Material combinations and processing methods for a surgical instrument

Information

  • Patent Grant
  • 12048431
  • Patent Number
    12,048,431
  • Date Filed
    Friday, October 29, 2021
    3 years ago
  • Date Issued
    Tuesday, July 30, 2024
    6 months ago
Abstract
Surface preparation for sliding surfaces can enhance wear performance for surgical instruments such as surgical staplers which include reusable mechanisms that are used multiple times with single use reload cartridges. To reduce the potential for galling wear in a metal-to-metal sliding engagement, a combination of surface hardening, surface finish, and surface coatings can be applied to metallic components of a surgical instrument. Surface hardening techniques can allow further manufacturing operations such as welding without compromising the strength of the underlying metal substrate. With stainless steel metal substrates, as surface or case hardening techniques can reduce corrosion resistance, a surface coating can be applied to inhibit surface oxidation as well as provide a barrier to metal-to-metal contact. A further lubricious coating layer such as a bone wax coating layer can enhance galling resistance.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present application relates generally to surgical instruments and, more particularly, to material combinations and processing methods for sliding components in end effectors of surgical instruments such as surgical stapling devices.


Description of the Related Art

Surgical staplers are used to approximate or clamp tissue and to staple the clamped tissue together. As such, surgical staplers have mechanisms to ensure that tissue is properly positioned and captured and to drive staples through the tissue. As a result, this has produced, for example, multiple triggers and handles in conjunction with complex mechanisms to provide proper stapling of the clamped tissue. With these complex mechanisms, surgical staplers can have increased manufacturing burdens, as well as potential sources for device failure and confusion for the user. Thus, reliable stapling of clamped tissue without complex mechanisms is desired.


Surgical staplers can further include replaceable reload cartridges such that multiple cartridges can be used with a stapler in a single surgical procedure. Surgical stapler clamping and firing mechanisms can include metallic components in sliding contact. Further improvements to components that are in sliding contact are desirable to resist wear degradation over multiple firing cycles.


SUMMARY OF THE INVENTION

In certain embodiments, a surgical stapling instrument is provided herein. The surgical stapling instrument comprises an end effector and a firing member. The end effector comprises a first jaw and a second jaw pivotably coupled to the first jaw. The firing member is longitudinally slidable with respect to the end effector to pivotably move the second jaw with respect to the first jaw and actuate the end effector. At least one of the first jaw, the second jaw, and the firing member comprises: a metallic substrate, a dry film surface coating disposed on the metallic substrate, and a bone wax layer disposed on the dry film surface.


In certain embodiments, a surgical stapler is provided herein. The surgical stapler comprises an elongate shaft and a jaw assembly. The elongate shaft extends from a proximal end to a distal end. The jaw assembly is positioned at the distal end of the elongate shaft. The jaw assembly comprises a cartridge support, an anvil, and a firing member. The cartridge support is configured to receive a reload cartridge having a plurality of staples disposed therein. The cartridge support and the anvil are pivotably movable between an open and a closed configuration. The firing member is longitudinally slidable in engagement with the cartridge support and the anvil in the closed configuration to fire staples. At least one of the anvil, the cartridge support, and the firing member comprises: a case hardened metallic substrate, a dry film surface coating disposed on the metallic substrate, and a bone wax layer disposed on the dry film surface.


In certain embodiments, a method of manufacturing a surgical end effector is provided herein. The method comprises providing a first jaw member, a second jaw member, and a firing member, each comprising a metallic substrate. The method further comprises hardening the metallic substrate of at least one of the first jaw member, the second jaw member, and the firing member to a first predetermined hardness. The method further comprises applying a dry film coating to the hardened at least one of the first jaw member, the second jaw member, and the firing member. The method further comprises applying a bone wax composition to at least one of the first jaw member, the second jaw member, and the firing member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of surgical stapling device;



FIG. 2 is a perspective view of an embodiment of shaft assembly and jaw assembly for use with the surgical stapling device of FIG. 1;



FIG. 3 is a perspective view of an embodiment of jaw assembly and reload cartridge for use with the surgical stapling device of FIG. 1;



FIG. 4 is a cross sectional perspective view of a proximal end of the jaw assembly of FIG. 3;



FIG. 5 is a cross sectional perspective view of the jaw assembly of FIG. 3;



FIG. 6 is a graph showing an illustrative force versus travel plot for an exemplary embodiment of jaw assembly;



FIG. 7 is a graph showing an illustrative force versus travel plot for another exemplary embodiment of jaw assembly;



FIG. 8 is a graph showing an illustrative force versus travel plot for another exemplary embodiment of jaw assembly;



FIG. 9A is a schematic illustration of a cross section of a metallic substrate for an exemplary embodiment of a component of a surgical stapler;



FIG. 9B is a schematic illustration of a cross section of a metallic substrate for another exemplary embodiment of a component of a surgical stapler; and



FIG. 10 illustrates an exemplary method for preparing a surface of a component of a surgical stapler.





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIGS. 1-2, embodiments of surgical stapling device are illustrated. The illustrated embodiment of surgical stapler 10 comprises an elongate shaft 20, a jaw assembly 30, and a handle assembly 40. Various aspects of the elongate shaft 20 and jaw assembly 30 described herein can be used interchangeably with either a mechanical handle assembly 40, as illustrated, or a powered handle assembly including, for example, an electric motor. Moreover, it is contemplated that aspects of the elongate shaft 20 and jaw assembly 30 described herein can be used in connection with a shaft assembly configured to be actuated by a robotic surgical system. FIG. 1 illustrates the surgical stapler 10 with the jaw assembly 30 in an open configuration. FIG. 2 illustrates a removable reload shaft assembly comprising the elongate shaft 20 and jaw assembly 30 of the surgical stapler 10 with the jaw assembly 30 in an open configuration.


With continued reference to FIGS. 1 and 2, the illustrated embodiment of surgical stapler 10 can be sized and configured for use in laparoscopic surgical procedures. For example, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be introduced into a surgical field through an access port or trocar cannula. In some embodiments, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a relatively small working channel diameter, such as, for example, less than 8 mm. In other embodiments, an elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a larger working channel diameter, such as, for example, 10 mm, 11 mm, 12 mm, or 15 mm. In other embodiments, it is contemplated that certain aspects of the surgical staplers described herein can be incorporated into a surgical stapling device for use in open surgical procedures.


With continued reference to FIGS. 1 and 2, in the illustrated embodiment, the jaw assembly 30 is coupled to the elongate shaft 20 at the distal end 24 of the elongate shaft 20. The jaw assembly 30 comprises a first jaw 34 pivotally coupled to a second jaw 32. In the embodiment illustrated in FIGS. 1-2, the jaw assembly is articulably coupled to the elongate shaft such that the jaw assembly can be selectively positioned at an articulated position with respect to the central longitudinal axis L. The handle assembly of FIG. 1 includes an articulation knob 190 and articulation mechanism configured to provide continuously selectable articulation of a jaw assembly of an elongate shaft assembly through an articulation range. In an initial configuration, the second jaw 32 includes a plurality of staples positioned within a reload cartridge 50 positioned therein. Thus, the second jaw 32 defines a reload support.


With continued reference to FIGS. 1 and 2, in the illustrated embodiment, the jaw assembly 30 can be actuated from an open configuration (FIG. 1) to a closed configuration to a stapling configuration by an actuation member or beam that is longitudinally slidable within the elongate shaft. In an initial position, the beam can be positioned at the distal end 24 of the elongate shaft 20. With the beam in the initial position, the first jaw 34 is pivoted away from the second jaw 32 such that the jaw assembly 30 is in the open configuration. The actuation beam engages the first jaw 34 upon translation of the actuation member or beam distally along the longitudinal axis L. Translation of the actuation beam distally from the initial position a first distance can actuate the jaw assembly from the open configuration to the closed configuration. With the jaw assembly 30 in the closed configuration, the actuation beam can be returned proximally the first distance to return the jaw assembly 30 to the open configuration. A distal end of the actuation beam can advance a staple slider configured to deploy staples from the second jaw 32 such that further translation of the actuation beam distally past the first distance deploys the plurality of staples 36 from the second jaw 32.


