The present application relates generally to surgical instruments and, more particularly, to material combinations and processing methods for sliding components in end effectors of surgical instruments such as surgical stapling devices.
Surgical staplers are used to approximate or clamp tissue and to staple the clamped tissue together. As such, surgical staplers have mechanisms to ensure that tissue is properly positioned and captured and to drive staples through the tissue. As a result, this has produced, for example, multiple triggers and handles in conjunction with complex mechanisms to provide proper stapling of the clamped tissue. With these complex mechanisms, surgical staplers can have increased manufacturing burdens, as well as potential sources for device failure and confusion for the user. Thus, reliable stapling of clamped tissue without complex mechanisms is desired.
Surgical staplers can further include replaceable reload cartridges such that multiple cartridges can be used with a stapler in a single surgical procedure. Surgical stapler clamping and firing mechanisms can include metallic components in sliding contact. Further improvements to components that are in sliding contact are desirable to resist wear degradation over multiple firing cycles.
In certain embodiments, a surgical stapling instrument is provided herein. The surgical stapling instrument comprises an end effector and a firing member. The end effector comprises a first jaw and a second jaw pivotably coupled to the first jaw. The firing member is longitudinally slidable with respect to the end effector to pivotably move the second jaw with respect to the first jaw and actuate the end effector. At least one of the first jaw, the second jaw, and the firing member comprises: a metallic substrate, a dry film surface coating disposed on the metallic substrate, and a bone wax layer disposed on the dry film surface.
In certain embodiments, a surgical stapler is provided herein. The surgical stapler comprises an elongate shaft and a jaw assembly. The elongate shaft extends from a proximal end to a distal end. The jaw assembly is positioned at the distal end of the elongate shaft. The jaw assembly comprises a cartridge support, an anvil, and a firing member. The cartridge support is configured to receive a reload cartridge having a plurality of staples disposed therein. The cartridge support and the anvil are pivotably movable between an open and a closed configuration. The firing member is longitudinally slidable in engagement with the cartridge support and the anvil in the closed configuration to fire staples. At least one of the anvil, the cartridge support, and the firing member comprises: a case hardened metallic substrate, a dry film surface coating disposed on the metallic substrate, and a bone wax layer disposed on the dry film surface.
In certain embodiments, a method of manufacturing a surgical end effector is provided herein. The method comprises providing a first jaw member, a second jaw member, and a firing member, each comprising a metallic substrate. The method further comprises hardening the metallic substrate of at least one of the first jaw member, the second jaw member, and the firing member to a first predetermined hardness. The method further comprises applying a dry film coating to the hardened at least one of the first jaw member, the second jaw member, and the firing member. The method further comprises applying a bone wax composition to at least one of the first jaw member, the second jaw member, and the firing member.
With reference to
With continued reference to
With continued reference to
With continued reference to
With reference to
With continued reference to
With reference to
As noted above, the shaft assemblies, jaw assemblies, and reload cartridges described herein can also be used in conjunction with a powered stapler handle assembly or an actuator of a robotic surgical system. Various embodiments of powered handle assemblies and associated actuation mechanisms are disclosed in U.S. patent application Ser. No. 15/486,227, filed Apr. 12, 2017, entitled “Reload Shaft Assembly for Surgical Stapler;” U.S. patent application Ser. No. 15/486,008, filed Apr. 12, 2017, entitled “Surgical Stapler Having a Powered Handle;” and U.S. patent application Ser. No. 16/287,748, filed Feb. 27, 2019, entitled “Surgical Stapler Having a Powered Handle;” all of which are incorporated by reference herein in their entireties.
With reference to
With respect to
With continued reference to
With reference to
With continued reference to
As it is contemplated that the jaw assembly can be reused with multiple single use reload cartridges 50, it is desirable that sliding surfaces of the firing member 120 and lower and upper channels 134, 136 be configured to minimize performance degradation over multiple use cycles. With tissue clamped between jaws, a lower surface of the upper flange 126 slides against an upper surface of the upper channel 136, and an upper surface of the lower flange 124 slides against a lower surface of the lower channel 134. Accordingly, in certain embodiments, at least these sliding surfaces can be configured to reduce the impacts of frictional engagement therebetween. In other embodiments, it can be desirable that all of the first jaw 34, the second jaw 32, and the firing member 120 be configured to reduce impacts of frictional engagement therebetween.
In certain embodiments, it is desirable that the jaw assembly be configured to be reused with at least ten reload cartridges without significant performance degradation. In certain embodiments can be preferable that the jaw assembly be configured to be reused with at least twelve reload cartridges without significant performance degradation. Furthermore, it is contemplated that it is desirable that the jaw assembly is configured to be operable with a desired number of reload cartridges with an operating load of at least 80 pounds of compressive force applied by first and second jaws 34, 32 to tissue clamped therebetween. In other embodiments, it is desirable that the jaw assembly is configured to be operable with the desired number of reload cartridges with an operating load of at least 100 pounds of compressive force. In still other embodiments, it is desirable that the jaw assembly is configured to be operable with the desired number of reload cartridges with an operating load of at least 120 pounds of compressive force. In certain embodiments, the jaw assembly is configured to be operable with the desired number of reload cartridges at a desired operating load with the jaws misaligned at an angular deviation of up to one degree from the first jaw 34 parallel to the second jaw 32 in a closed configuration. In certain embodiments, the jaw assembly is configured to be operable with the desired number of reload cartridges at a desired operating load with the jaws misaligned at an angular deviation of up to two degrees from the first jaw 34 parallel to the second jaw 32 in a closed configuration. In use, misalignment between the jaws can occur during a stapling operation due to deflection of the jaws in response to the thickness or density of tissue clamped between the jaws.
In general, when two surfaces, such as the lower and upper flanges 124, 126 of the firing member and the respective lower and upper channels 134, 136, are in contact under load and they slide relative to one another, a frictional force opposes the motion. The frictional force is proportional to the load, but ultimately does not depend on the contact area. At the microscopic level, each of the surfaces is not truly flat, but rather has surface irregularities or asperities. These irregularities create localized contact points across which the contact load is distributed. The real contact area is then only a small fraction of the apparent, nominal area. There are multiple types of wear that can either lead to gradual increases in the coefficient of friction When asperities first touch, they deform elastically. However, even small loads when concentrated over a small area can cause large contact stresses that are high enough to cause plastic deformation. The contact points then flatten, forming junctions. Wear in general involves the physical removal of material from a solid object. It can be divided into three categories: abrasive, adhesive and fatigue. Abrasive wear is a more gradual wear process. It occurs when two surfaces rub against one another and the harder surface grinds the softer away. It is often characterized by a rough appearance and can involve the creation of particulate. In many cases, some work hardening (cold working) can occur during this stage. Adhesive wear is a more aggressive form of wear that can lead to galling, especially with metal-to-metal contacting wear surfaces. Highly localized temperatures and the peaks of opposing asperities can deform and move together. Failure to clear debris further exacerbates this type of wear leading to galling with high friction forces.
