The present invention relates to preservatives and particularly preservatives for timber building materials.
Wood continues to be the most commonly used framing material for the construction of residential properties. Its weakness to termite attack in some countries has been lessened by treatment of wood with insecticides. Application methods and approved chemicals vary dramatically through out the world.
Softwood timbers, pinus radiata, pinus elliotti, and pinus carribea used as framing timber in Australia are susceptible to termite attack. Changes to government regulations have limited the use of soil poisoning agents (banning of organo-chloride insecticides), which has led to a higher incidence of termite attack of timber framed houses.
Many countries including Australia and the USA are struggling to find suitable cost-effective methods to combat this ever-increasing risk of termite attack.
One of the strategies to combat termite attack of softwood frames is the treatment of the timber with insecticides or more broad-spectrum wood preservatives.
In Australia, for example, treatment of timber is covered by the Australian standard AS 1604-2000/. Hazard class H2 is defined for the biological hazard—borer and termites. Retention is measured in mass/mass (% m/m).
The approved chemicals are shown in the following table.
Penetration is defined under the standard as—
“All preservative-treated wood shall show evidence of distribution of the preservative in the penetration zone in accordance with the following requirements:
In order to provide for penetration of the preservative, a carrier must be used. As shown in the Australian standard, the carriers currently available are waterborne or solvent borne systems.
Waterborne carriers swell wood and hence timber thus treated needs to be re-dried prior to use in service. Australian Standards specify the maximum moisture content of pine framing. This level is around 12-14% moisture content.
The process sequence is:
Solvent borne preservatives because they are non-polar do not raise the moisture content and hence do not swell the wood.
The process sequence is:
The disadvantage of this treatment is the high cost of solvents and potential environmental concerns with volatile organic compounds (VOC's) being released into the atmosphere.
Application of the insecticides to wood is normally carried out by a batch process involving a pressure vessel. For water-borne preservatives a vacuum pressure process (Bethell or full cell) is used. This ensures, providing the wood is dry, complete sapwood penetration and adequate heartwood penetration if required.
For LOSP (light organic solvent preservatives) a double vacuum process ensures penetration to AS 1604-2000.
Pressure plants are expensive to construct, and being batch processes, conventional treatments do not match well with continuous sawmill production and require a high level of operator control to maintain costs.
The present invention seeks to overcome at least some of the disadvantages of the prior art or at least provide a commercial alternative thereto.
In a broad aspect, the present invention comprises a non-water and non-solvent based material for treating wood comprising a preservative and a carrier, the carrier remaining mobile within the wood such that it provides for migration of the preservative within the treated wood.
In a further preferred embodiment, the carrier is a drying oil such as linseed oil or fish oil or any other drying oil, and may include extenders such as heating oil. These carriers remain mobile in the wood for a considerable period of time thereby allowing for migration of the preservative. The quantity of extender can between 90 to 10% of the total carrier, preferably 30 to 70% and most preferably 40 to 60%.
A wide variety of preservatives may also be used in combination with the carrier oil. Various insecticides and termidicides known in the art may be mixed with the oil including synthetic pyrethroid, permethrin, cypermethrin, imidachloprid etc.
Fungicides and mouldicides may also be used such as iodopropynylbutylcarbamate (IPBC), or 3-benzothien-2-yl-5,6-dihydro-1,4,2 oxathiazine-4-oxide (Bethoguard®); organic tin compounds such as tributyltin napthenate (TBTN); organic copper compounds such as copper 8 quinolinolate and copper napthenate, or bis-(N-cyclohexyldiazeniumdioxy) copper (“Cu-HDO”); organic zinc compounds; quaternary ammonium compounds, tertiary ammonium compounds, isothiazolones, triazoles such as tebuconazole, boron compounds. A preferred fungicide is 3-benzothien-2-yl-5,6-dihydro-1,4,2 oxathiazine-4-oxide (Bethoguard®) or bis-(N-cyclohexyldiazeniumdioxy) copper (“Cu-HDO”). This would allow the treatment material to be used as a permanent preservative as defined by Hazard classes 3, 4 and 5 in Australian Standard AS 1604-2000 America Wood Preservers Association (AWPA) standards (USA) and MP 3640 (New Zealand).