With reference to FIGS. 1-3, in the illustrated embodiment, the handle assembly is coupled to the elongate shaft 20 at the proximal end 22 of the elongate shaft 20. As illustrated, the handle assembly 40 has a pistol grip configuration with a housing defining a stationary handle 42 and a movable handle 44 or trigger pivotably coupled to the stationary handle 42. It is contemplated that in other embodiments, surgical stapler devices including aspects described herein can have handle assemblies with other configurations such as, for example, scissors-grip configurations, or in-line configurations. The handle assembly 40 houses an actuation mechanism configured to selectively advance an actuation shaft responsive to movement of the movable handle 44 to actuate the actuation beam within the elongate a shaft a first distance in an open-close stroke to close the jaw assembly from an initial open position, a second distance beyond the first distance in a firing stroke to fire staples, and to return the actuation beam the second distance and the first distance to an initial position. In certain embodiments, a sliding selector 72 on the handle assembly can allow a user to select whether the handle assembly operates to actuate a jaw assembly in an open-close stroke or a firing stroke. Various embodiments of handle assemblies and associated actuation mechanisms are disclosed in U.S. Pat. No. 9,668,732, entitled “Surgical Stapler Handle Assembly Having Actuation Mechanism With Longitudinally Rotatable Shaft” and U.S. patent application Ser. No. 15/485,620, filed Ap. 12, 2017, entitled “Surgical Stapler Having Articulation Mechanism,” both of which are incorporated by reference herein in their entireties.


With continued reference to FIGS. 1-3, in some embodiments, the surgical stapler 10 can include the plurality of staples positioned in a disposable reload cartridge 50 while the handle assembly 40 and elongate shaft 20 is configured to be reused with multiple staple reload cartridges. In certain embodiments, each reload cartridge 50 can be coupled to a reload cover 150 to shield a tissue contact surface and staple pockets of the reload cartridge before installation to the jaw assembly and that is to be removed before the surgical stapler is introduced to a surgical site. It can be desirable that the handle assembly 40 and elongate shaft 20 can resist wear-related performance degradation such that the stapler can reliably be actuated for multiple clamping and staple firing cycles, each comprising a single use reload cartridge 50. The surgical stapler can include the one or more grasping and firing lockout mechanisms that can limit functionality of the handle assembly to alert a user and enhance patient safety if no reload cartridge is present in the jaw assembly or if a partially or fully fired reload cartridge is present in the jaw assembly. In certain embodiments, a staple deployment member, such as a translatable sled or slider within the reload cartridge 50 can defeat one or more lockout mechanisms when the staple deployment member is in a proximal position in the jaw assembly, corresponding to an unfired reload cartridge is present in the surgical stapler 10.


With reference to FIG. 1, the handle assembly 40 includes a coupler 46 at the distal end thereof. The coupler 46 is adapted to engage the elongate shaft 20 of the surgical stapler 10. The coupler 46 can have a bayonet connection having an outer connector that can removably couple the handle assembly 40 to the elongate shaft 20, and an inner connector that can removably couple the actuation shaft of the handle assembly 42 to the actuation member of the elongate shaft 20. Accordingly, the surgical stapler 10 can be configured such that the handle assembly 40 can be reused with multiple disposable shafts and/or reload cartridges during a surgical procedure. It is contemplated that in other embodiments, the handle assembly and some portion of the elongate shaft can be reusable while a remainder of the elongate shaft and the jaw assembly define a disposable cartridge. In certain other embodiments, the handle assembly and the elongate shaft can be reusable while the jaw assembly defines a disposable cartridge. In still other embodiments, a jaw insert housing a plurality of staples can define a disposable cartridge while the remainder of the surgical stapler is reusable.


As noted above, the shaft assemblies, jaw assemblies, and reload cartridges described herein can also be used in conjunction with a powered stapler handle assembly or an actuator of a robotic surgical system. Various embodiments of powered handle assemblies and associated actuation mechanisms are disclosed in U.S. patent application Ser. No. 15/486,227, filed Apr. 12, 2017, entitled “Reload Shaft Assembly for Surgical Stapler;” U.S. patent application Ser. No. 15/486,008, filed Apr. 12, 2017, entitled “Surgical Stapler Having a Powered Handle;” and U.S. patent application Ser. No. 16/287,748, filed Feb. 27, 2019, entitled “Surgical Stapler Having a Powered Handle;” all of which are incorporated by reference herein in their entireties.


With reference to FIG. 3, a perspective view of the jaw assembly of the elongate shaft 20 is illustrated with the reload cartridge 50 removed from the second jaw 32. As illustrated, the reload cartridge 50 is removably positionable in the reload support defined by the second jaw 32. In the illustrated embodiment, the reload cartridge 50 includes a plurality of staples disposed therein, each staple positioned in its own staple pocket formed through a body of the reload cartridge. An upper surface of the reload cartridge 50 defines a tissue contact surface which, in certain embodiments, can be substantially planar. The reload cartridge further comprises a blade channel formed therein. As illustrated, the blade channel longitudinally extends between rows of staple pockets such that translation of a cutting blade through the blade channel transects tissue between rows of staples that have been deployed into tissue positioned in the jaws when staples are fired. The reload support defined by the second jaw 32 comprises a channel sized and configured to removably receive the reload cartridge 50. For example, in certain embodiments, the channel of the reload support can comprise at least one recess 132 sized and configured to receive a corresponding protruding boss on the reload cartridge 50.


With respect to FIG. 4, an embodiment of jaw assembly is illustrated. A cross section of the jaw assembly has been made generally perpendicularly to a longitudinal axis of the jaw assembly at a proximal end of the jaw assembly just distal the distal end 24 of the elongate shaft to facilitate visibility of certain aspects of operation of the surgical stapler in closure/tissue clamping and firing operations. In the illustrated embodiment, the surgical stapler comprises an actuation mechanism comprising a firing member 120 longitudinally translatable within the first jaw 34 and second jaw 32 of the jaw assembly to actuate the jaw assembly from an open configuration to a closed configuration and subsequently to fire a plurality of staples from a reload cartridge.


With continued reference to FIG. 4, in certain embodiments, the firing member 120 can comprise an I-beam profile with an upper flange 126 connected to a lower flange 124 by a vertical blade member 122. The upper flange 126 is translatable within a channel in the first jaw 34, and the lower flange 124 is translatable within a channel in the second jaw 32. The blade member 122 is translatable within the blade channel of the reload cartridge.


With reference to FIG. 5, certain aspects of an embodiment of jaw assembly of a surgical stapler are illustrated. A cross section of the jaw assembly is illustrated taken longitudinally to further illustrate operation of the actuation mechanism of the surgical stapler. As illustrated, the elongate shaft comprises an actuation member 128 longitudinally slidable therein. The actuation member 128 extends to a distal end to which the firing member 120 is coupled. The reload cartridge 50 can comprise a slider 52 or wedge sled that translates therein, advanced by longitudinally distal movement of the firing member 120 to fire the plurality of staples from the reload cartridge.


With continued reference to FIG. 5, the jaw assembly can comprise an upper channel 136 formed in the first jaw 34. The jaw assembly can further comprise a lower channel 134 formed in the second jaw 32. In the illustrated embodiment, as the firing member 120 is advanced longitudinally to close the jaw assembly and fire staples from the reload cartridge 50, the upper flange 126 slides within the upper channel 136 of the first jaw 34, and the lower flange 124 slides in the lower channel 134 of the second jaw 32. In the illustrated embodiment, a proximal end of the upper channel 136 comprises a ramp such that actuation of the firing member 120 over the ramp pivots the first jaw 34 to a closed configuration. The upper channel 136 further comprises a channel distal the ramp extending such that it is generally parallel to the lower channel 134 with the jaws in the closed configuration.