With reference to
With reference to
With reference to
With reference to
In certain embodiments, materials selection for components of a surgical stapler that engage in sliding contact, such as jaw assemblies and firing member can be selected based on certain priorities. For example, as an initial consideration, the materials selected, as well as surface preparation coatings and treatments thereof, are limited to those that meet standards for biocompatibility for use in a patient-contact surgical device. Moreover, it is desirable that the materials selected are able to be joined in a welding operation, which allows flexibility in construction of various aspects of a jaw design, such as by facilitating the use of a two-piece first jaw 34 having a cover or cap that is welded over lower, anvil surface first jaw member forming a channel therebetween. Further, it is desirable that the materials selected have sufficient strength and toughness characteristics for repeated staple firing operations. Additionally, it can be desirable that the materials selected resist oxidation and corrosion. Finally, it is desirable that the materials selected are manufacturable by a variety of processes to promote manufacturing efficiencies, including, for example metal injection molding processes.
Various grades of stainless steel can be selected to achieve the desired characteristics. For example, in certain embodiments, a grade 17-4 stainless steel can be selected for use in sliding components. In other embodiments, a grade 420 stainless steel can be selected for use in sliding components. Grade 420 is a martensitic stainless steel as opposed to a precipitation-hardened stainless steel such as grade 17-4. A grade 420 stainless steel has a relatively high carbon content as compared to a grade 17-4 stainless steel. Thus, desirably, a grade 420 stainless steel is relatively hardenable as compared to a lower-carbon steel. However, martensitic stainless steels tend to be less weldable than precipitation-hardened stainless as brittle martensite can tend to form from rapid cooling of weld zones that can lead to stress induced cracking. Moreover, the relatively higher carbon content of a grade 420 stainless steel can also lead to a relatively lower corrosion resistance. Each of grades 17-4 and 420 is suitable for use in a metal injection molding process.
With regard to material selection, in still other embodiments, a grade 13-8 or a grade 455/465 stainless steel can be selected for use. However, it is noted that these grades of stainless steels tend to be specialty materials, thus these grades of stainless steel may be less desired in view of potential cost, availability, and manufacturability concerns.
As material selection considerations indicate the desirability of metallic, stainless steel materials for use in the jaw assembly and firing member of a surgical stapler, further consideration should be made of preparation and processing the characteristics of these components to reduce the likelihood of galling, which can result from metal-to-metal sliding engagement. In general, materials having a relatively high surface hardness can be more resistant to galling wear. There are various techniques for achieving a relatively high surface hardness in a metallic substrate such as the stainless steel substrates considered for use in sliding components of a surgical stapler. For example, in various embodiments, at least one of: diffusion/thermal-chemical techniques, surface plating techniques, surface coating techniques, and applied energy techniques can be used to prepare a surface of a metallic substrate for use in sliding contact with reduced galling.
In diffusion or thermo-chemical processes a surface layer of a metallic substrate is hardened through the addition of a hardening species such as carbon, nitrogen, or boron at, typically, a relatively high temperature. These processes can be termed ‘case hardening’ in that a goal is to create a relatively hard case or surface layer while maintaining the toughness and ductility of the core. However, typical case hardening techniques have had undesirable consequences on stainless steel materials, especially precipitation hardened stainless steel materials in that typical case hardening techniques have decreased corrosion resistance of a stainless steel material. Moreover, with precipitation hardened stainless steel materials, case hardening methods with relatively high temperatures can result in unintended annealing of the material. Additionally, where a metallic substrate has been formed using a metal injection molding process, the substrate can have relatively high porosity. Thus, the depth of a case hardened layer, absent further modification to the case hardening technique to control a hardened layer depth, may be different from that of a similarly hardened material metallic substrate not formed by a metal injection molding process.
However, certain case hardening techniques can be used on stainless steel materials with fewer or no significant undesirable effects. For example, a relatively low temperature diffusion case hardening technique commercially known under the trademarks S3P (Specialty Stainless Steel Processes) and KOLSTERISING offered by Bodycote plc. This diffusion technique can case harden relatively low carbon stainless steels such as grade 17-4 stainless steels with minimal reductions in corrosion resistance and minimal impact to the underlying strength and ductility of the metallic substrate.
Another technique to creating a hardened layer is through surface modifications to modify the grain structure of the metallic substrate at an outer layer through work hardening. For example, shot peening (impacting the substrate with high velocity shot) or ion implementation (impacting the metallic substrate with high velocity particles) processes can be used to form a hardened surface layer. Advantageously, these processes do not affect surface chemistry and thus should not reduce corrosion resistance. However, if foreign contaminants are present in the shot (for example if shot media is reused), the contaminants can become embedded in the metallic substrate and potentially cause localized sites of reduced corrosion resistance. Moreover, these surface modification processes can present manufacturing challenges as only the surfaces impacted are work hardened, requiring tight control of fixtures, shot size, intensity, and coverage to facilitate consistent results and reduce potential distortion of the substrate.
In certain embodiments, surface plating, that is, introducing a thin layer of metallic compounds on a substrate, can be used to create desired surface hardness properties for sliding components of a surgical stapler. Examples of types of material that can be used in surface plating to provide surface hardness include chrome, electroless nickel, Diamond Like Coating, and ceramics. Advantageously, depending on the material chosen, surface plating can be an immersive process that can be implemented at a component level with consistent surface properties. However, surface plating can affect the weldability of a component as the plating compound will become present in a welded matrix, impacting the strength of the component. Moreover, surface platings, with high hardnesses can also be relatively brittle and can undesirably tend to crack and particulate when heavily loaded in a point contact. In surgical stapler components, in certain instances the engagement of the flanges of the firing member can engage their respective channels at a substantially point contact, especially with misalignment of the jaws or when a large tissue section is clamped between the jaws.
In certain embodiments, a metallic substrate of a sliding component of a surgical stapler can have an applied surface coating to provide desired operation characteristics. However, in general, surface coatings do not adhere as well to a metallic substrate as surface platings. Moreover, similar to surface plating, surface coatings may particulate when loaded in use. Accordingly, it is preferable to use biocompatible surface coating materials. Additionally, surface coatings, if applied before welding a material substrate, may form part of the weld matrix and reduce strength of a welded component. Accordingly, masking a weld site or coating after a welding operation can be selected to minimize the impact of surface coatings on substrate weldability.
