Maneuvering materials throughout an automated sewing process is a difficult task due to the flexibility and elasticity of materials. Materials may become misaligned during the process, requiring operator interaction. In order to maneuver material through an automated sewing process there needs to be an apparatus that can properly align the materials through the sewing machine without restricting the materials being fed through the sewing machine to reduce or eliminate the need for operator assistance.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also correspond to implementations of the claimed technology.
The accompanying drawings illustrate various examples of systems, methods, and embodiments of various other aspects of the disclosure. Any person with ordinary skills in the art will appreciate that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. It may be that in some examples one element may be designed as multiple elements or that multiple elements may be designed as one element. In some examples, an element shown as an internal component of one element may be implemented as an external component in another, and vice versa. Furthermore, elements may not be drawn to scale. Non-limiting and non-exhaustive descriptions are described with reference to the following drawings. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating principles. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Disclosed herein are various examples related to manipulation or alignment of material for processing, e.g., in the automated production of sewn or bonded products. The present disclosure is generally related to systems, apparatuses, and methods for the manipulation or alignment of flexible or flimsy material such as, e.g., fabrics or thin films. For example, an apparatus such as a material aligner can be used in an automated sewing process feed control system for alignment of the material for processing. The material aligner can adapt to arbitrary seam shapes or edges during sewing or bonding of the material. Reference will now be made in detail to the description of the embodiments as illustrated in the drawings, wherein like reference numbers indicate like parts throughout the several views.
The words “comprising,” “having,” “containing,” and “including,” and other forms thereof, are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items.
It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Although any systems and methods similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present disclosure, the preferred systems and methods are now described.
Embodiments of the present disclosure will be described more fully hereinafter with reference to the accompanying drawings in which like numerals represent like elements throughout the several figures, and in which example embodiments are shown. Embodiments of the claims may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. The examples set forth herein are non-limiting examples and are merely examples among other possible examples.
Referring to
The processor 104 can be configured to decode and execute any instructions received from one or more other electronic devices or servers. The processor can include one or more general-purpose processors (e.g., INTEL® or Advanced Micro Devices® (AMD) microprocessors) and/or one or more special purpose processors (e.g., digital signal processors or Xilinx® System on Chip (SOC) field programmable gate array (FPGA) processor). The processor 104 may be configured to execute one or more computer-readable program instructions, such as program instructions to carry out any of the functions described in this description.
The Memory 106 can include, but is not limited to, fixed (hard) drives, magnetic tape, floppy diskettes, optical disks, Compact Disc Read-Only Memories (CD-ROMs), and magneto-optical disks, semiconductor memories, such as ROMs, Random Access Memories (RAMs), Programmable Read-Only Memories (PROMs), Erasable PROMs (EPROMs), Electrically Erasable PROMs (EEPROMs), flash memory, magnetic or optical cards, or other type of media/machine-readable medium suitable for storing electronic instructions. The memory 106 can comprise one or more modules (e.g., operational control(s) 128) that can be implemented as a program executable by processor(s) 104.
The interface(s) or HMI 108 can accept inputs from users, provide outputs to the users or may perform both the actions. In one case, a user can interact with the interface(s) using one or more user-interactive objects and devices. The user-interactive objects and devices may comprise user input buttons, switches, knobs, levers, keys, trackballs, touchpads, cameras, microphones, motion sensors, heat sensors, inertial sensors, touch sensors, visual indications (e.g., indicator lights or meters), audio indications (e.g., bells, buzzers, etc.) or a combination of the above. Further, the interface(s) can either be implemented as a command line interface (CLI), a graphical user interface (GUI), a voice interface, or a web-based user-interface, at element 108. The interface(s) can also include combinations of physical and/or electronic interfaces, which can be designed based upon the environmental setting or application.
The input/output devices or I/O devices 110 of the robotic system 102 can comprise components used to facilitate connections of the processor 104 to other devices such as, e.g., material mover(s) 114, secondary operation device(s) 116, sensing device(s) 120 and/or the automated sewing or bonding machine 122 and can comprise one or more serial, parallel, small system interface (SCSI), universal serial bus (USB), IEEE 1394 (i.e. Firewire™) connection elements or other appropriate connection elements.
The networking device(s) 112 of the robotic system 102 can comprise the various components used to transmit and/or receive data over a network. The networking device(s) 112 can include a device that can communicate both inputs and outputs, for instance, a modulator/demodulator (i.e. modem), a radio frequency (RF) or infrared (IR) transceiver, a telephonic interface, a bridge, a router, as well as a network card, etc.