As it is contemplated that the jaw assembly can be reused with multiple single use reload cartridges 50, it is desirable that sliding surfaces of the firing member 120 and lower and upper channels 134, 136 be configured to minimize performance degradation over multiple use cycles. With tissue clamped between jaws, a lower surface of the upper flange 126 slides against an upper surface of the upper channel 136, and an upper surface of the lower flange 124 slides against a lower surface of the lower channel 134. Accordingly, in certain embodiments, at least these sliding surfaces can be configured to reduce the impacts of frictional engagement therebetween. In other embodiments, it can be desirable that all of the first jaw 34, the second jaw 32, and the firing member 120 be configured to reduce impacts of frictional engagement therebetween.


In certain embodiments, it is desirable that the jaw assembly be configured to be reused with at least ten reload cartridges without significant performance degradation. In certain embodiments can be preferable that the jaw assembly be configured to be reused with at least twelve reload cartridges without significant performance degradation. Furthermore, it is contemplated that it is desirable that the jaw assembly is configured to be operable with a desired number of reload cartridges with an operating load of at least 80 pounds of compressive force applied by first and second jaws 34, 32 to tissue clamped therebetween. In other embodiments, it is desirable that the jaw assembly is configured to be operable with the desired number of reload cartridges with an operating load of at least 100 pounds of compressive force. In still other embodiments, it is desirable that the jaw assembly is configured to be operable with the desired number of reload cartridges with an operating load of at least 120 pounds of compressive force. In certain embodiments, the jaw assembly is configured to be operable with the desired number of reload cartridges at a desired operating load with the jaws misaligned at an angular deviation of up to one degree from the first jaw 34 parallel to the second jaw 32 in a closed configuration. In certain embodiments, the jaw assembly is configured to be operable with the desired number of reload cartridges at a desired operating load with the jaws misaligned at an angular deviation of up to two degrees from the first jaw 34 parallel to the second jaw 32 in a closed configuration. In use, misalignment between the jaws can occur during a stapling operation due to deflection of the jaws in response to the thickness or density of tissue clamped between the jaws.


In general, when two surfaces, such as the lower and upper flanges 124, 126 of the firing member and the respective lower and upper channels 134, 136, are in contact under load and they slide relative to one another, a frictional force opposes the motion. The frictional force is proportional to the load, but ultimately does not depend on the contact area. At the microscopic level, each of the surfaces is not truly flat, but rather has surface irregularities or asperities. These irregularities create localized contact points across which the contact load is distributed. The real contact area is then only a small fraction of the apparent, nominal area. There are multiple types of wear that can either lead to gradual increases in the coefficient of friction When asperities first touch, they deform elastically. However, even small loads when concentrated over a small area can cause large contact stresses that are high enough to cause plastic deformation. The contact points then flatten, forming junctions. Wear in general involves the physical removal of material from a solid object. It can be divided into three categories: abrasive, adhesive and fatigue. Abrasive wear is a more gradual wear process. It occurs when two surfaces rub against one another and the harder surface grinds the softer away. It is often characterized by a rough appearance and can involve the creation of particulate. In many cases, some work hardening (cold working) can occur during this stage. Adhesive wear is a more aggressive form of wear that can lead to galling, especially with metal-to-metal contacting wear surfaces. Highly localized temperatures and the peaks of opposing asperities can deform and move together. Failure to clear debris further exacerbates this type of wear leading to galling with high friction forces.


With reference to FIGS. 6-8, certain aspects of sliding engagement between two surfaces are illustrated. Force versus distance plots for exemplary combinations of sliding engagement cycles between a pair of exemplary components are illustrated. FIG. 6 illustrates a force versus distance plot for exemplary components over several sliding engagement cycles illustrating abrasive wear and galling. FIG. 7 illustrates a force versus distance plot for exemplary components over several sliding engagement cycles illustrating a plurality of cycles of abrasive wear followed by galling. FIG. 8 illustrates a force versus distance plot for exemplary components over several sliding engagement cycles illustrating gradual abrasive wear.


With reference to FIG. 6, an illustrative force versus distance plot for several sliding engagement cycles between exemplary sliding components is illustrated. The plot illustrates a progression from at least one sliding engagement cycle with abrasive wear in a first direction 210 and abrasive wear in a second direction 212 to galling wear in a first direction 214 and galling wear in a second direction 216. When the components are moved in the first and second directions with abrasive wear, a friction force between the components is relatively low and relatively constant along a distance traveled. A plot line above the x-axis indicates travel in a first direction (210, 214) while a plot line below the x-axis indicates travel in a second direction (212, 216) opposite the first direction. The height (or depth) of a plot line from the x-axis represents the frictional force required to slide the components. When galling wear is encountered in the first and second directions 214, 216, the frictional force is highly irregular and significantly larger than the frictional force encountered in the abrasive wear regime. Galling is highly detrimental to the function of the device as it increases the coefficient of kinetic friction by a factor greater than one, which as a result multiplies the force required to actuate the device considerably. In some instances, galling can cause the input force required to actuate the device to increase to more than double what it is expected to be for a pair of sliding surfaces. Thus, an embodiment of surgical stapler with sliding components experiencing galling wear after several sliding engagements would be undesirable for use with multiple reload cartridges as the force required to actuate the actuation mechanism would be excessive, stressing components in the shaft assembly and handle assembly, and making the handle assembly difficult to operate.


With reference to FIG. 7 an illustrative force versus distance plot for several sliding engagement cycles between exemplary sliding components is illustrated. The plot illustrates a progression from at least several sliding engagement cycles with abrasive wear in a first direction 220 and abrasive wear in a second direction 222 to galling wear in a second direction 224. When the components are moved in the first and second directions with abrasive wear, a friction force between the components is relatively low and relatively constant along a distance traveled, although the plot line illustrates a plurality of wear cycles with progressively increasing friction forces until galling occurs. In certain embodiments, components exhibiting such wear characteristics can be used in a surgical stapler provided that the components remain in the abrasive wear regime over a sufficient number of wear cycles to permit use of at least a desired number of reload cartridges before experiencing galling wear.


With reference to FIG. 8 an illustrative force versus distance plot for several sliding engagement cycles between exemplary sliding components is illustrated. The plot illustrates repeated operation over a plurality of sliding engagement cycles with abrasive wear in a first direction 230 and abrasive wear in a second direction 232 without the components experiencing galling wear. When the components are moved in the first and second directions with abrasive wear, a friction force between the components is relatively low and relatively constant along a distance traveled with minimal increase from cycle to cycle. It is desirable to configure the jaw assembly for a surgical stapler to have wear characteristics that reduce the likelihood of galling for repeated use with multiple reload cartridges.


In certain embodiments, materials selection for components of a surgical stapler that engage in sliding contact, such as jaw assemblies and firing member can be selected based on certain priorities. For example, as an initial consideration, the materials selected, as well as surface preparation coatings and treatments thereof, are limited to those that meet standards for biocompatibility for use in a patient-contact surgical device. Moreover, it is desirable that the materials selected are able to be joined in a welding operation, which allows flexibility in construction of various aspects of a jaw design, such as by facilitating the use of a two-piece first jaw 34 having a cover or cap that is welded over lower, anvil surface first jaw member forming a channel therebetween. Further, it is desirable that the materials selected have sufficient strength and toughness characteristics for repeated staple firing operations. Additionally, it can be desirable that the materials selected resist oxidation and corrosion. Finally, it is desirable that the materials selected are manufacturable by a variety of processes to promote manufacturing efficiencies, including, for example metal injection molding processes.