Various surface coatings can be applied to a metallic substrate to improve sliding performance. For example, in certain embodiments, lubricants such as those commercially available under the trademark KRYTOX from the Chemours Company, or MOLYKOTE from the Dow Corning Corporation can be applied to sliding surfaces. In other embodiments, a dry film polytetrafluoroethylene (PTFE) coating can be applied to sliding surfaces to increase lubricity therebetween. For example, a coating commercially available as Dry Film RA coating from the Donwell Company, Inc. can be applied to sliding components of a surgical instrument. PTFE dry film materials can be suitable for use in patient contact applications and can be applied strategically by a spraying process or at a component level through an immersive process.
In certain embodiments, bone wax can be applied as a surface coating to improve sliding performance by acting as a lubricant between sliding surfaces. Various bone wax compositions are commercially available and typically comprise primarily beeswax. Bone wax is suitable for use in patient contact applications as it has been traditionally applied to reduce bleeding from bone surfaces during a medical procedure. Desirably, bone wax is tacky and holds well to applied surfaces. Moreover, bone wax typically only undergoes minimal particulation even with point contact engagement between sliding surfaces. However, bone wax can have a relatively low melting transition temperature (it can be approximately 120 F for certain bone wax compositions). Accordingly, consideration of anticipated sterilization and shipping temperature ranges must be assessed to reduce the likelihood of melting and pooling of applied bone wax. Moreover, bone wax is typically manually applied to target surfaces, thus consistent application to recessed surfaces such as jaw assembly channels can require specialized application tools and procedures.
With reference to
With continued reference to
With continued reference to
With continued reference to
With reference to
In view of the above discussion, various embodiments of material selection and surface preparation to achieve desired sliding performance in a firing member, first jaw, and second jaw without galling over a desired number of firing cycles. In one embodiment, the firing member and jaws of the jaw assembly can comprise a grade 17-4 stainless steel material. The 17-4 stainless steel material can be heat treated to a H900 condition (corresponding to approximately 45 Rockwell C hardness). A surface layer of the material can be case-hardened to approximately 70 Rockwell C hardness. For example, in some embodiments a diffusion method such as an S3P method commercially available from Bodycote plc., can provide a hardened surface layer of approximately between 65 and 70 Rockwell C hardness at a case depth of approximately 25-40 microns. The firing member and jaws of the jaw assembly can be tumbled to a moderate surface roughness. For example, the components can have a surface roughness of between approximately 25 μin and 75 μin. In one embodiment, the components have a surface roughness of approximately 50 μin. A first coating layer of a PTFE dry film can be applied. This first coating layer can inhibit corrosion at the hardened surface and limit metal-to-metal contact. The components can further comprise a second coating layer of a bone wax composition. Advantageously, this combination of materials and processes results in a jaw assembly and firing member that resists galling when repeatedly used with a plurality of single use reload cartridges.
Another embodiment of firing member, first jaw, and second jaw of a surgical stapler comprises a grade 420 stainless steel material that has been heat treated to approximately 55 Rockwell C hardness. The components can be tumbled to a moderate surface roughness. The components can comprise a first coating layer of a PTFE dry film and a second coating layer of a bone wax composition.
Another embodiment of surgical stapler components including at least one of a firing member, a first jaw, and a second jaw comprises a grade 17-4 stainless steel material. The material is heat treated to approximately 45 Rockwell C hardness. For example, as described above, in certain embodiments, the material can be heat treated to an H900 condition. No further case hardening is provided. The components can have a moderately rough surface finish that can be achieved with a tumbling process. The components can comprise a first coating layer of a PTFE dry film and a second coating layer of a bone wax composition. In certain embodiments, one or more of the firing member, first jaw, and second jaw components can be formed of a grade 17-4 stainless steel material with a metal injection molding process. Certain metal injection molding processes can result in a metallic substrate with relatively high porosity relative to a counterpart machined component. Case hardening techniques on such a porous metal injection molded component can create a hardened surface layer having a relatively high depth, but correspondingly relatively high brittleness, which can impact the bulk properties of the case hardened component. Accordingly, embodiments of surgical stapler components without further case hardening processes can be desirable where the components are formed with metal injection molding processes that can create relatively porous metallic substrate.
While in the above embodiments, the components are prepared such that the surface hardnesses of the jaws and the firing members are relatively high (at least about 45 Rockwell C hardness up to about 70 Rockwell C hardness) and substantially identical. It is contemplated that in other embodiments, the firing member can have a slightly lower surface hardness than the jaw members. For example, the firing member can have a surface hardness up to approximately 10 Rockwell C hardness below that of the jaws.
Moreover, while in the above embodiments, case hardening is provided by diffusion or heat treatment, in other embodiments, it is contemplated that shot peening or another work hardening technique can be applied to work harden a surface layer of the metallic substrate of the components. This work hardened surface layer can then be coated with one or more coating layers
With reference to
With continued reference to
With continued reference to
With continued reference to
Although this application discloses certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Further, the various features of these inventions can be used alone, or in combination with other features of these inventions other than as expressly described above. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims which follow.
