber WDM Systems,” Transducers, Proceedings on the International Conference on Solid State Sensors and Actuators, Jun. 1991, vol. ConF. 6, San Francisco, pp. 372-375.
Kowarz, et al., “Conformal Grating Electromechanical System (Gems) for High-Speed Digital Light Modulation,” Proceedings of the IEEE 15th Annual International Conference on Micro Electro Mechanical Systems, MEMS, Jan. 2002, pp. 568-573.
Lezec, “Submicrometer Dimple Array Based Interference Color Field Displays and Sensors,” Nano Letters, 2006, 7 (2), 329-333.
Londergan, et al., “Advanced processes for MEMS-based displays,” Proceedings of the Asia Display, 2007, SID, vol. 1, pp. 107-112.
Longhurst R.S., “Geometrical and Physical Optics”, Chapter IX: Multiple Beam Interferometry, pp. 153-157, 1963.
Maier et al., Apr. 1996, “1 .3″ ActiveMatrix liquid crystal spatial light modulator with 508 dpi resolution”, SPIE vol. 2754, pp. 171-179.
Mehregany, et al., “MEMS Applications in Optical Systems,” IEEE/LEOS 1996 Summer Topical Meetings, Aug. 1996, pp. 75-76.
Miles M.W., “A MEMS Based Interferometric Modulator (IMOD) for Display Applications” Proceedings of Sensors Expo, Oct. 21, 1997 © 1997 Helmer's Publishing, Inc. (Oct. 21, 1997), pp. 281-284 XP009058455.
Miles M.W., “A New Reflective FPD Technology using Interferometric Modulation,” Journal of the SID, Dec. 1997, vol. 5 (4), pp. 379-382.
Miles M.W., et al., “Interferometric Modulation MOEMS as an enabling technology for high-performance reflective displays,” Proceedings of the SPIE, 2003, 4985, 131-139.
Nakagawa et al., “Wide-Field -of-View Narrow-Band Spectral Filters Based on Photonic Crystal Nanocavities”, Optical Society of America, Optics Letters, vol. 27, No. 3, pp. 191-193, Feb. 1, 2002.
Nieminen, et al., “Design of a Temperature-Stable RF MEMS Capacitor,” Institute of Electrical and Electronics Engineers (IEEE) Journal of Microelectromechanical Systems, Oct. 2004, vol. 13(5), pp. 705-714.
Pape, et al., “Characteristics of the Deformable Mirror Device for Optical Information Processing,” Optical Engineering, Nov.-Dec. 1983, 22(6), 676-681.
Qualcomm MEMS Technologies, Inc., May 2008, Interferometric Modulator (IMOD), Technology Overview, White Paper, 14 pp.
Taii Y. et al., “A Transparent Sheet Display by Plastic MEMS,” Journal of the SID, 2006, vol. 14 (8), pp. 735-741.
Taiwan Search Report—TW101140894—TIPO—Sep. 22, 2014.
Tolansky, “Multiple-Beam Interference in Multiple-Beam Interferometry of Surfaces and Films,” Chap II Oxford at the Clarendon Press, 1948, pp. 8-11.
Wang, et al., “Design and Fabrication of a Novel TWO-Dimension MEMS-Based Tunable Capacitor,” IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, Jun. 29-Jul. 1, 2002, vol. 2, pp. 1766-1769.
U.S. Notice of Allowance dated Feb. 7, 2013, issued in U.S. Appl. No. 13/289,937.
U.S. Office Action dated Jun. 17, 2013, issued in U.S. Appl. No. 13/289,937.
U.S. Notice of Allowance dated Sep. 4, 2013, issued in U.S. Appl. No. 13/289,937.
U.S. Notice of Allowance dated Dec. 13, 2013, issued in U.S. Appl. No. 13/289,937.
U.S. Notice of Allowance dated Mar. 10, 2014, issued in U.S. Appl. No. 13/289,937.
Written Opinion Dated Nov. 13, 2013 Issued in PCT/US2012/061661.
Korean Office Action Dated Sep. 22, 2014 Issued in Application No. 10-2014-7015122.
Taiwan Office Action Dated Sep. 22, 2014 Issued in Application No. 101140894.
Related Publications (1)
Number Date Country
20140218784 A1 Aug 2014 US
Continuations (1)
Number Date Country
Parent 13289937 Nov 2011 US
Child 14244737 US