Various grades of stainless steel can be selected to achieve the desired characteristics. For example, in certain embodiments, a grade 17-4 stainless steel can be selected for use in sliding components. In other embodiments, a grade 420 stainless steel can be selected for use in sliding components. Grade 420 is a martensitic stainless steel as opposed to a precipitation-hardened stainless steel such as grade 17-4. A grade 420 stainless steel has a relatively high carbon content as compared to a grade 17-4 stainless steel. Thus, desirably, a grade 420 stainless steel is relatively hardenable as compared to a lower-carbon steel. However, martensitic stainless steels tend to be less weldable than precipitation-hardened stainless as brittle martensite can tend to form from rapid cooling of weld zones that can lead to stress induced cracking. Moreover, the relatively higher carbon content of a grade 420 stainless steel can also lead to a relatively lower corrosion resistance. Each of grades 17-4 and 420 is suitable for use in a metal injection molding process.


With regard to material selection, in still other embodiments, a grade 13-8 or a grade 455/465 stainless steel can be selected for use. However, it is noted that these grades of stainless steels tend to be specialty materials, thus these grades of stainless steel may be less desired in view of potential cost, availability, and manufacturability concerns.


As material selection considerations indicate the desirability of metallic, stainless steel materials for use in the jaw assembly and firing member of a surgical stapler, further consideration should be made of preparation and processing the characteristics of these components to reduce the likelihood of galling, which can result from metal-to-metal sliding engagement. In general, materials having a relatively high surface hardness can be more resistant to galling wear. There are various techniques for achieving a relatively high surface hardness in a metallic substrate such as the stainless steel substrates considered for use in sliding components of a surgical stapler. For example, in various embodiments, at least one of: diffusion/thermal-chemical techniques, surface plating techniques, surface coating techniques, and applied energy techniques can be used to prepare a surface of a metallic substrate for use in sliding contact with reduced galling.


In diffusion or thermo-chemical processes a surface layer of a metallic substrate is hardened through the addition of a hardening species such as carbon, nitrogen, or boron at, typically, a relatively high temperature. These processes can be termed ‘case hardening’ in that a goal is to create a relatively hard case or surface layer while maintaining the toughness and ductility of the core. However, typical case hardening techniques have had undesirable consequences on stainless steel materials, especially precipitation hardened stainless steel materials in that typical case hardening techniques have decreased corrosion resistance of a stainless steel material. Moreover, with precipitation hardened stainless steel materials, case hardening methods with relatively high temperatures can result in unintended annealing of the material. Additionally, where a metallic substrate has been formed using a metal injection molding process, the substrate can have relatively high porosity. Thus, the depth of a case hardened layer, absent further modification to the case hardening technique to control a hardened layer depth, may be different from that of a similarly hardened material metallic substrate not formed by a metal injection molding process.


However, certain case hardening techniques can be used on stainless steel materials with fewer or no significant undesirable effects. For example, a relatively low temperature diffusion case hardening technique commercially known under the trademarks S3P (Specialty Stainless Steel Processes) and KOLSTERISING offered by Bodycote plc. This diffusion technique can case harden relatively low carbon stainless steels such as grade 17-4 stainless steels with minimal reductions in corrosion resistance and minimal impact to the underlying strength and ductility of the metallic substrate.


Another technique to creating a hardened layer is through surface modifications to modify the grain structure of the metallic substrate at an outer layer through work hardening. For example, shot peening (impacting the substrate with high velocity shot) or ion implementation (impacting the metallic substrate with high velocity particles) processes can be used to form a hardened surface layer. Advantageously, these processes do not affect surface chemistry and thus should not reduce corrosion resistance. However, if foreign contaminants are present in the shot (for example if shot media is reused), the contaminants can become embedded in the metallic substrate and potentially cause localized sites of reduced corrosion resistance. Moreover, these surface modification processes can present manufacturing challenges as only the surfaces impacted are work hardened, requiring tight control of fixtures, shot size, intensity, and coverage to facilitate consistent results and reduce potential distortion of the substrate.


In certain embodiments, surface plating, that is, introducing a thin layer of metallic compounds on a substrate, can be used to create desired surface hardness properties for sliding components of a surgical stapler. Examples of types of material that can be used in surface plating to provide surface hardness include chrome, electroless nickel, Diamond Like Coating, and ceramics. Advantageously, depending on the material chosen, surface plating can be an immersive process that can be implemented at a component level with consistent surface properties. However, surface plating can affect the weldability of a component as the plating compound will become present in a welded matrix, impacting the strength of the component. Moreover, surface platings, with high hardnesses can also be relatively brittle and can undesirably tend to crack and particulate when heavily loaded in a point contact. In surgical stapler components, in certain instances the engagement of the flanges of the firing member can engage their respective channels at a substantially point contact, especially with misalignment of the jaws or when a large tissue section is clamped between the jaws.


In certain embodiments, a metallic substrate of a sliding component of a surgical stapler can have an applied surface coating to provide desired operation characteristics. However, in general, surface coatings do not adhere as well to a metallic substrate as surface platings. Moreover, similar to surface plating, surface coatings may particulate when loaded in use. Accordingly, it is preferable to use biocompatible surface coating materials. Additionally, surface coatings, if applied before welding a material substrate, may form part of the weld matrix and reduce strength of a welded component. Accordingly, masking a weld site or coating after a welding operation can be selected to minimize the impact of surface coatings on substrate weldability.


Various surface coatings can be applied to a metallic substrate to improve sliding performance. For example, in certain embodiments, lubricants such as those commercially available under the trademark KRYTOX from the Chemours Company, or MOLYKOTE from the Dow Corning Corporation can be applied to sliding surfaces. In other embodiments, a dry film polytetrafluoroethylene (PTFE) coating can be applied to sliding surfaces to increase lubricity therebetween. For example, a coating commercially available as Dry Film RA coating from the Donwell Company, Inc. can be applied to sliding components of a surgical instrument. PTFE dry film materials can be suitable for use in patient contact applications and can be applied strategically by a spraying process or at a component level through an immersive process.


In certain embodiments, bone wax can be applied as a surface coating to improve sliding performance by acting as a lubricant between sliding surfaces. Various bone wax compositions are commercially available and typically comprise primarily beeswax. Bone wax is suitable for use in patient contact applications as it has been traditionally applied to reduce bleeding from bone surfaces during a medical procedure. Desirably, bone wax is tacky and holds well to applied surfaces. Moreover, bone wax typically only undergoes minimal particulation even with point contact engagement between sliding surfaces. However, bone wax can have a relatively low melting transition temperature (it can be approximately 120 F for certain bone wax compositions). Accordingly, consideration of anticipated sterilization and shipping temperature ranges must be assessed to reduce the likelihood of melting and pooling of applied bone wax. Moreover, bone wax is typically manually applied to target surfaces, thus consistent application to recessed surfaces such as jaw assembly channels can require specialized application tools and procedures.


With reference to FIG. 9A, a schematic cross section for a surface of a metallic substrate for use as a sliding surface of a surgical stapling device is illustrated. As discussed above, in view of various considerations for material selection, stainless steel materials are desirable for use in sliding components of a surgical stapling device, such as a firing member and jaw members of a jaw assembly of a surgical stapler. However, in metal-to-metal sliding engagements, these materials can undesirably be subject to galling wear. Accordingly, it is desirable to prepare the sliding surfaces to resist galling. In the illustrated embodiment, the component comprises a metallic substrate 240 having a first strength and a first hardness. A surface layer 242 of the metallic substrate 240 is hardened to a second hardness greater than the first hardness. For example, in certain embodiments, a case hardening method is used to create the surface layer 242 having a depth D at the second hardness. In some embodiments, a diffusion method is used in the case hardening method. In certain embodiments, a low-temperature diffusion case hardening method is used.


With continued reference to FIG. 9A, in certain embodiments, a first surface coating layer 244 can overlie the metallic substrate 240 and a hardened surface layer 242 thereof. For example, in some embodiments, it can be desirable that a first surface coating be selected to limit metal-to-metal contact. Moreover, as certain case hardening methods can tend to reduce corrosion resistance in stainless steel materials, in certain embodiments, it can be desirable that a first surface coating layer can define an oxidation inhibition material.


