The present invention relates to devices and methods for crushing materials such as rocks.
It has been known to crush materials such as rock to produce, for example, gravel, sand, chips or to crush sea shells or other material which may be reduced to finer aggregate. Manufactured sand, that is sand produced by crushing as opposed to naturally occurring sand, is often specified to be used in manufacturing cement for road construction or the like since, unlike natural sand which has been weathered and the facets worn, manufactured sand has sharp facets which provide for binding in the cement product. Hence, manufacturing sand from crushing rock is an important industry to supply sand and, for that matter, manufactured aggregate for cement.
In addition to manufacturing sand, rocks are crushed to produce gravel and rock chips for use in aggregate and cement and, for example, decorative rock gravel. In the manufacture of gravel it is important to produce a consistent and predictable crushed product such that there is a minimum of non-conforming product, e.g., sand where chips are being manufactured, which must be screened. It would be advantageous to be able to substantially select the product to be produced (whether it be sand, aggregate or chips) and crush the rocks such that a substantial portion of the crushed material falls in the range of the desired product and that a minimum of the product is lost to nonconforming output.
It has also been known to crush frangible materials such as sea shells and the like.
One approach to rock crushing is as shown in Pamplin, U.S. Pat. No. 4,257,564 which has a rotating, planar and circular crushing jaw which operates with a conical jaw. The jaws are spaced to define an annular discharge opening. The conical crushing jaw is defined, in annular fashion, about an axially disposed feed tube which supports the rotating components associated with the conical jaw. Rock is fed axially down the axial tube and the jaws rotated which feeds the rock, through centrifugal force, between the jaws where they are crushed. The lower jaw is round and flat and coacts with the conical upper jaw to define a circular nip for crushing of rock. A drawback to this type of rock crusher is that upper jaw is conical which provides an irregular, non-planar crushing face and which, it turn, increases manufacture and replacement costs of the wear surfaces. The bottom jaw is flat and as a result does not cooperate to urge rock to the nip instead relying completely upon centrifugal force. There is no technique to positively feed and direct rock between the jaws.
In my prior patent, U.S. Pat. No. 6,170,771 issued Jan. 9, 2001 (the disclosure of which is hereby incorporated by reference), I described a new rock crusher having a polygonal crushing surface. It has been found that the polygonal crushing surface enhanced the crushing ability of the crusher.
It has been found that with material crushers of the type described above, product may tend to back-up into the crushing chamber. Product may choke at the the nip of the crusher preventing crushed material from being ejected from the crusher and decreasing throughput. Expanding the nip, while ejecting more product, also results in larger sized aggregate being ejected, which may not be desired.
It has further been found that, during crushing, wear patterns can develop on the crushing surfaces leading to premature failure or requiring premature replacement of crushing surface elements.
There is, therefore, a need for a material crusher which overcomes the problems of prior rock crushers by, among other features and advantages, configured wear and crushing surfaces for one of the top or bottom crushing rotors which is adapted to reduce and more evenly distribute wear, which provides for less expensive construction and replacement of wear surfaces and which provides a construction to reduce choking and provide for increased ejection of crushed product.
Toward this end, a device for crushing material is set forth which includes a housing with a feed port to receive the material to be crushed and a discharge opening for discharging the crushed product. A first rotor is disposed in the housing and has a first axis. The first rotor defines a first crushing surface. A second rotor is disposed in the housing and has a second axis. The second rotor includes a cavity to pass material and a face defining a second crushing surface adapted to be spaced from the first crushing surface and to define to define proximate the perimeter thereof a nip. Opposite the second crushing surface, the second rotor has a cover with at least one feed opening to admit material into the cavity. Means are provided for rotating the first and second rotors about their respective axises to centrifugally direct material between the nip for crushing thereof, and for discharging the crushed material discharged from the housing.
To increase throughput and enhance crushing, the one or both of the rotors at the nip includes channels sized for passing crushed material from the nip area of the rotors. For example, the grooves may be formed through the second crushing surface to eject crushed material in addition to material being ejected from the nip.
To further increase throughput and reduce wear, the first crushing surface, second crushing surface, or both the first and second crushing surfaces may include projections and ridges to agitate and distribute wear. Still further, channels in the first crushing surface, second crushing surface, or both crushing surfaces may be angled relative to the radius of the respective rotors to provide for ejection of material when the respective rotor is rotated in a clockwise or counterclockwise direction.