Drying agents such as cobalt, manganese, zirconium and copper napthenate may be added to accelerate the drying of the drying oil.
The amount of the preservative/active constituent in the treatment material depends upon the preservative effect required but is expected to be below 5%, preferably below 2% and in many cases most preferably below 1%.
The applicant has found that the above mentioned material comprising a mixture of preservative and ‘mobile’ carrier provides an effective wood preservative which has a ‘self healing’ effect. Since the carrier remains mobile within the wood, it is capable of redistributing the active components of the preservative. This redistribution or migration of the carrier/preservative mixture will generally occur preferentially along the grain of the wood, however, some distribution across the grain will also occur. By providing such a migratable material, it is not necessary for the ends of the timber to be retreated after cutting since the active components of the material will be provided to the freshly cut ends with the migrating carrier oil.
Via this ‘self healing’ effect, the carrier/preservative migrates to any freshly cut or exposed surface of the wood to thereby redistribute and treat such a surface with the preservative and hence maintain integrity of the treatment envelope.
This is a significant advance over conventional preservative techniques. All previous techniques essentially treat the wood, are re-dried and then remain ‘dormant’ or fixed within the wood. The present inventive material and method provide a ‘self healing’ wood capable of retreating itself and in particular providing a preservative treatment to cut or damaged surface areas, which of course are the most common entry for termites.
Migration/penetration of the preservative system occurs in both radial and tangential directions forming an envelope around the treated wood. Such penetration in the tangential direction does not occur with water borne preservatives. Further, such migration ensures a consistency of the envelope around the surface of the treated wood. The envelope may be formed in both the heartwood and the sapwood and the aforementioned ‘self healing’ phenomenon also preferably occurs in the heartwood and the sapwood.
It will be recognised by persons skilled in the art that this self healing effect can be influenced by a number of parameters, for instance different carriers have different mobilities within the wood. Certain carriers may dry more quickly than others. Accordingly, the self healing effect will not be indefinite but tests have shown that this self healing effect will last from around a minimum of two to three weeks up to several months.
In a second embodiment, the present invention provides a method of treating wood comprising contact the wood with a mixture of preservative and carrier, the carrier remaining mobile within the wood such that it provides for migration of the preservative within the wood.
The treatment step can be conducted using conventional pressure application techniques such as existing vacuum pressure systems known in light organic solvent plants. Alternatively, the applicant has also found the mixture of the preservative and carrier can be applied without the need for pressure application. Treatment can be accomplished by spraying, dipping etc which, unlike previous conventional batch systems, is ideal for use on continuous production line facilities such as saw mills.
The applicant has also found that the proposed treatment material and method provides more than adequate protection without the need for complete sapwood penetration as required under the Australian Standard.
To explain, in one embodiment a protective envelope of preservative/carrier oil mixture with a depth of around 5 mm can be provided by simple dipping or spraying. This 5 mm envelope provides more than adequate protection from termite attack and, as mentioned above, allows migration of the preservative longitudinally through a timber board or beam to cover any end cuts. This of course is a major benefit over conventional techniques.
As discussed earlier, the Australian standard requires that, irrespective of the species of timber, ie natural durability class 1 to 4, the preservative shall penetrate all sapwood. The present invention does not require penetration of all sapwood. It uses an envelope type protection rather than penetration throughout the sapwood. This 5 mm envelope is a move away from conventional techniques but still provides adequate protection for treated timber and with the use of a preservative/mobile carrier oil results in the aforementioned self healing effect which of course is unknown with conventional techniques.
The most preferred carrier is linseed oil which is a drying oil, ie saturates in air. The linseed oil dries to form a water barrier and penetrates without the need for pressure. Advantageously, it is also low odor. Other drying oils such as fish oil may be used and other light weight hydrocarbons, eg heating oil may be used in limited quantities as an extender to the linseed or fish oil in order to reduce costs. Another advantage of the carrier oil is its high boiling point/flash point which reduces vapor emissions in production and use.
Another surprising benefit of using such a high boiling point carrier is its advantageous effect on migration of the preservative. To explain, it is believed that higher boiling point of the carrier/preservative mixture tends to allow the preservative to move inwards, as compared with more volatile solvents which migrate outwardly.