With continued reference to FIG. 9A, in certain embodiments components of surgical stapler can further comprise a second surface coating layer 246 overlying the first surface coating layer 244. The second surface coating layer 246 can be selected to reduce wear over multiple sliding engagement cycles. For example, in certain embodiments, a bone wax composition can be disposed across sliding surfaces to provide sliding lubrication for multiple reload cycles. Advantageously, a bone wax composition can enhance sliding of components of a surgical stapler in sliding contact even with increases in point contact with inadvertent misalignment.


With continued reference to FIG. 9A, another aspect of surface preparation for sliding components of a surgical stapler is surface finish. For sliding surfaces, it can be undesirable that the surface finish of the sliding components be either relatively smooth, (for example, with a roughness <25 μin) or have a relatively high roughness (for example, with a roughness >75 μin). Sliding surfaces that are highly smooth have a relatively large theoretical contact area, with fewer surface asperities. Thus, these smooth surfaces can tend to facilitate galling and cold welding when in sliding engagement. In contrast, relatively high roughness surfaces can result in relatively high frictional forces and particulation as asperities bind relative to one another. Sliding surfaces having a relatively moderate roughness (for example between about 25 μin and 75 μin) can desirably have a reduced incidence of galling and moderate frictional forces as compared with relatively low roughness surfaces and relatively high roughness surfaces. A moderate roughness can also desirably retain a surface coating when the coated surface is in sliding engagement. In certain embodiments, a moderately rough surface, having a surface roughness between about 25 μin and 75 μin can be prepared through a tumbling process.


With reference to FIG. 9B, a schematic cross section for a surface of another embodiment of metallic substrate for use as a sliding surface of a surgical stapling device is illustrated. Similar to the embodiment of metallic substrate illustrated above with reference to FIG. 9A, the illustrated embodiment of metallic substrate comprises a metallic substrate 240 core, a first coating layer 244, and a second coating layer 246. In certain embodiments, the first coating layer 244 can comprise a dry film, and the second coating layer can comprise a bone wax layer. However, unlike the embodiment of metallic substrate of FIG. 9A, as illustrated in FIG. 9B, the metallic substrate 240 does not comprise a case hardened surface.


In view of the above discussion, various embodiments of material selection and surface preparation to achieve desired sliding performance in a firing member, first jaw, and second jaw without galling over a desired number of firing cycles. In one embodiment, the firing member and jaws of the jaw assembly can comprise a grade 17-4 stainless steel material. The 17-4 stainless steel material can be heat treated to a H900 condition (corresponding to approximately 45 Rockwell C hardness). A surface layer of the material can be case-hardened to approximately 70 Rockwell C hardness. For example, in some embodiments a diffusion method such as an S3P method commercially available from Bodycote plc., can provide a hardened surface layer of approximately between 65 and 70 Rockwell C hardness at a case depth of approximately 25-40 microns. The firing member and jaws of the jaw assembly can be tumbled to a moderate surface roughness. For example, the components can have a surface roughness of between approximately 25 μin and 75 μin. In one embodiment, the components have a surface roughness of approximately 50 μin. A first coating layer of a PTFE dry film can be applied. This first coating layer can inhibit corrosion at the hardened surface and limit metal-to-metal contact. The components can further comprise a second coating layer of a bone wax composition. Advantageously, this combination of materials and processes results in a jaw assembly and firing member that resists galling when repeatedly used with a plurality of single use reload cartridges.


Another embodiment of firing member, first jaw, and second jaw of a surgical stapler comprises a grade 420 stainless steel material that has been heat treated to approximately 55 Rockwell C hardness. The components can be tumbled to a moderate surface roughness. The components can comprise a first coating layer of a PTFE dry film and a second coating layer of a bone wax composition.


Another embodiment of surgical stapler components including at least one of a firing member, a first jaw, and a second jaw comprises a grade 17-4 stainless steel material. The material is heat treated to approximately 45 Rockwell C hardness. For example, as described above, in certain embodiments, the material can be heat treated to an H900 condition. No further case hardening is provided. The components can have a moderately rough surface finish that can be achieved with a tumbling process. The components can comprise a first coating layer of a PTFE dry film and a second coating layer of a bone wax composition. In certain embodiments, one or more of the firing member, first jaw, and second jaw components can be formed of a grade 17-4 stainless steel material with a metal injection molding process. Certain metal injection molding processes can result in a metallic substrate with relatively high porosity relative to a counterpart machined component. Case hardening techniques on such a porous metal injection molded component can create a hardened surface layer having a relatively high depth, but correspondingly relatively high brittleness, which can impact the bulk properties of the case hardened component. Accordingly, embodiments of surgical stapler components without further case hardening processes can be desirable where the components are formed with metal injection molding processes that can create relatively porous metallic substrate.


While in the above embodiments, the components are prepared such that the surface hardnesses of the jaws and the firing members are relatively high (at least about 45 Rockwell C hardness up to about 70 Rockwell C hardness) and substantially identical. It is contemplated that in other embodiments, the firing member can have a slightly lower surface hardness than the jaw members. For example, the firing member can have a surface hardness up to approximately 10 Rockwell C hardness below that of the jaws.


Moreover, while in the above embodiments, case hardening is provided by diffusion or heat treatment, in other embodiments, it is contemplated that shot peening or another work hardening technique can be applied to work harden a surface layer of the metallic substrate of the components. This work hardened surface layer can then be coated with one or more coating layers


With reference to FIG. 10 a method of preparing a metallic substrate for use as a sliding component of a surgical stapler is illustrated. In certain embodiments, the method can comprise providing a metallic substrate 260. As discussed above, in certain embodiments, the metallic substrate can comprise a stainless steel material such as a grade 17-4 stainless steel or a grade 420 stainless steel. In certain embodiments, providing the metallic substrate can comprise metal injection molding a metallic substrate component.


With continued reference to FIG. 10, the method further comprises hardening the metallic substrate 262 to a desired hardness. In certain embodiments, hardening the metallic substrate can comprise heat treating the metallic substrate. For example, in certain embodiments, hardening the metallic substrate comprises heat treating the metallic substrate to a H900 condition corresponding to a hardness of approximately 45 HRC. In various embodiments, hardening the metallic substrate can comprise case hardening the metallic substrate with a diffusion process. In other embodiments, hardening the metallic substrate can comprise work hardening the surface layer of the metallic substrate such as by shot peening. In certain embodiments, such as schematically illustrated in FIG. 9B, the metallic substrate is hardened to a hardness of approximately 45 HRC by heat treatment without further case hardening. In other embodiments, such as schematically illustrated in FIG. 9A, the metallic substrate is hardened with a heat treatment process and subsequently case hardened such as with a diffusion process to achieve a relatively high surface hardness. In some embodiments, the surface layer can be hardened to between about 45 HRC and 75 HRC. It can be desirable that the surface layer is hardened to at least about 55 HRC. In certain embodiments, the surface layer is hardened to about 70 HRC. In certain embodiments, a metallic substrate to form firing member components for a surgical stapler is surface hardened to a first hardness, and a metallic substrate to form a first jaw and a second jaw is surface hardened to a second hardness different from the first hardness. In certain embodiments, the second hardness is within approximately 10 HRC greater than the first hardness.


With continued reference to FIG. 10, in certain embodiments, the method further comprises providing a moderate roughness surface finish 264. In certain embodiments providing a moderate roughness surface finish can comprise tumbling the components. In certain embodiments, the moderate roughness surface finish can comprise a surface roughness between approximately 25 μin and 75 μin. In some embodiments, the surface roughness is approximately 50 μin.


With continued reference to FIG. 10, in certain embodiments, the method further comprises applying at least one surface coating 266. In certain embodiments, applying at least one surface coating comprises applying a first surface coating and applying a second surface coating. In certain embodiments, applying at least one surface coating comprises applying a PTFE dry film and applying a bone wax composition.


Although this application discloses certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Further, the various features of these inventions can be used alone, or in combination with other features of these inventions other than as expressly described above. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims which follow.