This application claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 63/107,321 entitled “Material Combinations and Processing Methods for a Surgical Instrument” filed on Oct. 29, 2020 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2073960 | Crosby | Mar 1937 | A |
2140593 | Pankonin | Dec 1938 | A |
2351608 | Greenwood | Jun 1944 | A |
2487565 | Leber et al. | Nov 1949 | A |
2641154 | Heller | Jun 1953 | A |
3076373 | Matthews | Feb 1963 | A |
3077812 | Dietrich | Feb 1963 | A |
3080564 | Strekopitov et al. | Mar 1963 | A |
3203220 | Kaepernik | Aug 1965 | A |
3252643 | Strekopitov et al. | May 1966 | A |
3273562 | Brown | Sep 1966 | A |
3373646 | Ehlert | Mar 1968 | A |
3459187 | Pallotta | Aug 1969 | A |
3494533 | Green et al. | Feb 1970 | A |
3662939 | Bryan | May 1972 | A |
3675688 | Bryan et al. | Jul 1972 | A |
3692224 | Astafiev et al. | Sep 1972 | A |
4261244 | Becht et al. | Apr 1981 | A |
4281785 | Brooks | Aug 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4312363 | Rothfuss et al. | Jan 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4407286 | Noiles et al. | Oct 1983 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4442964 | Becht | Apr 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4589582 | Bilotti | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4728020 | Green et al. | Mar 1988 | A |
4805823 | Rothfuss | Feb 1989 | A |
4892244 | Fox et al. | Jan 1990 | A |
4923350 | Hinksman et al. | May 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4978049 | Green | Dec 1990 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5106008 | Tompkins et al. | Apr 1992 | A |
5116349 | Aranyi | May 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5180092 | Crainich | Jan 1993 | A |
5201746 | Shichman | Apr 1993 | A |
5221036 | Takase | Jun 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275323 | Schulze et al. | Jan 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5308576 | Green et al. | May 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5360305 | Kerrigan | Nov 1994 | A |
5364002 | Green et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5415334 | Williamson, IV et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5439155 | Viola | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5458279 | Plyley | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470008 | Rodak | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley | Feb 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5507773 | Huitema et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509920 | Phillips et al. | Apr 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554164 | Wilson et al. | Sep 1996 | A |
5558266 | Green et al. | Sep 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562700 | Huitema et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5571115 | Nicholas | Nov 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5678748 | Plyley | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704898 | Kokish | Jan 1998 | A |
5706998 | Blyley et al. | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5810240 | Robertson | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5860995 | Berkelaar | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5893506 | Powell | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964394 | Robertson | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5988479 | Palmer | Nov 1999 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6132383 | Chesney | Oct 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
D441865 | Racenet et al. | May 2001 | S |
6241139 | Milliman et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6270453 | Sakai | Aug 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6550757 | Sesek | Apr 2003 | B2 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6595509 | Sesek | Jul 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6786382 | Hoffman | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6821282 | Perry et al. | Nov 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6913181 | Mochizuki et al. | Jul 2005 | B2 |
6923360 | Sesek et al. | Aug 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7044947 | de la Torre et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7108472 | Norris et al. | Sep 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7275674 | Racenet et al. | Oct 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7290692 | Marks | Nov 2007 | B2 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7399310 | Edoga et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419081 | Ehrenfels et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434716 | Viola | Oct 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7530484 | Durrani | May 2009 | B1 |
7543730 | Marczyk | Jun 2009 | B1 |
7543731 | Green et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7682367 | Shah et al. | Mar 2010 | B2 |
7690547 | Racenet et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721935 | Racenet et al. | May 2010 | B2 |
7721936 | Shelton, IV et al. | May 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753246 | Scirica | Jul 2010 | B2 |
7757925 | Viola et al. | Jul 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815090 | Marczyk | Oct 2010 | B2 |
7815091 | Marczyk | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819896 | Racenet | Oct 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7828188 | Jankowski | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857184 | Viola | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857187 | Milliman | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7891534 | Wenchell et al. | Feb 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7914543 | Roth et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7934628 | Wenchell et al. | May 2011 | B2 |
7934629 | Wixey et al. | May 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7942300 | Rethy et al. | May 2011 | B2 |
7954685 | Viola | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7992758 | Whitman et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006887 | Marczyk | Aug 2011 | B2 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8008598 | Whitman et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8033438 | Scirica | Oct 2011 | B2 |
8033440 | Wenchell et al. | Oct 2011 | B2 |
8033441 | Marczyk | Oct 2011 | B2 |
8033442 | Racenet et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8056789 | White et al. | Nov 2011 | B1 |
8061576 | Cappola | Nov 2011 | B2 |
8061577 | Racenet et al. | Nov 2011 | B2 |
8070033 | Milliman et al. | Dec 2011 | B2 |
8070034 | Knodel | Dec 2011 | B1 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8074861 | Ehrenfels et al. | Dec 2011 | B2 |
8083118 | Milliman et al. | Dec 2011 | B2 |
8087563 | Milliman et al. | Jan 2012 | B2 |
8091753 | Viola | Jan 2012 | B2 |
8091754 | Ehrenfels et al. | Jan 2012 | B2 |