Indeed, the extender can also have a beneficial effect on the migration of the preservative. The extenders currently tested by the applicant have boiling points between about 175° C. and 300° C. These extenders remain quite mobile within the wood.
Preferably, the boiling point of the entire solvent/carrier system should remain above 62° C. While this is not essential it is preferred and suitable quantities of drying oils such as linseed or fish oil can be mixed with heating oil to obtain this boiling point.
Of course, using such a non-swelling drying carrier oil also has the advantage that the treated wood/timber does not need to be re-dried, ie treatment can be accomplished by simple dipping of the wood for periods of say up to one minute. Current trials with radiata and slash pine have both achieved 5 mm envelope penetration within about five to 60 seconds dipping time.
It is envisaged that other carrier oils may also be used provided, that when mixed with the preservative they remain mobile within the wood to allow migration of the preservative.
Tests were conducted to verify the efficacy of the above mentioned process, including the mobility and self healing characteristics of the preservative/carrier system previously described.
Radiata heartwood, radiata sapwood, slash heartwood and slash sapwood was sourced from various suppliers. Boards measuring 35 mm×90 mm×4.8 metres were cut into four separate 1 metre lengths. Boards measuring 35 mm×90 mm×2.4 metres were cut into two separate 1 metre lengths. A drying oil (linseed oil) used in combination with an extender (heating oil) was used (ratio of linseed oil to extender 50:50). The preservative formulation also had an addition of 0.01% (m/m) copper (present as copper naphthenate) as an indicator of the penetration. The test was conducted by firstly weighing the boards, and then dipping the board, in a mixture of the preservative formulation with 0.01% (m/m) copper (present as copper naphthenate) for 1 minute. They were allowed to drip until dry to the touch. Boards were then weighed again and stacked for 24 hours before being cut in half. The exposed surface on one half of the board was sprayed with indicator solution and photographed.
As shown in Table 2 resultant weights taken both before and after treatment show average uptakes for radiata heartwood at 18 l/m3, 20 l/m3 for radiata sapwood, 16 l/m3 for slash heartwood and 18 l/m3 for slash sapwood. Standard deviations were low and the coefficient of variation was less than 20 in all but the slash heartwood. This indicates that there is little variability in uptake of preservative into radiata heartwood and sapwood, and slash sapwood.
The attached figures show the effect of the treatment on radiata heartwood, radiata sapwood, slash heartwood and slash sapwood at various times after treatment as follows:
As shown in
All samples, however, showed the migration of the treatment material (‘self healing’ effect) 24 hours later.
In Example 1, the treatment process involved a 60 second dip. Trials with pinus elliotti (slash pine) have shown that treatment times can be reduced to as low as five seconds without effecting penetration or retention. Treatment uptake depends on the profile used with rougher headed material giving uptakes 10 to 15% higher than smooth dress material.
In addition, these trials have shown that packs can be treated in their final shape and form, ie tightly block strapped, without effecting uptake and penetration.
The table below shows the correlation between dipping time and average uptake. As is clear from this example, dip times as low as five seconds can provide sufficient uptake of carrier/preservative mixture for efficient generation of the protective envelope. This is even true, as mentioned above, with packs of tightly strapped material. In this case packs of 95×45 mm timber were used stacked six high and five wide.
This example related to the treatment of Douglas fir. Douglas fir (psuedotsuga menziesii) is an inherently difficult species to treat. Trials with this species using the above mentioned formulation have shown penetration in both the hardwood and sapwood similar to pine species. The treatment process involved a 60 second immersion in a preservative carrier mix, where the carrier was at 50:50 mix of linseed oil and heating oil.
Average uptakes for 100×50 and 150×50 were around 20 L/m3. A well defined envelope was formed in both the heartwood and sapwood.
Accordingly, it can be seen from this example that the inventive treatment may be applied to a wide variety of timber products.
In addition to sawn timber, the treatment material and process is suitable for composite products. Treatment trials have been carried out with various wood composite to assist uptake and penetration, ie formation of the preservative envelope. Composites treated include particle board, plywood, medium density fibre board (MDF) and oriented strand board (OSB).