The material mover(s) 114 of the robotic system 102 can facilitate material manipulation between operations. For example, the material mover(s) 114 may move, stack, or position the materials prior to the next operation. In some embodiments, the material mover(s) 114 may transport materials into a predetermined alignment or position prior to, during or after a cutting, sewing, or other operation.
The secondary operation device(s) 116 can include destacking device(s), stacking device(s), folding device(s), label manipulation device(s), and/or other device(s) that assist with the preparation, making and/or finishing of the sewn product.
The local interface 118 of the robotic system 102 can be, for example, but not limited to, one or more buses or other wired or wireless connections, as is known in the art. The local interface 118 can have additional elements, which are omitted for simplicity, such as controllers, buffers (caches), drivers, repeaters, and receivers, to enable communications. Further, the local interface 118 can include address, control, and/or data connections to enable appropriate communications among the components, at element 122.
The sensing device(s) 120 of the robotic system 102 can facilitate detecting the position or movement of the product material(s) and inspecting the product material(s) for defects and/or discrepancies before, during or after a sewing or cutting operation or other process operation. Further, the sensing device(s) 120 can facilitate detecting markings on the product before cutting or sewing the material. A sensing device 120 can comprise, but is not limited to, one or more sensor and/or vision device/camera 126 such as, e.g., an RGB camera, an RGB-D camera, a near infrared (NIR) camera, stereoscopic camera, photometric stereo camera (single camera with multiple illumination options), time of flight camera, Internet protocol (IP) camera, light-field camera, monorail camera, multiplane camera, rapatronic camera, stereo camera, still camera, thermal imaging camera, acoustic camera, rangefinder camera, etc., at element 120. The RGB-D camera is a digital camera that can provide color (RGB) and depth information for pixels in an image. The sensing device(s) 120 can also include one or more motion sensor(s), temperature sensor(s), humidity sensor(s), microphone(s), ultrasound device(s), radar or lidar device(s), RF receiver(s) and/or other environmental or electronic sensor(s). The sensing device(s) 120 can include an edge sensor or other feedback device such as, e.g., a laser or fiber optic sensor to locate the edge of the material being processed. The edge sensor or feedback device may provide data to determine appropriate adjustments needed to position the material on the correct processing path.
An automated sewing or bonding machine 122 is a sewing or bonding device or system that can include, e.g., a computerized sewing machine or a computerized bonding or joining apparatus (e.g., ultrasonic welding, thermal bonding, gluing or other bonding or joining technology). The automated sewing or bonding machine 122 can be configured to sew or otherwise bond or join (e.g., ultrasonic welding) a perimeter or other path on the material.
Material aligners 124 provide traction in one direction to control positioning of material in that direction, while concurrently allowing movement of the material in a perpendicular direction. The material aligner 124 can actively control the position of the material along an axis in the first direction. The material aligner 124 can also provide resistance to movement of the material perpendicular to that axis. For example, as the material is pulled into the sewing or bonding machine, the resistance can provide tension in the material. The material aligners 124 can also allow movement of the material in directions at other angles than perpendicular to the first direction of active control. For instance, the material may be fed to the sewing machine 122 at an angle that is not perpendicular to the material aligner 124. Examples of material aligners 124 include, e.g., omni-chain material aligners 130 and omni-belt material aligners 132. The omni-chain material aligner 130 comprises a circular roller chain extending between two or more sprockets. The rollers of the circular roller chain provide traction in a first direction and rolling contact in a second perpendicular direction. The sprockets can be driven by a motor (e.g., a stepper motor) to perform active steering control of the material. Rolling contact and controlled roller pressure against the material allows for feed control (e.g. tension control) in the second direction and active steering control in the first direction during sewing or bonding. The omni-belt material aligner 132 comprises a belt (e.g., an indexed belt, chain, etc.) with attached perpendicular rollers, which allow feed control perpendicular to the length of the belt and active motorized steering control of the material being fed into the system along the length of the belt, while controlling applied roller pressure. Direct spring displacement 134 can be used to manage or control of the pressure applied by the material aligner 124 (e.g., the omni-chain material aligner 130 or the omni-belt material aligner 132) onto the material to facilitate control of material feeding.
Material aligners 124 can also include, e.g., an omni-belt material aligner 132, in which displacement can be controlled in order to control the applied pressure of the omni-belt on the material via torsion of the belt due to belt tension. Each offset-belt roller can contribute to the pressure applied along the full contact length of the material. Displacement of the omni-belt material aligner 132 can be controlled in order to control the applied pressure of the omni-belt on the material via the tension in the chain. Each omni-belt roller can contribute to the pressure applied along the full contact length of the material.