These, and other features and advantages, will become appreciated as the same becomes better understood with reference to the specification, claims and drawings wherein:
Turning to the drawings,
The housing 12 is supported above the ground on a stand 22 including a plurality of legs 24 to raise the housing 12 above the ground for collection of the crushed material 20 from the device 10.
With reference to
Returning to
To cooperate with the first rotor 26, the device 10 includes a second rotor 46 having an annular, conical ring 48 defining a second crushing surface 50 (
The second rotor 46, as shown in
To provide for rotation, the second rotor 46 includes a shaft 60 aligned with the second axis B and secured at one end to the top plate 56, the other end extending from the housing 12 as shown in FIG. 1. As will be described below, the shaft 60 is adapted to be rotated about the second axis B and can be vertically and horizontally displaced, with reference to
With reference to
Also secured to the top plate 56 is a cylindrical bin 70 aligned coaxially with the second axis B and adapted to rotate with the second rotor 46. Thus it can be appreciated from
To cooperate with the bin 70 to confine the rocks therein, the housing 12 includes a fixed, cylindrical skirt 72 projecting downwardly to overlap the top of the bin 70 to prevent rocks 18 from being ejected from the rotating bin 70.
To support the second rotor 46 for rotation thereof, the device 10 includes a support carriage 74 movably mounted to the housing 12. To support the support carriage 74, the housing mounts one or more pillars 76 in a position to upstand from the housing 12. The support carriage 76 is, in turn, movably mounted to the pillars 76 for vertical motion along the second axis B and for motion transverse to the second axis B. Each of the pillars 76 is internally threaded to receive a vertical adjustment bolt 78 which in turn mounts the support carriage 76. Accordingly, rotation of the vertical adjustment bolt 78 displaces the support carriage 74 and the shaft 60 journaled thereby vertically which in turn adjusts the spacing of the nip 52.
The support carriage 74 has a frame 80 which is in turn mounted to the vertical adjustment bolt 78.
Disposed within the support carriage 74 are bearings 82a, b which journal the shaft 60 for rotation about axis B. The bearings 82a, b are in turn mounted to a support panel 84. The panel 84 includes a plurality of threaded sleeves 86 which are likewise supported on the vertical support pillars 76. Offset adjustment bolts 88 are in turn disposed between the frame 80 and threaded sleeves 86. Accordingly, rotation of the offset adjustment bolts 88 displaces the support carriage 74, its frame 80 and the journaled shaft 60 to displace the axis B relative to the axis A. For example, the offset position of the axis B may be adjusted to be collinear with the first axis A or may be offset as shown in FIG. 1. The offset provided between the axes A, B induces a radial component to the centrifugal forces induced by rotation of the first and second rotors 34, 46 and the rolling or scrubbing forces induced by the relative rotation between the first and second rotors 34, 50. It has been found that for certain types of rocks and the desired output, that an offset can advantageously crush the rocks 18. Alternatively, the axes A and B may be aligned.
To rotate the shaft 60, the support carriage 74 also mounts a motor 90 coupled to the shaft 64 rotation as by a chain 92 and sprocket 94. The motor 90, like the first motor 40, may be variable speed and adapted to, for example, rotate the shaft 60 and second rotor 46 at between 60 and 180 rpm.
With reference to
With the components of the device 10 described above, its operation will now be set forth.
By adjusting the vertical adjustment bolt 78, the space at the nip 52 may be adjusted taking into account several factors. One factor is that the space at the entrance 96 of the nip 96 must be sufficiently large to accept the largest size of rock 18 fed into the device 10. The second consideration is that at the discharge 98 of the nip 50, the spacing between the first and second crushing surfaces 34, 50 can be no greater than the maximum size of crushed material 20 to be discharged from the device 10. That is, if chips having a size of approximately one-half inch are desired, the first and second rotors 26, 46 should be adjusted such that the discharge 98 of the nip 52 is approximately one-half inch. If crushed sand is desired, then the discharge 98 should be made smaller to adequately crush the rocks 18 into the smaller size. It is to be understood, depending upon the nature of the rocks fed into the device 10 that the angle of the annular, conical ring 48 defining the second crushing surface 50 may be altered so as to receive the rocks 18. It has been found that an angle formed with the first crushing surface 34 of approximately 9° to 10° provides for satisfactory crushing of the rocks.