The treatment process was similar to the above, ie a 60 second immersion.
Details over these tests are given under Table 3
The examples above were conducted using oil mixtures as the carrier. Tests have also being conducted using water-in-oil emulsions including up to 30% water. If desired, emulsifiers in the form of non-ionic surfactants can also be added to the emulsifier.
It has been found that such formulations gave similar envelopes of penetration with similar uptakes. Advantageously, wood swelling was minimal at these concentrations of water.
As can be seen from Table 5 above, using water in oil emulsions also give sufficient uptake of the carrier/preservative mixture to provide suitable treatment. It is also noted that with water in oil emulsions, the uptake between five second dip times and 60 second tip times is even less than previous examples.
Further tests were conducted on the susceptibility of the treated blocks to termite attack.
Commercial-size-section (35×90 mm) material of both slash and radiata pine were treated with the described material and supplied as 1 m lengths. One hundred and forty test blocks (35×90×190 mm long) were used; one block cut from each 1 m length supplied. Twenty-eight treatments (including 16 with block ends treated) with 5 replicates were exposed in plastic food containers to termites foraging in trenches at Beerburrum, south-east Queensland, Australia. Radiata pine control blocks were also exposed in plastic food containers to monitor termite foraging vigour on each trench. Following exposure for 29 weeks, mass losses of the blocks were estimated, analysed and reported.
On 3 of the 4 trenches, C. acinaciformis or Schedorhinotermes seclusus, or both provided a severe termite foraging pressure. Termites did not forage on the remaining trench, which had been used recently for other work and the absence of termites may have been a “carry-over” effect. We have not observed this phenomenon before. On the other trenches, the termites entered the vast majority of boxes, but essentially damaged only untreated and solvent test blocks and feeder blocks (see Table). All treatments appeared to protect the test blocks. Exposing cut untreated ends to the termites did not promote termite foraging on these blocks and there appeared no need to treat the ends of the test blocks with treatment material, with regard to C. acinaciformis. Industry, however, should be cognisant of differences in foraging behaviour between termite genera, and perhaps between termite species, as the commercialisation of the envelope treatment processes develops.
The below table outlines the results of these tests. The severity of the test protocol is evidenced by the amount of termite damage to the control blocks, (ie those treated with solvent only) in the control boxes and by the amount of fungal decay in some of the test boxes. The termite foraging pressure was severe and conditions suitable for sustained termite foraging and supportive of fungal decay.
Those blocks treated by the present invention, ie Permethrin or Delta envelopes resisted both termite attack and fungal decay very well compared with conventional techniques, eg Permethrin, LOSP (light organic solvent preservative).
The Delta/Permethrin compounds are conventional insecticides/termidicides used in Australia.
Additional tests were conducted on the various samples from Example 6 and they are provided under
The Australian Standard AS1604 for insecticide/termidicide content is 0.02%. Samples 168A, 211A and 129B were control blends and hence were not treated with permethrin. As can be seen from the remaining samples, however, most fell within or above the 0.02% standard (10% deviation).
The Applicant's target was to treat only the outer 5 mm of the wood within the 0.02% permethrin retention. This is in contrast to the Australian Standard AS1604 which calls for complete sapwood penetration and in the case of radiata pine, 5 mm heartwood penetration. The 5 mm envelope was achieved in both heartwood and sapwood of the radiata. For slash pine, where only sapwood penetration is required, a 5 mm envelope was also achieved.
Accordingly, it can be seen that the inventive material and treatment method provide not only adequate protection but does so in a more efficient and cost effective manner than conventional techniques.
It can be seen that the present invention provides a significant advantage over the prior art. The aforementioned discussion should in now way limit the scope of the invention and various other embodiments can be provided without departing from the spirit or scope of the invention.