8092493 | Marczyk | Jan 2012 | B2 |
8100309 | Marczyk | Jan 2012 | B2 |
8113406 | Holsten et al. | Feb 2012 | B2 |
8113407 | Holsten et al. | Feb 2012 | B2 |
8113408 | Wenchell et al. | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8118207 | Racenet et al. | Feb 2012 | B2 |
8123100 | Holsten et al. | Feb 2012 | B2 |
8127976 | Scirica et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8181839 | Beetel | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186556 | Viola | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8205619 | Shah et al. | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210416 | Milliman et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8225979 | Farascioni et al. | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8235274 | Cappola | Aug 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8240536 | Marczyk | Aug 2012 | B2 |
8240537 | Marczyk | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8256656 | Milliman et al. | Sep 2012 | B2 |
8272552 | Holsten et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8281972 | Wixey et al. | Oct 2012 | B2 |
8281973 | Wenchell et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8292146 | Holsten et al. | Oct 2012 | B2 |
8292148 | Viola | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292152 | Milliman et al. | Oct 2012 | B2 |
8292153 | Jankowski | Oct 2012 | B2 |
8292157 | Smith et al. | Oct 2012 | B2 |
8308041 | Kostrzewski | Nov 2012 | B2 |
8308043 | Bindra et al. | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8336754 | Cappola et al. | Dec 2012 | B2 |
8342377 | Milliman et al. | Jan 2013 | B2 |
8342378 | Marczyk et al. | Jan 2013 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8342380 | Viola | Jan 2013 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8353440 | Whitman et al. | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8397972 | Kostrzewski | Mar 2013 | B2 |
8397973 | Hausen | Mar 2013 | B1 |
8403198 | Sorrentino et al. | Mar 2013 | B2 |
8413868 | Cappola | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418906 | Farascioni et al. | Apr 2013 | B2 |
8418907 | Johnson et al. | Apr 2013 | B2 |
8418908 | Beardsley | Apr 2013 | B1 |
8419768 | Marczyk | Apr 2013 | B2 |
8439246 | Knodel | May 2013 | B1 |
8444036 | Shelton, IV | May 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453913 | Milliman | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459522 | Marczyk | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8469252 | Holcomb et al. | Jun 2013 | B2 |
8479967 | Marczyk | Jul 2013 | B2 |
8496152 | Viola | Jul 2013 | B2 |
8496155 | Knodel | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8505799 | Viola et al. | Aug 2013 | B2 |
8505801 | Ehrenfels et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517240 | Mata et al. | Aug 2013 | B1 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8540625 | Miyoshi | Sep 2013 | B2 |
8544712 | Jankowski | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8556152 | Marczyk et al. | Oct 2013 | B2 |
8556153 | Knodel | Oct 2013 | B1 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8561874 | Scirica | Oct 2013 | B2 |
8573459 | Smith et al. | Nov 2013 | B2 |
8573460 | Cappola | Nov 2013 | B2 |
8573462 | Smith et al. | Nov 2013 | B2 |
8573463 | Scirica et al. | Nov 2013 | B2 |
8573464 | Nalagatla et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579177 | Beetel | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8584921 | Scirica | Nov 2013 | B2 |
8596513 | Olson | Dec 2013 | B2 |
8608043 | Scirica | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8616427 | Viola | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8627992 | Edoga et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8631990 | Park et al. | Jan 2014 | B1 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8636189 | Knodel et al. | Jan 2014 | B1 |
8636190 | Zemlok et al. | Jan 2014 | B2 |
8636192 | Farascioni et al. | Jan 2014 | B2 |
8636193 | Whitman et al. | Jan 2014 | B2 |
8636762 | Whitman et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8672209 | Crainich | Mar 2014 | B2 |
8672951 | Smith et al. | Mar 2014 | B2 |
8685004 | Zemlock et al. | Apr 2014 | B2 |
8695865 | Smith et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8708211 | Zemlok et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740035 | Mastri et al. | Jun 2014 | B2 |
8740036 | Williams | Jun 2014 | B2 |
8752748 | Whitman et al. | Jun 2014 | B2 |
8763876 | Kostrzewski | Jul 2014 | B2 |
8770458 | Scirica | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8800839 | Beetel | Aug 2014 | B2 |
8800840 | Jankowski | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820608 | Miyamoto | Sep 2014 | B2 |
8833631 | Munro, III et al. | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8887979 | Mastri et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8905288 | Wenchell | Dec 2014 | B2 |
8920435 | Smith et al. | Dec 2014 | B2 |
8925783 | Zemlok et al. | Jan 2015 | B2 |
8931679 | Kostrzewski | Jan 2015 | B2 |
8931683 | Racenet et al. | Jan 2015 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
8967444 | Beetel | Mar 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
8967447 | Hartoumbekis | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8979827 | Cappola | Mar 2015 | B2 |
9004340 | Scirica | Apr 2015 | B2 |
9010611 | Ross et al. | Apr 2015 | B2 |
9016541 | Viola et al. | Apr 2015 | B2 |
9016545 | Aranyi et al. | Apr 2015 | B2 |
9022271 | Scirica | May 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9027818 | Scirica et al. | May 2015 | B2 |
9033202 | Scirica | May 2015 | B2 |
9038880 | Donohoe | May 2015 | B1 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9161813 | Benamou | Oct 2015 | B2 |
9204876 | Cappola et al. | Dec 2015 | B2 |
9237890 | Kostrzewski | Jan 2016 | B2 |
9265585 | Wingardner et al. | Feb 2016 | B2 |
9282966 | Shelton, IV et al. | Mar 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9402629 | Ehrenfels et al. | Aug 2016 | B2 |
9510830 | Shelton, IV et al. | Dec 2016 | B2 |
9532782 | Kostrzewski | Jan 2017 | B2 |
9662108 | Williams | May 2017 | B2 |
9737302 | Shelton, IV et al. | Aug 2017 | B2 |
9737303 | Shelton, IV et al. | Aug 2017 | B2 |
9797486 | Zergiebel et al. | Oct 2017 | B2 |
20020025243 | Heck | Feb 2002 | A1 |
20020029044 | Monassevitch et al. | Mar 2002 | A1 |
20020062136 | Hillstead | May 2002 | A1 |
20020120279 | Deguillebon et al. | Aug 2002 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
20040006372 | Racenet et al. | Jan 2004 | A1 |
20040138705 | Heino et al. | Jul 2004 | A1 |
20050234478 | Wixey | Oct 2005 | A1 |
20060097026 | Shelton | May 2006 | A1 |
20060100644 | Viola | May 2006 | A1 |
20060180634 | Shelton et al. | Aug 2006 | A1 |
20060235442 | Huitema | Oct 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20070034664 | Jiang | Feb 2007 | A1 |
