The present invention relates to methods and apparatus for feeding materials to a machining device. More particularly, the invention relates to methods and apparatus for feeding elongated pieces of stock material to a machining device.
Raw stock material such as rod stock or bar stock-type material can be fed into machining devices to further machine the rod stock or bar stock to a particular shape. Feeding may be done manually or automatically. The present invention relates to improvements in the art of feeding material to a machining device.
In one aspect, the invention provides a material feeder for feeding stock material to a machining device. The material feeder includes a drive motor, at least one drive wheel, at least one guide wheel and a positioning mechanism. The drive wheel is operably coupled for rotation to the drive motor. The at least one guide wheel is spaced apart from the at least one drive wheel defining a stock material slot therebetween. The positioning mechanism is operatively connected to at least one of the drive wheels and at least one of the guide wheels for adjusting the stock material slot defined by the spacing between the at least one guide wheel and the at least one drive wheel.
Other aspects, objectives and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
The stock material feeder includes an electric motor 114 that operatively drives a plurality of drive wheels 118, 119 that engage an outer surface of the stock material to drive it along the feed axis 112. The drive wheels are preferable formed of a rubber material. The rubber material may have varying hardness values depending on the stock material being fed. For example, if the stock material being fed is a very raw material having surface impurities or defects, the rubber material of drive wheels 118 and 119 may be sufficiently hard to prevent damage thereto by the defects in the surface of the stock material. Alternatively, the rubber drive wheels 118, 119 may be relatively soft if the material being fed needs to maintain a clean surface appearance so as to prevent marring or damaging of the surface of the stock material. Further, the drive wheels 118, 119 may have a contoured outer surface that is contoured to the specific shape of the stock material being fed. For example, if the stock material being fed has a octagonal-shape, the guide wheels may have a three-sided surface such that three of the sides of the surface engage three corresponding sides of the raw stock material. Such contouring of the radially outer surface of the drive wheels 118, 119 further promotes receipt of the stock material by the drive wheels 118, 119.
With primary reference to
Drive belt 134 couples drive gears 122, 123 to drive gear 124 such that driving of drive gear 124 causes the motor to also drive gears 122, 123. The drive wheels 118, 119 are similarly connected to drive shafts 126, 128, respectively, such that driving of the drive gears 122, 123 drives the drive wheels 118, 119 through the drive shafts 126, 128. It shall be understood that gears 122-124 all rotate in the same rotational direction via drive belt 134. Other gearing arrangements are contemplated to step up or step down drive rates.
The drive shafts 126, 128 also include gears 136, 138, respectively. Gears 136, 138 are coupled to drive shafts 126, 128 preferably through a slit or one way clutch that allows slippage therebetween in the event of binding. More particularly, gears 136,138 are used in combination with an additional drive belt or chain and the electric motor 114 to drive one or more adjacently positioned feed mechanisms, also known as “daisy chaining.”This is more fully described with regard to
With reference to
Slave unit 144 includes a second set of wheels 148, 149. These wheels 148, 149 are guide wheels that freely rotate about axles 150, 151. The axles 150, 151 extend between top and bottom mounting plates 153, 155. The mounting plates 153, 155 are vertically separated by a pair of standoffs.
The stock material feed slot 146 is more particularly defined between drive wheels 118, 119 and guide wheels 148, 149. Stock material that is driven or fed by stock material feeder 110 is laterally pinched or engaged between the drive wheels 118, 119 and guide wheels 148, 149 in a direction extending generally perpendicular to feed axis 112. As such, as the drive wheels 118, 119 engage a side of the stock material and drive the stock material through stock material feed slot 146 along feed axis 112, the opposed side of the stock material engages and is guided by the guide wheels 148, 149 causing the guide wheels 148, 149 to rotate about axles 150, 151.
The drive unit 111 and the slave unit 144 are operably mounted to a positioning assembly 154 so as to position the two components relative to one another to adjust the width of the stock material feed slot 146. The positioning assembly includes a pair of carriages 156, 158 that are mounted for linear actuation along a guide rail 160 that is perpendicular to feed axis 112. The positioning assembly 154 further includes a drive shaft 162 that has a first half of right-handed threads and a second half of left-handed threads that interact with drive nuts 164, 165. As such, as the drive shaft is rotated about its axis of rotation by a user, particularly a user rotating handle 166, the nuts 164, 165 are either translated toward or away from one another depending on the direction of rotation of drive shaft 162. The drive nuts 164, 165 are coupled to the carriages 156, 158, and as a result, as the user rotates handle 166 the carriages 156, 158 will travel toward or away from each other at an equal velocity. As such, the material feed slot 146 width is variable, and will be centered at the midpoint of the length of the guide rail 160. Drive shaft 162 could optionally be coupled for an electronic motor or other actuator for automatic or programmed adjustment of the width of feed slot 146. The motor actuator would typically replace handle 166.