All publications, patents, and patent documents, cited in this application, are herein incorporated by reference, as though individually incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
PR2114 | Dec 2000 | AU | national |
This application is a continuation-in-part under 35 U.S.C. 111(a) of PCT/AU01/01625 filed Dec. 17, 2001 and published in English as WO 02/47876 A1 on Jun. 20, 2002; which International Application claims priority from Australian Application No. PR 2114, filed Dec. 15, 2000; these applications and publications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2561380 | Kalberg | Jul 1951 | A |
3407156 | La Berge | Oct 1968 | A |
3837875 | Murphy | Sep 1974 | A |
4001400 | Hager | Jan 1977 | A |
4360385 | Grunewalder | Nov 1982 | A |
4404239 | Grunewalder | Sep 1983 | A |
4750934 | Metzner et al. | Jun 1988 | A |
4783221 | Grove | Nov 1988 | A |
4814016 | Adkins et al. | Mar 1989 | A |
4942064 | Brayman et al. | Jul 1990 | A |
4950329 | McIntyre et al. | Aug 1990 | A |
5129946 | Evans | Jul 1992 | A |
5248450 | Metzner et al. | Sep 1993 | A |
5397795 | Valcke | Mar 1995 | A |
5492681 | Pasek et al. | Feb 1996 | A |
5527384 | Williams et al. | Jun 1996 | A |
5607633 | Sleeter et al. | Mar 1997 | A |
5634967 | Williams et al. | Jun 1997 | A |
5719301 | Sleeter | Feb 1998 | A |
5804591 | Valcke et al. | Sep 1998 | A |
5824370 | Bergervoet et al. | Oct 1998 | A |
5916356 | Williams et al. | Jun 1999 | A |
6001286 | Sleeter | Dec 1999 | A |
RE36798 | Williams et al. | Aug 2000 | E |
6123756 | Poppen et al. | Sep 2000 | A |
6217939 | Sailer et al. | Apr 2001 | B1 |
6248159 | Poppen et al. | Jun 2001 | B1 |
6274199 | Preston et al. | Aug 2001 | B1 |
6464764 | Lichtenberg et al. | Oct 2002 | B1 |
6534529 | Uhr et al. | Mar 2003 | B2 |
6569540 | Preston et al. | May 2003 | B1 |
6576175 | Roos | Jun 2003 | B1 |
6641927 | Honary | Nov 2003 | B1 |
6642392 | Basarab et al. | Nov 2003 | B1 |
6653324 | Kohler et al. | Nov 2003 | B1 |
6686056 | Roos et al. | Feb 2004 | B2 |
20030026942 | Hejna et al. | Feb 2003 | A1 |
20030108759 | Roos et al. | Jun 2003 | A1 |
20030176545 | Behling | Sep 2003 | A1 |
20050008670 | Cobham | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1305835 | Aug 1992 | CA |
3004248 | Aug 1981 | DE |
275 433 | Jan 1990 | DE |
275433 | Jan 1990 | DE |
40 36 508 | Jul 1991 | DE |
4036508 | Jul 1991 | DE |
40 20 495 | Oct 1991 | DE |
4020495 | Oct 1991 | DE |
197 15 664 | Oct 1998 | DE |
198 41 271 | Mar 2000 | DE |
0 227 430 | Jul 1987 | EP |
0320531 | Jun 1989 | EP |
0 451 524 | Mar 1991 | EP |
0576608 | Jan 1995 | EP |
0472973 | May 1995 | EP |
0682091 | Nov 1995 | EP |
0897666 | Feb 1999 | EP |
0953634 | Mar 1999 | EP |
2 355 451 | Jan 1978 | FR |
670258 | Apr 1952 | GB |
1 564 188 | Apr 1980 | GB |
1564188 | Apr 1980 | GB |
63-68501 | Mar 1988 | JP |
63068501 | Mar 1988 | JP |
8012504 | Jan 1996 | JP |
08118317 | May 1996 | JP |
9602034 | Nov 1997 | SE |
WO-8500040 | Jan 1985 | WO |
WO 9219429 | Nov 1992 | WO |
WO-9219429 | Nov 1992 | WO |
WO-9219429 | Nov 1992 | WO |
WO-9610914 | Apr 1996 | WO |
WO-9627493 | Sep 1996 | WO |
WO 9635560 | Nov 1996 | WO |
WO-0247876 | Jun 2002 | WO |
WO-03047852 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030213401 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AU01/01625 | Dec 2001 | US |
Child | 10460931 | US |