Claims
  • 1. A surgical instrument comprising: an end effector comprising: a first jaw, anda second jaw pivotably coupled to the first jaw;a firing member longitudinally slidable with respect to the end effector to pivotably move the second jaw with respect to the first jaw and actuate the end effector, wherein the firing member comprises a first sliding surface and the end effector comprises a second sliding surface, the first sliding surface in sliding engagement with the second sliding surface;wherein at least one of the first sliding surface and the second sliding surface comprises: a metallic substrate, a dry film surface coating disposed on the metallic substrate, and a bone wax layer disposed on the dry film surface coating; andwherein the metallic substrate comprises a core and a case hardened layer, the case hardened layer positioned adjacent the sliding engagement between the first sliding surface and the second sliding surface, and wherein the dry film surface coating and the bone wax layer are disposed on the case hardened layer to prevent sliding engagement of the metallic substrate during sliding engagement of the first sliding surface with the second sliding surface.
  • 2. The surgical instrument of claim 1, wherein the case hardened layer is hardened to a hardness within the range of approximately 45 HRC to approximately 70 HRC.
  • 3. The surgical instrument of claim 1, wherein the case hardened layer is formed by a diffusion process.
  • 4. The surgical instrument of claim 1, wherein the metallic substrate comprises a grade 17-4 stainless steel material.
  • 5. The surgical instrument of claim 4, wherein the metallic substrate is heat treated to an H900 condition.
  • 6. The surgical instrument of claim 1, wherein the metallic substrate comprises a grade 420 stainless steel material.
  • 7. The surgical instrument of claim 1, wherein the first jaw, the second jaw, and the firing member each comprise a metallic substrate comprising a core and a case hardened layer hardened to at least 55 HRC.
  • 8. The surgical instrument of claim 1, wherein the metallic substrate has a surface finish roughness of between approximately 25 μin and 75 μin.
  • 9. The surgical instrument of claim 8, wherein the metallic substrate comprises a tumbled surface finish.
  • 10. The surgical instrument of claim 1, wherein the dry film surface coating comprises an oxidation inhibiting coating.
  • 11. The surgical instrument of claim 10, wherein the dry film surface coating comprises a polytetrafluoroethylene surface coating.
  • 12. The surgical instrument of claim 1, wherein the core has a first hardness, and wherein the case hardened layer has a second hardness greater than the first hardness.
  • 13. The surgical instrument of claim 12, wherein the case hardened layer defines a surface layer having a predetermined depth.
  • 14. A surgical stapler comprising: an elongate shaft extending from a proximal end to a distal end;a jaw assembly at the distal end of the elongate shaft, the jaw assembly comprising: a cartridge support configured to receive a reload cartridge having a plurality of staples disposed therein;an anvil, wherein the cartridge support and the anvil are pivotably movable between an open and a closed configuration; anda firing member longitudinally slidable in engagement with the cartridge support and the anvil in the closed configuration to fire staples, the firing member comprising a first sliding surface and the jaw assembly comprising a second sliding surface, the first sliding surface in sliding engagement with the second sliding surface;wherein at least one of the first sliding surface and the second sliding surface comprises: a case hardened metallic substrate comprising a case hardened surface layer, a dry film surface coating disposed on the case hardened metallic substrate, and a bone wax layer disposed on the dry film surface coating, the case hardened surface layer positioned adjacent the sliding engagement between the first sliding surface and the second sliding surface, and wherein the dry film surface coating and the bone wax layer are disposed on the case hardened surface layer to prevent sliding engagement of the case hardened metallic substrate during sliding engagement of the first sliding surface with the second sliding surface.
  • 15. The surgical stapler of claim 14, wherein the case hardened metallic substrate is case hardened to at least approximately 55 HRC.
  • 16. The surgical stapler of claim 14, wherein the case hardened metallic substrate is case hardened with a diffusion process.
  • 17. The surgical stapler of claim 14, wherein each of the anvil, the cartridge support, and the firing member comprise a case hardened metallic substrate, a dry film surface coating disposed on the case hardened metallic substrate, and a bone wax layer disposed on the dry film surface coating.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 63/107,321 entitled “Material Combinations and Processing Methods for a Surgical Instrument” filed on Oct. 29, 2020 which is incorporated herein by reference in its entirety.