20070039997 | Mather et al. | Feb 2007 | A1 |
20070057014 | Whitman et al. | Mar 2007 | A1 |
20070068990 | Shelton, IV et al. | Mar 2007 | A1 |
20070084897 | Shelton, IV et al. | Apr 2007 | A1 |
20070102472 | Shelton, IV | May 2007 | A1 |
20070119901 | Ehrenfels et al. | May 2007 | A1 |
20070131732 | Holsten et al. | Jun 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton IV et al. | Aug 2007 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080041918 | Holsten et al. | Feb 2008 | A1 |
20080078807 | Hess et al. | Apr 2008 | A1 |
20080083807 | Beardsley et al. | Apr 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080179375 | Scirica | Jul 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20090001129 | Marczyk | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090026245 | Holsten et al. | Jan 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090057369 | Smith et al. | Mar 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090143806 | Witt et al. | Jun 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090277948 | Beardsley et al. | Nov 2009 | A1 |
20090277949 | Viola et al. | Nov 2009 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100072258 | Farascioni et al. | Mar 2010 | A1 |
20100089970 | Smith et al. | Apr 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100331820 | Prisco et al. | Dec 2010 | A1 |
20110036892 | Marczyk et al. | Feb 2011 | A1 |
20110042440 | Holsten et al. | Feb 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110106124 | Beauchamp | May 2011 | A1 |
20110108601 | Clark et al. | May 2011 | A1 |
20110108603 | Racenet et al. | May 2011 | A1 |
20110121049 | Malinouskas et al. | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110127185 | Ward | Jun 2011 | A1 |
20110139852 | Zingman | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110155784 | Shelton, IV et al. | Jun 2011 | A1 |
20110155787 | Laurent et al. | Jun 2011 | A1 |
20110290851 | Shelton, IV et al. | Dec 2011 | A1 |
20110290853 | Shelton, IV et al. | Dec 2011 | A1 |
20120061446 | Knodel et al. | Mar 2012 | A1 |
20120074198 | Huitema et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120078243 | Worrell et al. | Mar 2012 | A1 |
20120080482 | Schall et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120091182 | Marczyk | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120168487 | Holsten et al. | Jul 2012 | A1 |
20120193396 | Zemlok et al. | Aug 2012 | A1 |
20120203247 | Shelton, IV et al. | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120239009 | Mollere et al. | Sep 2012 | A1 |
20120253298 | Henderson | Oct 2012 | A1 |
20120286022 | Olson et al. | Nov 2012 | A1 |
20120318844 | Shelton, IV et al. | Dec 2012 | A1 |
20120325893 | Pastorelli et al. | Dec 2012 | A1 |
20130001270 | Kostrzewski | Jan 2013 | A1 |
20130012958 | Marczyk et al. | Jan 2013 | A1 |
20130015229 | Viola | Jan 2013 | A1 |
20130015230 | Wixey et al. | Jan 2013 | A1 |
20130015232 | Smith et al. | Jan 2013 | A1 |
20130015233 | Viola | Jan 2013 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130037595 | Gupta et al. | Feb 2013 | A1 |
20130048697 | Shelton, IV et al. | Feb 2013 | A1 |
20130056521 | Swensgard | Mar 2013 | A1 |
20130079814 | Hess et al. | Mar 2013 | A1 |
20130087603 | Viola | Apr 2013 | A1 |
20130092717 | Marczyk et al. | Apr 2013 | A1 |
20130098964 | Smith et al. | Apr 2013 | A1 |
20130098965 | Kostrzewski et al. | Apr 2013 | A1 |
20130098969 | Scirica et al. | Apr 2013 | A1 |
20130105545 | Burbank | May 2013 | A1 |
20130105547 | Beardsley | May 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130105549 | Holsten et al. | May 2013 | A1 |
20130112730 | Whitman et al. | May 2013 | A1 |
20130112731 | Hodgkinson | May 2013 | A1 |
20130126583 | Hueil et al. | May 2013 | A1 |
20130126586 | Zhang et al. | May 2013 | A1 |
20130146640 | Jankowski | Jun 2013 | A1 |
20130172928 | Kostrzewski | Jul 2013 | A1 |
20130172929 | Hess et al. | Jul 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130175322 | Yates et al. | Jul 2013 | A1 |
20130184718 | Smith et al. | Jul 2013 | A1 |
20130186931 | Beardsley | Jul 2013 | A1 |
20130186932 | Shelton, IV et al. | Jul 2013 | A1 |
20130186933 | Shelton, IV et al. | Jul 2013 | A1 |
20130193188 | Shelton, IV et al. | Aug 2013 | A1 |
20130200132 | Moore et al. | Aug 2013 | A1 |
20130206816 | Penna | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130221065 | Aronhalt et al. | Aug 2013 | A1 |
20130240604 | Knodel | Sep 2013 | A1 |
20130248582 | Scirica | Sep 2013 | A1 |
20130256370 | Smith et al. | Oct 2013 | A1 |
20130256371 | Shelton, IV | Oct 2013 | A1 |
20130270321 | Marczyk | Oct 2013 | A1 |
20130270323 | Marczyk | Oct 2013 | A1 |
20130284789 | Smith et al. | Oct 2013 | A1 |
20130284791 | Olson et al. | Oct 2013 | A1 |
20130299552 | Viola | Nov 2013 | A1 |
20130306702 | Viola et al. | Nov 2013 | A1 |
20130306703 | Ehrenfels et al. | Nov 2013 | A1 |
20130306706 | Knodel | Nov 2013 | A1 |
20130313303 | Shelton, IV et al. | Nov 2013 | A1 |
20130327809 | Shelton, IV et al. | Dec 2013 | A1 |
20130327810 | Swayze et al. | Dec 2013 | A1 |
20130334278 | Kerr et al. | Dec 2013 | A1 |
20130334280 | Krehel et al. | Dec 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334284 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130334286 | Swayze et al. | Dec 2013 | A1 |
20130334287 | Shelton, IV | Dec 2013 | A1 |
20130334288 | Shelton, IV | Dec 2013 | A1 |
20140014704 | Onukuri et al. | Jan 2014 | A1 |
20140014707 | Onukuri | Jan 2014 | A1 |
20140021239 | Kostrzewski | Jan 2014 | A1 |
20140025046 | Williams et al. | Jan 2014 | A1 |
20140027491 | Beardsley et al. | Jan 2014 | A1 |
20140027493 | Jankowski | Jan 2014 | A1 |
20140042204 | Beetel | Feb 2014 | A1 |
20140103092 | Kostrzewski et al. | Apr 2014 | A1 |
20140103093 | Koch, Jr. et al. | Apr 2014 | A1 |
20140107640 | Yates et al. | Apr 2014 | A1 |
20140110453 | Wingardner et al. | Apr 2014 | A1 |
20140131416 | Whitman et al. | May 2014 | A1 |
20140135832 | Park et al. | May 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140151434 | Shelton, IV et al. | Jun 2014 | A1 |
20140158746 | Mastri et al. | Jun 2014 | A1 |
20140166727 | Swayze et al. | Jun 2014 | A1 |
20140172000 | Kuntz | Jun 2014 | A1 |
20140175146 | Knodel | Jun 2014 | A1 |
20140175149 | Smith et al. | Jun 2014 | A1 |
20140203063 | Hessler et al. | Jul 2014 | A1 |
20140205637 | Widenhouse et al. | Jul 2014 | A1 |
20140224856 | Smith et al. | Aug 2014 | A1 |
20140236173 | Scirica et al. | Aug 2014 | A1 |
20140236184 | Leimbach | Aug 2014 | A1 |
20140239038 | Leimbach et al. | Aug 2014 | A1 |
20140239041 | Zerkle et al. | Aug 2014 | A1 |
20140239044 | Hoffman | Aug 2014 | A1 |
20140246474 | Hall et al. | Sep 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140246478 | Baber et al. | Sep 2014 | A1 |
20140246479 | Baber et al. | Sep 2014 | A1 |
20140260746 | Sakaguchi et al. | Sep 2014 | A1 |
20140263537 | Leimbach et al. | Sep 2014 | A1 |