As shown in
Functioning of the omni-chain material aligner 130 will now be discussed with reference to
Referring to
In the example of
The rollers 215 can have a shape that allows for rotation with respect to (or about) an axis extending through the roller 215. The rollers 215 are distributed along the length of the roller chain 203. For example, the rollers 215 can be spherical (as shown in
In some embodiments, the rollers 215 may be free spinning to not interfere or impede with a material moving parallel to the roller's rotation or provide a resistance to rotation in the direction of sewing (e.g., perpendicular to the rotational axis of the rollers 215 of the circular roller chain 203 on the sprockets 206). Within the rollers 215 of the circular roller chain 203 and the spacers 212 can be a flexible cable running therethrough. In some embodiments, the flexible cable may be omitted, and the spacers 212 and rollers 215 may be interconnected in another manner such as being coupled together by various joints. For example, the spacers 212 can be flexibly connected with the adjacent rollers 215 by pins that allow the roller chain 203 to rotate about the sprockets 206.
The rollers 215 in the circular roller chain 203 can be textured (e.g., comprising grooves, bumps, indents, etc.), or coated or wrapped with a coating or layer, to provide friction with the material. In some embodiments, the rollers 215 can comprise a low friction core (e.g., stainless steel) with a layer or coating (which can be textured or have other gripping properties) disposed on the roller surface that enhances the friction of the rollers 215. The coating or layer can be formed in a band around the roller 215 to improve contact with the material as the roller rotates about the rotational axis. The coating or layer can have a ribbed or toothed profile to enhance contact. In some embodiments, the rollers 215 can comprise a hub or bearing with a contact element (e.g., a rubber tire or other contact material) secured around the hub.
The sprockets 206 are connected at relative positions on the support arm 209 in order to support and provide a guide for the circular roller chain 203 to extend along the first direction while allowing the rollers 215 connected to the sprockets 206 to freely spin. The distal end of the projections of the sprockets 206 can include a recess that can mesh with the spacers 212 to hold the circular roller chain 203 in alignment on the sprocket 206, while allowing the rollers 215 to still rotate when engaged. At least one sprocket 206 is driven by a motor 218 to perform active steering control, which may be used for edge alignment during an automated sewing process. In some embodiments, additional end effectors may be used in order to move the material through the omni-chain material aligner 130 in a motion perpendicular to the roller chain 203 while allowing the omni-chain material aligner 130 to provide the direction (either left or right) for the material.
Functioning of the omni-belt material aligner 132 will now be discussed with reference to
Functioning of the omni-belt material aligner 132 will now be discussed with reference to
Support and positioning of the omni-belt material aligner 132 can be provided by, e.g., the translation system 312 shown in
Contact pressure can be applied to the material via the rollers through a variety of methods. For example, active control such as, e.g., pneumatic or electrical position control and passive control such as, e.g., direct spring displacement can be implemented to adjust or maintain the contact pressure to the material. Functioning of direct spring displacement will now be discussed with reference to
As illustrated in
Functioning of the chain tension displacement for a material aligner 124 will now be discussed with reference to
Support and positioning of the omni-chain material aligner 130 can be provided by, e.g., a translation system 612 that can produce Z motion, planar XY motion, or a combination of both. Vertical displacement (Z motion) of the material aligner is represented by arrow 603. The circular roller chain 203 can be positioned on the material by lowering the omni-chain material aligner 130 onto the material on the curved work surface 615. As the omni-chain material aligner 130 is lowered, the pressure (arrow 606) applied to the material by the circular roller chain 203 can vary as the position of the material aligner is changed. The embodiment of
Operation of a material aligner 124 will now be discussed with reference to
Movement of the circular roller chain 203 on the sprockets 206 can reposition the material on the work surface during the sewing process. By rotating the circular roller chain, the material can be made to change its angle with respect to the sewing machine feed direction and or shift along the first direction extending along the material aligner 124. Shifting the material side-to-side can change the angle that the material is supplied to the sewing needle, which allows the seam to be sewn along a curved or nonlinear path. Adjustment of the material position can be based upon a tracking feature (e.g., the seam or other optically or mechanically detectable feature of the material) that can be detected by the sensing device(s) 120 of the robotic system 102 (
In some implementations, two or more material aligners 124 can be arranged to control alignment of different pieces of material for bonding, attachment, or other operations. Referring to
The omni-chain material aligners 130 can comprise a circular roller chain 203 extending between two or more sprockets 206 (
The omni-belt material aligners 132 can include rollers 306 linked together on a belt 303 to provide rolling contact and control of the material. As shown in
The material aligners 124 can maintain proper alignment of pieces of material being fed to a bonding or joining apparatus for sewing or bonding the material together or to another item. Alignment of the material can be accomplished using the bottom and top material aligners 124 (132b and 132a, respectively). In some embodiments, a ply separator 308 can be located between the top and bottom material aligners 132a and 132b. The ply separator 308 can be, e.g., a plate that can separate first and second layers of material allowing the top and bottom material aligners 132a and 132b to act on a single layer of material while reducing its effects on the other layer of material. The ply separator 308 can comprise two planar or contoured surfaces. For example, a first ply or piece of material can be fed between the bottom material aligner 132b and a lower surface of the ply separator 308 and a second ply or piece of material can be fed the top material aligner 132a and an upper surface of the ply separator 308. The material aligners 124 can provide traction in one direction to control positioning of the material in that direction, while concurrently allowing movement of the material in a perpendicular direction. For example, the material aligners 132a and 132b can comprise a series of rollers that operate as idlers in the feed direction of the sewing or bonding machine 122, while providing controlled movement of the material.