US Referenced Citations (865)
Number Name Date Kind
2073960 Crosby Mar 1937 A
2140593 Pankonin Dec 1938 A
2351608 Greenwood Jun 1944 A
2487565 Leber et al. Nov 1949 A
2641154 Heller Jun 1953 A
3076373 Matthews Feb 1963 A
3077812 Dietrich Feb 1963 A
3080564 Strekopitov et al. Mar 1963 A
3203220 Kaepernik Aug 1965 A
3252643 Strekopitov et al. May 1966 A
3273562 Brown Sep 1966 A
3373646 Ehlert Mar 1968 A
3459187 Pallotta Aug 1969 A
3494533 Green et al. Feb 1970 A
3662939 Bryan May 1972 A
3675688 Bryan et al. Jul 1972 A
3692224 Astafiev et al. Sep 1972 A
4261244 Becht et al. Apr 1981 A
4281785 Brooks Aug 1981 A
4304236 Conta et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4407286 Noiles et al. Oct 1983 A
4434796 Karapetian et al. Mar 1984 A
4442964 Becht Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4522327 Korthoff et al. Jun 1985 A
4527724 Chow et al. Jul 1985 A
4589582 Bilotti May 1986 A
4591085 Di Giovanni May 1986 A
4606344 Di Giovanni Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4728020 Green et al. Mar 1988 A
4805823 Rothfuss Feb 1989 A
4892244 Fox et al. Jan 1990 A
4923350 Hinksman et al. May 1990 A
4941623 Pruitt Jul 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
5031814 Tompkins et al. Jul 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5106008 Tompkins et al. Apr 1992 A
5116349 Aranyi May 1992 A
5129570 Schulze et al. Jul 1992 A
5180092 Crainich Jan 1993 A
5201746 Shichman Apr 1993 A
5221036 Takase Jun 1993 A
5236440 Hlavacek Aug 1993 A
5240163 Stein et al. Aug 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5289963 McGarry et al. Mar 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350400 Esposito et al. Sep 1994 A
5360305 Kerrigan Nov 1994 A
5364002 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5439155 Viola Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464144 Guy et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5472132 Savage et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5485952 Fontayne Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5507426 Young et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509920 Phillips et al. Apr 1996 A
5529235 Boiarski et al. Jun 1996 A
5547117 Hamblin et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5558266 Green et al. Sep 1996 A
5562241 Knodel et al. Oct 1996 A
5562700 Huitema et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571115 Nicholas Nov 1996 A
5571285 Chow et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5626587 Bishop et al. May 1997 A
5630539 Plyley et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5657921 Young et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5678748 Plyley Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704898 Kokish Jan 1998 A
5706998 Blyley et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5732871 Clark et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810240 Robertson Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5860995 Berkelaar Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5901895 Heaton et al. May 1999 A
5918791 Sorrentino et al. Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
D416089 Barton et al. Nov 1999 S
5988479 Palmer Nov 1999 A
6032849 Mastri et al. Mar 2000 A
6053390 Green et al. Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6132383 Chesney Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
D441865 Racenet et al. May 2001 S
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264087 Whitman Jul 2001 B1
6270453 Sakai Aug 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6488196 Fenton, Jr. Dec 2002 B1
6550757 Sesek Apr 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6595509 Sesek Jul 2003 B2
6619529 Green et al. Sep 2003 B2
6644532 Green et al. Nov 2003 B2
6669073 Milliman et al. Dec 2003 B2
6716233 Whitman Apr 2004 B1
6786382 Hoffman Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6821282 Perry et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6913181 Mochizuki et al. Jul 2005 B2
6923360 Sesek et al. Aug 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7044947 de la Torre et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7097089 Marczyk Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7108472 Norris et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7213736 Wales et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7258262 Mastri et al. Aug 2007 B2
7275674 Racenet et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7290692 Marks Nov 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7303107 Milliman et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7434715 Shelton, IV et al. Oct 2008 B2
7434716 Viola Oct 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7530484 Durrani May 2009 B1
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7717312 Beetel May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857187 Milliman Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934629 Wixey et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8061576 Cappola Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070036 Knodel Dec 2011 B1
8074861 Ehrenfels et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8123100 Holsten et al. Feb 2012 B2
8127976 Scirica et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8181839 Beetel May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8256656 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8281972 Wixey et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292148 Viola Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8393513 Jankowski Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8397973 Hausen Mar 2013 B1
8403198 Sorrentino et al. Mar 2013 B2
8413868 Cappola Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8479967 Marczyk Jul 2013 B2
8496152 Viola Jul 2013 B2
8496155 Knodel Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8523043 Ullrich et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540625 Miyoshi Sep 2013 B2
8544712 Jankowski Oct 2013 B2
8556151 Viola Oct 2013 B2
8556152 Marczyk et al. Oct 2013 B2
8556153 Knodel Oct 2013 B1
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573460 Cappola Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573464 Nalagatla et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584921 Scirica Nov 2013 B2
8596513 Olson Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8627992 Edoga et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631990 Park et al. Jan 2014 B1
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636189 Knodel et al. Jan 2014 B1
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8672209 Crainich Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740035 Mastri et al. Jun 2014 B2
8740036 Williams Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8763876 Kostrzewski Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8833631 Munro, III et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8905288 Wenchell Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8925783 Zemlok et al. Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931683 Racenet et al. Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967447 Hartoumbekis Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8979827 Cappola Mar 2015 B2
9004340 Scirica Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9022271 Scirica May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9027818 Scirica et al. May 2015 B2
9033202 Scirica May 2015 B2
9038880 Donohoe May 2015 B1
9055943 Zemlok et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9101358 Kerr et al. Aug 2015 B2
9161813 Benamou Oct 2015 B2
9204876 Cappola et al. Dec 2015 B2
9237890 Kostrzewski Jan 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9532782 Kostrzewski Jan 2017 B2
9662108 Williams May 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
20020025243 Heck Feb 2002 A1
20020029044 Monassevitch et al. Mar 2002 A1
20020062136 Hillstead May 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20030130677 Whitman et al. Jul 2003 A1
20040006372 Racenet et al. Jan 2004 A1
20040138705 Heino et al. Jul 2004 A1
20050234478 Wixey Oct 2005 A1
20060097026 Shelton May 2006 A1
20060100644 Viola May 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070034664 Jiang Feb 2007 A1
20070039997 Mather et al. Feb 2007 A1
20070057014 Whitman et al. Mar 2007 A1
20070068990 Shelton, IV et al. Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070131732 Holsten et al. Jun 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton IV et al. Aug 2007 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080041918 Holsten et al. Feb 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080179375 Scirica Jul 2008 A1
20080255607 Zemlok Oct 2008 A1
20090001129 Marczyk Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090026245 Holsten et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090057369 Smith et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090143806 Witt et al. Jun 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090277948 Beardsley et al. Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100072258 Farascioni et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100331820 Prisco et al. Dec 2010 A1
20110036892 Marczyk et al. Feb 2011 A1
20110042440 Holsten et al. Feb 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110106124 Beauchamp May 2011 A1
20110108601 Clark et al. May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110127185 Ward Jun 2011 A1
20110139852 Zingman Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155784 Shelton, IV et al. Jun 2011 A1
20110155787 Laurent et al. Jun 2011 A1
20110290851 Shelton, IV et al. Dec 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20120061446 Knodel et al. Mar 2012 A1
20120074198 Huitema et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120091182 Marczyk Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120168487 Holsten et al. Jul 2012 A1
20120193396 Zemlok et al. Aug 2012 A1
20120203247 Shelton, IV et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120239009 Mollere et al. Sep 2012 A1
20120253298 Henderson Oct 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20120325893 Pastorelli et al. Dec 2012 A1
20130001270 Kostrzewski Jan 2013 A1
20130012958 Marczyk et al. Jan 2013 A1
20130015229 Viola Jan 2013 A1
20130015230 Wixey et al. Jan 2013 A1
20130015232 Smith et al. Jan 2013 A1
20130015233 Viola Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056521 Swensgard Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105547 Beardsley May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105549 Holsten et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112731 Hodgkinson May 2013 A1
20130126583 Hueil et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130146640 Jankowski Jun 2013 A1
20130172928 Kostrzewski Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130184718 Smith et al. Jul 2013 A1
20130186931 Beardsley Jul 2013 A1
20130186932 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130200132 Moore et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130240604 Knodel Sep 2013 A1
20130248582 Scirica Sep 2013 A1
20130256370 Smith et al. Oct 2013 A1
20130256371 Shelton, IV Oct 2013 A1
20130270321 Marczyk Oct 2013 A1
20130270323 Marczyk Oct 2013 A1
20130284789 Smith et al. Oct 2013 A1
20130284791 Olson et al. Oct 2013 A1
20130299552 Viola Nov 2013 A1
20130306702 Viola et al. Nov 2013 A1
20130306703 Ehrenfels et al. Nov 2013 A1
20130306706 Knodel Nov 2013 A1
20130313303 Shelton, IV et al. Nov 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130334278 Kerr et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri Jan 2014 A1
20140021239 Kostrzewski Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140027491 Beardsley et al. Jan 2014 A1