20140263539 | Leimbach et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263542 | Leimbach et al. | Sep 2014 | A1 |
20140263543 | Leimbach et al. | Sep 2014 | A1 |
20140263545 | Williams et al. | Sep 2014 | A1 |
20140263546 | Aranyi | Sep 2014 | A1 |
20140263550 | Aranyi et al. | Sep 2014 | A1 |
20140263553 | Leimbach et al. | Sep 2014 | A1 |
20140263554 | Leimbach et al. | Sep 2014 | A1 |
20140263555 | Hufnagel et al. | Sep 2014 | A1 |
20140263559 | Williams et al. | Sep 2014 | A1 |
20140263562 | Patel et al. | Sep 2014 | A1 |
20140263564 | Leimbach et al. | Sep 2014 | A1 |
20140263565 | Lytle, IV et al. | Sep 2014 | A1 |
20140263566 | Williams et al. | Sep 2014 | A1 |
20140263567 | Williams et al. | Sep 2014 | A1 |
20140263568 | Williams et al. | Sep 2014 | A1 |
20140263569 | Williams et al. | Sep 2014 | A1 |
20140263570 | Hopkins et al. | Sep 2014 | A1 |
20140263571 | Morgan et al. | Sep 2014 | A1 |
20140263572 | Shelton, IV et al. | Sep 2014 | A1 |
20140284372 | Kostrzewski | Sep 2014 | A1 |
20140291378 | Shelton, IV et al. | Oct 2014 | A1 |
20140299649 | Shelton, IV et al. | Oct 2014 | A1 |
20140305986 | Hall et al. | Oct 2014 | A1 |
20140305988 | Boudreaux et al. | Oct 2014 | A1 |
20140305992 | Kimsey et al. | Oct 2014 | A1 |
20140305994 | Parihar et al. | Oct 2014 | A1 |
20140353359 | Hall et al. | Dec 2014 | A1 |
20150008248 | Giordano et al. | Jan 2015 | A1 |
20150034697 | Mastri et al. | Feb 2015 | A1 |
20150041518 | Shelton, IV et al. | Feb 2015 | A1 |
20150053738 | Morgan et al. | Feb 2015 | A1 |
20150053740 | Shelton, IV | Feb 2015 | A1 |
20150053741 | Shelton, IV et al. | Feb 2015 | A1 |
20150053742 | Shelton, IV et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150053744 | Swayze et al. | Feb 2015 | A1 |
20150053745 | Yates et al. | Feb 2015 | A1 |
20150053746 | Shelton, IV et al. | Feb 2015 | A1 |
20150053748 | Yates et al. | Feb 2015 | A1 |
20150053749 | Shelton, IV et al. | Feb 2015 | A1 |
20150054753 | Morgan et al. | Feb 2015 | A1 |
20150060516 | Collings et al. | Mar 2015 | A1 |
20150060517 | Williams | Mar 2015 | A1 |
20150060521 | Weisenburgh, II et al. | Mar 2015 | A1 |
20150076205 | Zergiebel | Mar 2015 | A1 |
20150076206 | Sapre | Mar 2015 | A1 |
20150076209 | Shelton, IV et al. | Mar 2015 | A1 |
20150076210 | Shelton, IV et al. | Mar 2015 | A1 |
20150076212 | Shelton, IV | Mar 2015 | A1 |
20150083781 | Giordano et al. | Mar 2015 | A1 |
20150083783 | Shelton, IV et al. | Mar 2015 | A1 |
20150090760 | Giordano et al. | Apr 2015 | A1 |
20150090761 | Giordano et al. | Apr 2015 | A1 |
20150090762 | Giordano et al. | Apr 2015 | A1 |
20150090764 | Zemlok et al. | Apr 2015 | A1 |
20150108201 | Williams | Apr 2015 | A1 |
20150122872 | Olson et al. | May 2015 | A1 |
20150127046 | Peterson | May 2015 | A1 |
20150129631 | Beetel | May 2015 | A1 |
20150129634 | Shelton, IV et al. | May 2015 | A1 |
20150133995 | Shelton, IV et al. | May 2015 | A1 |
20150133996 | Shelton, IV et al. | May 2015 | A1 |
20150134076 | Shelton, IV et al. | May 2015 | A1 |
20150144678 | Hall et al. | May 2015 | A1 |
20150201935 | Weisenburgh, II et al. | Jul 2015 | A1 |
20150208902 | Okamoto | Jul 2015 | A1 |
20150245834 | Scirica et al. | Sep 2015 | A1 |
20150272576 | Cappola | Oct 2015 | A1 |
20150289873 | Shelton, IV et al. | Oct 2015 | A1 |
20150297221 | Kerr et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150380187 | Zergieebel et al. | Dec 2015 | A1 |
20160000439 | Weisenburgh, II et al. | Jan 2016 | A1 |
20160000440 | Weisenburgh, II et al. | Jan 2016 | A1 |
20160058447 | Posada et al. | Mar 2016 | A1 |
20160058492 | Yates et al. | Mar 2016 | A1 |
20160183948 | Shelton, IV et al. | Jun 2016 | A1 |
20160310204 | McHenry et al. | Oct 2016 | A1 |
20160338702 | Ehrenfels et al. | Nov 2016 | A1 |
20160374672 | Bear et al. | Dec 2016 | A1 |
20160374675 | Shelton, IV et al. | Dec 2016 | A1 |
20170007241 | Shelton, IV et al. | Jan 2017 | A1 |
20170007242 | Shelton, IV et al. | Jan 2017 | A1 |
20170007243 | Shelton, IV et al. | Jan 2017 | A1 |
20170007249 | Shelton, IV et al. | Jan 2017 | A1 |
20170231633 | Marczyk et al. | Aug 2017 | A1 |
20170245856 | Baxter, III et al. | Aug 2017 | A1 |
20170245858 | Williams | Aug 2017 | A1 |
20170281161 | Shelton, IV et al. | Oct 2017 | A1 |
20170281165 | Harris et al. | Oct 2017 | A1 |
20170281168 | Shelton, IV et al. | Oct 2017 | A1 |
20170290583 | Reed et al. | Oct 2017 | A1 |
20170290584 | Jasemian et al. | Oct 2017 | A1 |
20190261984 | Nelson et al. | Aug 2019 | A1 |
20200253464 | Flower | Aug 2020 | A1 |
20200268381 | Roberts et al. | Aug 2020 | A1 |
20210369312 | Zurschmiede | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
0 251 444 | Jan 1988 | EP |
0 492 283 | Jul 1992 | EP |
0 514 139 | Nov 1992 | EP |
0 536 903 | Apr 1993 | EP |
0 596 543 | May 1994 | EP |
1 523 944 | Apr 2005 | EP |
1 759 812 | Mar 2007 | EP |
1 915 953 | Apr 2008 | EP |
1 479 348 | Jul 2008 | EP |
2 044 893 | Sep 2008 | EP |
2 005 902 | Dec 2008 | EP |
2 090 241 | Aug 2009 | EP |
2 263 568 | Dec 2010 | EP |
2 361 562 | Aug 2011 | EP |
2 462 875 | Jun 2012 | EP |
2 486 859 | Aug 2012 | EP |
2 764 833 | Aug 2014 | EP |
2 772 192 | Sep 2014 | EP |
2 777 530 | Sep 2014 | EP |
2 815 705 | Dec 2014 | EP |
2 923 661 | Mar 2015 | EP |
2 853 204 | Apr 2015 | EP |
2 891 462 | Jul 2015 | EP |
2 926 742 | Oct 2015 | EP |
2 942 020 | Nov 2015 | EP |
2 959 851 | Dec 2015 | EP |
3 135 225 | Mar 2017 | EP |
3 238 639 | Mar 2017 | EP |
3 338 653 | Jun 2018 | EP |
3 338 698 | Jun 2018 | EP |
3 338 702 | Jun 2018 | EP |
2001-087272 | Apr 2001 | JP |
2063710 | Jul 1996 | RU |
WO 8302247 | Jul 1983 | WO |
WO 9424947 | Nov 1994 | WO |
WO 0230296 | Apr 2002 | WO |
WO 02096327 | Dec 2002 | WO |
WO 2003094747 | Nov 2003 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2012052729 | Apr 2012 | WO |
WO 2014139440 | Sep 2014 | WO |
WO 2020077531 | Apr 2020 | WO |
Entry |
---|
“Carpenter's Stainless Steel Blue Book Selection/Alloy Data/Fabrication,” www.carpentertechnology.com, 2021, 87 pgs. |
Hummel, et al., “Threshold galling load and frictional behavior of stainless steel couples in line contact,” Science Direct (Abstract), Aug.-Sep. 2003, pp. 504-508, vol. 255, Issues 1-6. |
European Patent Office, Extended European Search Report for European Application No. EP 21195788.1, entitled “Surgical Stapler with Self-Adjusting Staple Height,” dated Dec. 13, 2021, 9 pgs. |
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2021/057365, entitled “Surgical Stapler Having a Powered Handle,” dated Feb. 23, 2022, 14 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2021/057278, entitled “Actuation Shaft Retention Mechanism for Surgical Stapler” mailed Feb. 23, 2022, 15 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2021/057231, entitled “Material Combinations and Processing Methods for a Surgical Instrument” mailed Feb. 11, 2022, 15 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2021/057365, entitled “Surgical Stapler Having a Powered Handle” mailed Apr. 13, 2022, 21 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2022/012452, entitled “Surgical Stapler Having Shaft Recognition Mechanism” mailed Apr. 13, 2022, 13 pgs. |