In the example of
In some cases, the material aligners 132a and/or 132b can be repositioned to allow the material to be loaded into position between the material aligner 132a or 132b and the ply separator 308. For instance, an actuator can retract the material aligner 132a or 132b away from the ply separator 308 to loading of the material and return the material aligner to secure or position the material during processing. Positioning of the material aligners 132a and 132b against the material or away from the ply separator 308 can be provided by pneumatic, servo or other appropriate actuator. The actuators can also adjust pressure applied through the rollers of the material aligners. The supports or translation systems for the material aligners are not shown for illustration purposes.
In
In some implementations, a ply separator 308 may not be included between the top and bottom material aligners 132a and 132b. The first and second pieces of material can be held between the top and bottom material aligners 132a and 132b with the material plies in contact with each other. The pieces of material can slide against each other allowing the top and bottom material aligners 132a and 132b to independently adjust their positions. Edge sensors can be used to monitor the positioning and alignment of the material. For example, the edge sensors can include a fiber optic array, vision device, mechanical sensor, or other appropriate sensor. The edge sensors can monitor the locations of the material edges, which can be used to control the material aligners 132a and 132b to maintain the edges in the proper position.
In some embodiments, a guide can partially surround a material aligner 124 to guide the material into or through the material aligner 124. For example, a guide can be provided to assist in loading a piece of material between one of the material aligners 132a or 132b and the ply separator 308. As a piece of material is provided at one end of the material aligner over the guide, the material aligner 132a or 132b can engage with the material to pull it over the guide and between the ply separator 308 and the material aligner. The material aligner 132a or 132b can position the piece of material for processing. The guide can be configured to feed the material between the material aligner and ply separator to avoid or prevent bunching during processing.
It should be emphasized that the above-described embodiments of the present disclosure are merely possible examples of implementations set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
The term “substantially” is meant to permit deviations from the descriptive term that don't negatively impact the intended purpose. Descriptive terms are implicitly understood to be modified by the word substantially, even if the term is not explicitly modified by the word substantially.
It should be noted that ratios, concentrations, amounts, and other numerical data may be expressed herein in a range format. It is to be understood that such a range format is used for convenience and brevity, and thus, should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. To illustrate, a concentration range of “about 0.1% to about 5%” should be interpreted to include not only the explicitly recited concentration of about 0.1 wt % to about 5 wt %, but also include individual concentrations (e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.5%, 1.1%, 2.2%, 3.3%, and 4.4%) within the indicated range. The term “about” can include traditional rounding according to significant figures of numerical values. In addition, the phrase “about ‘x’ to ‘y’” includes “about ‘x’ to about ‘y’”.
This application is a continuation-in-part application claiming priority to, and the benefit of, co-pending U.S. non-provisional application entitled “Material Aligner” having Ser. No.. 16/984,815, filed Aug. 4, 2020, which is hereby incorporated by reference in its entirety. This application also claims priority to, and the benefit of, co-pending U.S. non-provisional application entitled “Garment Sleeve Attachment Systems and Methods” having Ser. No. 17/190,545, filed Mar. 3, 2021, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16984815 | Aug 2020 | US |
Child | 17241437 | US | |
Parent | 17190545 | Mar 2021 | US |
Child | 16984815 | US |