20140027493 Jankowski Jan 2014 A1
20140042204 Beetel Feb 2014 A1
20140103092 Kostrzewski et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140131416 Whitman et al. May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140151434 Shelton, IV et al. Jun 2014 A1
20140158746 Mastri et al. Jun 2014 A1
20140166727 Swayze et al. Jun 2014 A1
20140172000 Kuntz Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175149 Smith et al. Jun 2014 A1
20140203063 Hessler et al. Jul 2014 A1
20140205637 Widenhouse et al. Jul 2014 A1
20140224856 Smith et al. Aug 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236184 Leimbach Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140260746 Sakaguchi et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263545 Williams et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263559 Williams et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263567 Williams et al. Sep 2014 A1
20140263568 Williams et al. Sep 2014 A1
20140263569 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140263571 Morgan et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140299649 Shelton, IV et al. Oct 2014 A1
20140305986 Hall et al. Oct 2014 A1
20140305988 Boudreaux et al. Oct 2014 A1
20140305992 Kimsey et al. Oct 2014 A1
20140305994 Parihar et al. Oct 2014 A1
20140353359 Hall et al. Dec 2014 A1
20150008248 Giordano et al. Jan 2015 A1
20150034697 Mastri et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150053749 Shelton, IV et al. Feb 2015 A1
20150054753 Morgan et al. Feb 2015 A1
20150060516 Collings et al. Mar 2015 A1
20150060517 Williams Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076206 Sapre Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090764 Zemlok et al. Apr 2015 A1
20150108201 Williams Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150127046 Peterson May 2015 A1
20150129631 Beetel May 2015 A1
20150129634 Shelton, IV et al. May 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150144678 Hall et al. May 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150208902 Okamoto Jul 2015 A1
20150245834 Scirica et al. Sep 2015 A1
20150272576 Cappola Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150380187 Zergieebel et al. Dec 2015 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160058447 Posada et al. Mar 2016 A1
20160058492 Yates et al. Mar 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160310204 McHenry et al. Oct 2016 A1
20160338702 Ehrenfels et al. Nov 2016 A1
20160374672 Bear et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007242 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170231633 Marczyk et al. Aug 2017 A1
20170245856 Baxter, III et al. Aug 2017 A1
20170245858 Williams Aug 2017 A1
20170281161 Shelton, IV et al. Oct 2017 A1
20170281165 Harris et al. Oct 2017 A1
20170281168 Shelton, IV et al. Oct 2017 A1
20170290583 Reed et al. Oct 2017 A1
20170290584 Jasemian et al. Oct 2017 A1
20190261984 Nelson et al. Aug 2019 A1
20200253464 Flower Aug 2020 A1
20200268381 Roberts et al. Aug 2020 A1
20210369312 Zurschmiede Dec 2021 A1
Foreign Referenced Citations (42)
Number Date Country
0 251 444 Jan 1988 EP
0 492 283 Jul 1992 EP
0 514 139 Nov 1992 EP
0 536 903 Apr 1993 EP
0 596 543 May 1994 EP
1 523 944 Apr 2005 EP
1 759 812 Mar 2007 EP
1 915 953 Apr 2008 EP
1 479 348 Jul 2008 EP
2 044 893 Sep 2008 EP
2 005 902 Dec 2008 EP
2 090 241 Aug 2009 EP
2 263 568 Dec 2010 EP
2 361 562 Aug 2011 EP
2 462 875 Jun 2012 EP
2 486 859 Aug 2012 EP
2 764 833 Aug 2014 EP
2 772 192 Sep 2014 EP
2 777 530 Sep 2014 EP
2 815 705 Dec 2014 EP
2 923 661 Mar 2015 EP
2 853 204 Apr 2015 EP
2 891 462 Jul 2015 EP
2 926 742 Oct 2015 EP
2 942 020 Nov 2015 EP
2 959 851 Dec 2015 EP
3 135 225 Mar 2017 EP
3 238 639 Mar 2017 EP
3 338 653 Jun 2018 EP
3 338 698 Jun 2018 EP
3 338 702 Jun 2018 EP
2001-087272 Apr 2001 JP
2063710 Jul 1996 RU
WO 8302247 Jul 1983 WO
WO 9424947 Nov 1994 WO
WO 0230296 Apr 2002 WO
WO 02096327 Dec 2002 WO
WO 2003094747 Nov 2003 WO
WO 2004032762 Apr 2004 WO
WO 2012052729 Apr 2012 WO
WO 2014139440 Sep 2014 WO
WO 2020077531 Apr 2020 WO
Non-Patent Literature Citations (59)
Entry
“Carpenter's Stainless Steel Blue Book Selection/Alloy Data/Fabrication,” www.carpentertechnology.com, 2021, 87 pgs.
Hummel, et al., “Threshold galling load and frictional behavior of stainless steel couples in line contact,” Science Direct (Abstract), Aug.-Sep. 2003, pp. 504-508, vol. 255, Issues 1-6.
European Patent Office, Extended European Search Report for European Application No. EP 21195788.1, entitled “Surgical Stapler with Self-Adjusting Staple Height,” dated Dec. 13, 2021, 9 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2021/057365, entitled “Surgical Stapler Having a Powered Handle,” dated Feb. 23, 2022, 14 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2021/057278, entitled “Actuation Shaft Retention Mechanism for Surgical Stapler” mailed Feb. 23, 2022, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2021/057231, entitled “Material Combinations and Processing Methods for a Surgical Instrument” mailed Feb. 11, 2022, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2021/057365, entitled “Surgical Stapler Having a Powered Handle” mailed Apr. 13, 2022, 21 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2022/012452, entitled “Surgical Stapler Having Shaft Recognition Mechanism” mailed Apr. 13, 2022, 13 pgs.
European Patent Office, Extended European Search Report for European ApplicationNo. EP 22196603.9, entitled “Surgical Stapler with Expandable Jaw,” dated Dec. 14, 2022, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 22203464.7, entitled “Surgical Stapler with Partial Pockets,” dated Dec. 20, 2022, 9 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 22203599.0, entitled “Surgical Stapler Having a Powered Handle,” dated Feb. 7, 2023, 7 pgs.
European Patent Office, European Search Report for European Application No. 07784007.2, entitled “Surgical Stapler,” dated Jun. 15, 2012, 6 pgs.
Ethicon Endo Surgery, Inc., Contour Curved Cutter Stapler, 2014, 2 pgs.
JustRight Surgical, JustRight Surgery, Dec. 31, 2014, 2 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” mailed Aug. 5, 2014, 14 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2014/028211, entitled “Surgical Stapler with Partial Pockets,” mailed Sep. 8, 2014, 17 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2014/027768, titled “Surgical Stapler with Expandable Jaw”, mailed Jul. 25, 2014, 17 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 15, 2015, 11 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2015/0035379, titled “Surgical Stapler with Circumferential Firing”, mailed Sep. 15, 2015, 22 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/027768, entitled “Surgical Stapler with Expandable Jaw,” dated Sep. 24, 2015, 9 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/050103 titled “Surgical Stapler with Self-Adjusting Staple Height” dated Feb. 17, 2016, 18 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/035379, entitled “Surgical Stapler with Circumferential Firing,” dated Dec. 22, 2016, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/050103, titled “Surgical Stapler With Self-Adjusting Staple Height,” dated Mar. 30, 2017, 12 pgs.
European Patent Office, European Search Report for European Application No. EP14764812.5, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Apr. 6, 2017, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Jun. 28, 2017, 15 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 5, 2017, 11 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Jul. 10, 2017, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” mailed Sep. 12, 2017, 22 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” mailed Sep. 13, 2017, 17 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” mailed Sep. 14, 2017, 21 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/045993 titled “Surgical Stapler Having Locking Articulation Joint”, mailed Jan. 24, 2017, 20 pgs.
European Patent Office, Partial European Search Report for European Application No. EP 14762896.0, entitled “Surgical Stapler with Expandable Jaw,” dated Apr. 10, 2017, 6 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2016/045993, entitled “Surgical Stapler Having Locking Articulation Joint,” dated Feb. 15, 2018, 13 pgs.
European Patent Office, Extended European Search Report for European ApplicationNo. EP 18186558.5, entitled “Surgical Stapler with Partial Pockets,” dated Oct. 10, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Oct. 25, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having Powered Handle,” dated Oct. 25, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18189960.0, entitled “Surgical Stapler with Expandable Jaw,” dated Dec. 13, 2018, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated May 24, 2019, 19 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” mailed Jul. 19, 2019, 24 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19150575.9, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 21, 2019, 5 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19180055.6, entitled “Surgical Stapler with Circumferential Firing,” dated Sep. 20, 2019, 8 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/019938, entitled “Surgical Stapling Instrument Having a Two-Position Mechanism,” mailed Jun. 18, 2020, 16 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20157713.7, entitled “Surgical Stapler with Expandable Jaw,” dated May 11, 2020, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20161294.2, entitled “Surgical Stapler with Self-Adjusting Staple Height,” dated Jun. 22, 2020, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20197859.0, entitled “Surgical Stapler with Circumferential Firing,” dated Jan. 28, 2021, 13 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees for PCTUS2020/025496, entitled “Reload Cover for Surgical Stapling System,” dated Jun. 18, 2019, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/025496, entitled “Reload Cover for Surgical Stapling System,” mailed Aug. 13, 2020, 20 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated Sep. 3, 2020, 16 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2020/067540, mailed May 3, 2021, entitled “Electrosurgical System with Tissue and Maximum Current Identification,” 12 pages.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2020/019938, entitled “Surgical Stapler Having a Two-Position Lockout Mechanism,” dated Sep. 10, 2020, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2020/025496 entitled “Reload Cover for Surgical System,” dated Oct. 14, 2021, 12 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 21173771.3, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Aug. 27, 2021, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2022/012452, entitled “Surgical Stapler Having Shaft Recognition Mechanism,” dated Jul. 27, 2023, 8 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 23185918.2, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 22, 2023, 5 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 23198045.9, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2023, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2021/057231, entitled “Material Combinations and Processing Methods for a Surgical Instrument,” dated May 11, 2023, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2021/057278, entitled “Actuation Shaft Retention Mechanism for Surgical Stapler,” dated May 11, 2023, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2021/057365, entitled “Surgical Stapler Having a Powered Handle,” dated May 11, 2023, 14 pgs.
Related Publications (1)
Number Date Country
20220133315 A1 May 2022 US
Provisional Applications (1)
Number Date Country
63107321 Oct 2020 US