After the nip 52 has been adjusted, the offset between the first and second axis A, B is selected and set. Preferably the maximum offset permitted is only to the degree that the perimeter of the second rotor 46 aligns with the perimeter of the first rotor 40 as shown in FIG. 1. Thereafter, the first and second rotors 26, 46 are engaged by their first and second motors 40, 90 and rotation is begun. When the first and second rotors 26, 46 have reached their speeds, rocks 18 are fed into the feed port 14 whereupon they fall into the bin 70. Centrifugal force caused by rotation of the second rotor 46 urges the rocks 18 to the outside of the bin 70. Gravity urges the rocks downwardly in the bin to be received into the scoops 66 and feed openings 62 and into the crushing chamber 58. The centrifugal force on the rocks 18 in the crushing chamber, along with any axial loading induced by the scoops 66 and any forces imposed by the directing surface 38 on the shoes 36 urge the rocks 18 from the crushing chamber 38 through the annular nip 52 for crushing between the first and second crushing surfaces 34, 50. As stated above, the rocks are crushed due to the loads of the first and second crushing surfaces 34, 50 imposed due to the centrifugal force on the rocks 18, the force induced by the scoops 66 and directing surfaces 38 as well as the circumferential buffing or rolling action caused by the relative rotation between the first and second rotors 34, 46. The pinching between the first and second crushing surfaces 34, 50 created by the nip 52 crushes the rocks 18 into the crushed material 20. The crushed material 20, induced by centrifugal force, is ejected outwardly to the housing 12 where it falls by gravity for discharge therefrom.
Turning to
According to this embodiment, the second rotor 46′ includes a hexagonal top plate 56′ defining six depending wings 100 which extend downwardly at an angle of between 9° and 10° from a circular and planar center 102. The perimeter of the circular center 102 corresponds with the diameter of the bin 70 to define the bottom thereof. Scoops 66 may be provided for the second rotor 46′.
To define the second crushing surface 50′, the second rotor 46′ includes secured to each of the wings 100 replaceable crushing plates 104 which are adapted to conform to the overall hexagonal shape of the second rotor 46′. Fasteners 106 secure each of the crushing plates 104 to the corresponding wings 100 and accordingly it is to be understood that by removing the fasteners 106, the crushing plates 104 can be replaced for the second rotor 46′. Each of the crushing plates 104 is secured to their corresponding wings 100 to depend again, preferably, an angle of between 9° to 10° relative to the first crushing surface 34. Accordingly, it is to be understood that the perimeter of the second rotor 46′ is of a varying radius or diameter from axis A and defines a non-circular nip 52′ for the device 10. As is also to be understood, upon rotation of the shaft 60, and by virtue of the variable perimeter of the second rotor 46′, that rocks trapped in the nip 52′ will be urged to move, relative to the perimeter of the rotors, radially inwardly and outwardly as the second rotor 46′ rotates. Furthermore, the angles defined at the joinder of adjacent crushing plates 104 act substantially as a funnel to funnel rocks between the crushing plates 104 of the second crushing surface 50′ for crushing thereof. It has been found that by using the hexagonal second rotor 46′ as shown in
With reference to
The feed port 14′ directs the rock into the conical crushing chamber 58′ defined between a second rotor 46′, which is preferably fixed but may be free wheeling or driven for rotation, and a rotatable first rotor 26. As with the previous embodiment, the second rotor 46′ has radially projecting wings each of which mounts a crushing plate 104. The crushing plates 104 may each consist of single plate or be fashioned from a plurality of sub-plates 108 secured to the wing by fasteners 106. As shown, the second rotor 46′ and crushing plates 104 define a hexagonal second crushing surface 50′ and nip 52 between the crushing plates 104 and the first crushing surface 34. The crushing plates 104 are mated at adjoining sides to provide a continuous, hexagonal, second crushing surface 50′.
As can be appreciated the crushing plates 104 are substantially planar and thus can easily be manufactured and replaced. At the second crushing surface 50′ the fasteners 106 are recessed to prevent damage thereto.