European Patent Office, Extended European Search Report for European ApplicationNo. EP 22196603.9, entitled “Surgical Stapler with Expandable Jaw,” dated Dec. 14, 2022, 6 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 22203464.7, entitled “Surgical Stapler with Partial Pockets,” dated Dec. 20, 2022, 9 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 22203599.0, entitled “Surgical Stapler Having a Powered Handle,” dated Feb. 7, 2023, 7 pgs. |
European Patent Office, European Search Report for European Application No. 07784007.2, entitled “Surgical Stapler,” dated Jun. 15, 2012, 6 pgs. |
Ethicon Endo Surgery, Inc., Contour Curved Cutter Stapler, 2014, 2 pgs. |
JustRight Surgical, JustRight Surgery, Dec. 31, 2014, 2 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” mailed Aug. 5, 2014, 14 pgs. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2014/028211, entitled “Surgical Stapler with Partial Pockets,” mailed Sep. 8, 2014, 17 pgs. |
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2014/027768, titled “Surgical Stapler with Expandable Jaw”, mailed Jul. 25, 2014, 17 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 15, 2015, 11 pgs. |
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2015/0035379, titled “Surgical Stapler with Circumferential Firing”, mailed Sep. 15, 2015, 22 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/027768, entitled “Surgical Stapler with Expandable Jaw,” dated Sep. 24, 2015, 9 pgs. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/050103 titled “Surgical Stapler with Self-Adjusting Staple Height” dated Feb. 17, 2016, 18 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/035379, entitled “Surgical Stapler with Circumferential Firing,” dated Dec. 22, 2016, 14 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/050103, titled “Surgical Stapler With Self-Adjusting Staple Height,” dated Mar. 30, 2017, 12 pgs. |
European Patent Office, European Search Report for European Application No. EP14764812.5, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Apr. 6, 2017, 6 pgs. |
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Jun. 28, 2017, 15 pgs. |
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 5, 2017, 11 pgs. |
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Jul. 10, 2017, 15 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” mailed Sep. 12, 2017, 22 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” mailed Sep. 13, 2017, 17 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” mailed Sep. 14, 2017, 21 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/045993 titled “Surgical Stapler Having Locking Articulation Joint”, mailed Jan. 24, 2017, 20 pgs. |
European Patent Office, Partial European Search Report for European Application No. EP 14762896.0, entitled “Surgical Stapler with Expandable Jaw,” dated Apr. 10, 2017, 6 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2016/045993, entitled “Surgical Stapler Having Locking Articulation Joint,” dated Feb. 15, 2018, 13 pgs. |
European Patent Office, Extended European Search Report for European ApplicationNo. EP 18186558.5, entitled “Surgical Stapler with Partial Pockets,” dated Oct. 10, 2018, 9 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Oct. 25, 2018, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having Powered Handle,” dated Oct. 25, 2018, 9 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2018, 12 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 18189960.0, entitled “Surgical Stapler with Expandable Jaw,” dated Dec. 13, 2018, 6 pgs. |
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated May 24, 2019, 19 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” mailed Jul. 19, 2019, 24 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 19150575.9, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 21, 2019, 5 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 19180055.6, entitled “Surgical Stapler with Circumferential Firing,” dated Sep. 20, 2019, 8 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/019938, entitled “Surgical Stapling Instrument Having a Two-Position Mechanism,” mailed Jun. 18, 2020, 16 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 20157713.7, entitled “Surgical Stapler with Expandable Jaw,” dated May 11, 2020, 6 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 20161294.2, entitled “Surgical Stapler with Self-Adjusting Staple Height,” dated Jun. 22, 2020, 6 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 20197859.0, entitled “Surgical Stapler with Circumferential Firing,” dated Jan. 28, 2021, 13 pgs. |
International Searching Authority/ EPO, Invitation to Pay Additional Fees for PCTUS2020/025496, entitled “Reload Cover for Surgical Stapling System,” dated Jun. 18, 2019, 15 pgs. |
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/025496, entitled “Reload Cover for Surgical Stapling System,” mailed Aug. 13, 2020, 20 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated Sep. 3, 2020, 16 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2020/067540, mailed May 3, 2021, entitled “Electrosurgical System with Tissue and Maximum Current Identification,” 12 pages. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2020/019938, entitled “Surgical Stapler Having a Two-Position Lockout Mechanism,” dated Sep. 10, 2020, 10 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2020/025496 entitled “Reload Cover for Surgical System,” dated Oct. 14, 2021, 12 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 21173771.3, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Aug. 27, 2021, 10 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2022/012452, entitled “Surgical Stapler Having Shaft Recognition Mechanism,” dated Jul. 27, 2023, 8 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 23185918.2, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 22, 2023, 5 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 23198045.9, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2023, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2021/057231, entitled “Material Combinations and Processing Methods for a Surgical Instrument,” dated May 11, 2023, 10 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2021/057278, entitled “Actuation Shaft Retention Mechanism for Surgical Stapler,” dated May 11, 2023, 10 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2021/057365, entitled “Surgical Stapler Having a Powered Handle,” dated May 11, 2023, 14 pgs. |
Number | Date | Country | |
---|---|---|---|
20220133315 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
63107321 | Oct 2020 | US |