The first rotor 26 is driven by a first motor 40 (not shown in
To direct the rock fed into the crushing chamber 58 the first rotor 26 includes a plurality of shoes 36′ as shown in FIG. 12. Each shoe 36′ has, in plan view, an arcuate leading edge 116 which also slopes downwardly toward the periphery of the second rotor 46′, inside out as shown in
The hexagonal shape of the second crushing surface 50′ and nip 52 provide for a nip 52 whose position varies radially with respect to the axis of the first rotor 26. Thus when the first rotor 26 is rotated the rocks are subject to a radial scrubbing action as a variable radial distance to the nip 52 is provided by the polygonal shape of the second crushing surface 50′. In that the crushing plates 104 are angled downwardly to the nip 52, a further compaction force is imposed on the rocks.
Still further the forces imposed by the shoes 36 along with centrifugal forces impose a radial force upon the rocks to direct them into the nip 52. The aforesaid forces contribute to the efficient crushing of the rocks.
Further the sloping of the leading edges 116 of the shoes 36 provide with the second crushing surface 50′ a taper to the nip 52 to crush rocks.
With reference to
To control dust, spry nozzles 202 may be provided about the periphery of the nip 52.
It is to be understood that while the second rotor 46′ may be circular or hexagonal as described above, it could also be triangular, square or oblong to provide a variable radius to induce the rocks to move inwardly and outwardly for crushing thereof.
Turning to
To enhance crushing and agitation of the material being crushed in advance of entry into the nip, each plate 502 may include a plurality of protuberances or projections defined as a triangular ridge 508 formed on the plate 502 by a triangular pocket 510 and side recesses 512a, b.
With reference to
It is believed that the protuberances enhance crushing by agitating and providing initial crushing and abrasive action on the material in advance to the material entering the nip 52 between the first and second crushing surfaces. Further the protuberances are believed to urge the material to the nip 52.
The plates 502 are arranged to angle and converge toward the first rotor at the nip 52.
With reference to
The channels 516 may be provided on the second rotor 500, first rotor 26 or a combination thereof. Further the channels 516 may be provided in addition to the protuberances as suggested in FIG. 13B.
Turning to
Area 600b includes a plurality of projecting nobs 604 which also project form the face of the plate 502. Area 600c includes a plurality of channels 516 oppositely angled with respect to the axis C and disposed to extend through the nip 52. Preferably, the angling of the channels is such that, with reference to the channels 516 to the right of
Further, according to the embodiment of
The channels 516 may also taper in increase in depth and width into the face toward the perimeter thereof (FIG. 15B).
Holes 606 through the plate 502 provide for connection to the wings by suitable fasteners as described above.
Turning to
To enhance crushing and agitation of the material being crushed in advance of entry into the nip, each plate 702 may include a plurality of protuberances or projections defined as a triangular ridge 708 formed on the plate 702 by a triangular pocket 710 and side recesses 712a, b.
With reference to
It is believed that the protuberances enhance crushing by agitating and providing initial crushing and abrasive action on the material in advance to the material entering the nip 52 between the first and second crushing surfaces. Further the protuberances are believed to urge the material to the nip 52.
The plates 502 are arranged to angle and converge toward the first rotor at the nip 52.
With reference to
The channels 716 may be provided on the second rotor 500, first rotor 700 or a combination thereof. Further the channels 716 may be provided in addition to the protuberances as suggested in FIG. 16B.
Turning to
Area 800b includes a plurality of projecting nobs 804 which also project form the face of the plate 702. Area 800c includes a plurality of channels 716 oppositely angled with respect to the axis C and disposed to extend through the nip 52. Preferably, the angling of the channels is such that, with reference to the channels 716 to the right of
Further, according to the embodiment of
The channels 716 may also taper in increase in depth and width into the face toward the perimeter thereof (FIG. 18B).
Holes 806 through the plate 702 provide for connection to the wings by suitable fasteners as described above.
While I have described certain embodiments of the present invention, it is to be understood that it is subject to many modifications and changes without departing from the spirit and scope of the claims. For example, the channels described herein could be disposed on the first rotor as well.
This application claims priority to prior filed U.S. Provisional Application Ser. No. 60/329,192 filed by Applicant herein on Oct. 11, 2001 and titled “Material Crusher.”
Number | Name | Date | Kind |
---|---|---|---|
5683048 | Virving | Nov 1997 | A |
5829698 | Canada | Nov 1998 | A |
5967431 | Stafford et al. | Oct 1999 | A |
6170771 | Healey | Jan 2001 | B1 |
6422496 | Doelle | Jul 2002 | B1 |
6502774 | Johansson et al. | Jan 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030071155 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
60329192 | Oct 2001 | US |