The carriages 156, 158 preferably include channels that interact with the guide rail 160. The carriages 156, 158 further preferably include Teflon or similar low friction material bearings 170, 171 to prevent or reduce friction between the carriages 156, 158 and the guide rail 160. The drive unit 111 and slave unit 144 preferably include part supports 174 that are positioned, at least in part, laterally inward from the drive wheels 118, 119 and the guide wheels 148, 149. These part supports 174, support the stock material as it is being fed by the stock material feeder 110. In a preferred embodiment, the part supports 174, 176 are or include a ceramic support pad having top surface portion upon which the stock material slides as it is being fed by the stock material feeder 110. The top surface being orthogonal to the axes of rotation for the drive and guide wheels 118, 119, 148, 149. The ceramic part support 174 reduces friction as well as reduces wear on the stock material as it is being fed by stock material feeder 110. The part supports 174, 176 have tapered ends to avoid catching ends of the stock material as it is fed through feed slot 146. Further, the part supports 174 are mounted onto support members. The support members, such as for slave unit 144, are attached to the bottom mounting plate 155. Further, the part supports 174 have a top surface that is proud of the top surface of the corresponding and adjacent bottom mounting plates 155.
Guide rail 160 includes a plurality of slots and holes 176 that can be used to mount the positioning assembly 154, and particularly the guide rail 160 to other structures. Guide rail 160 includes two rails for supporting the carriages 156, 158 to provide lateral support and prevent twisting.
In a preferred embodiment, guide rail 160 is sufficiently long enough such that stock material feed slot 146 can be at least 18 inches wide between the drive wheels 118, 119 and the guide wheels 148, 149. However, other configurations can be formed such that the stock material feed slot can have maximum widths that are larger than 18 inches or less than 18 inches. Further, in additional embodiments, as noted above, the handle 166 can be removed and replaced with a drive motor such that the positioning of the drive unit 111 relative to the slave unit 144 can be automatically positioned. Further, when using automatic positioning of the drive unit 111 relative to slave unit 144, other drive mechanisms such as opposed cylinders or lead or ball screws can be implemented.
Preferably, the stock material feeder includes a controller (not shown) that can be used to control the electric motor 114 at variable speeds. This allows the stock material feeder 110 to increase or decrease the feed rate at which the stock material is being fed to the machining device rather than driving the stock material from a single point.
This ability to vary the feed rate further promotes the added benefit of being able to daisy-chain a plurality of additional feed devices to the primary stock material feeder 110, such as through the use of gears 136, 138. More particularly, if it is desired to slow down or speed up the feed rate, all of this can be done simply by reducing or increasing the speed of drive motor 114. There is no need to coordinate the acceleration or deceleration of a plurality of drive motors. Further, the control of a plurality of motors to maintain a constant speed between the different feed devices is eliminated. Additionally, the ability to daisy-chain a plurality of feed devices allows the devices to be tailored to the length of the stock material that is being fed. More particularly, the longer the stock material additional feed devices can be added to more properly engage and drive the stock material toward the machining device.
It should also be noted, that the stock material feeder 110 can be used to draw material out of a machining device such that it is securely drawn from a machining device after it has been machined. As such, one stock material feeder can be positioned as an input feeder while a second stock material feeder 110 can be used as an output feeder.
When a stock material feeder 110 is used as an output feeder, the drive wheels 118, 119 and guide wheels 148, 149 can be contoured to the output shape of the material. Much like the wheels can be contoured to the corresponding shape of the material as it is being fed to the machining device.
With that being said, in the illustrated embodiment, the stock material feeder 110 and the auxiliary stock material feeder 210 are substantially identical except that the auxiliary material feeder 210 does not include its own drive motor, as it relies on drive motor 114 for its means of driving power. The coupling between the stock material feeder 110 and auxiliary stock material feeder 210 can be by way of chain, as illustrated, or alternatively by way of other coupling mechanisms such as a drive belt. The use of a chain or a drive belt allows for easy configuration of the material feed system by adjusting the lateral spacing between the various stock material feeders 110, 210 of the system depending on stock material length and need for intermediate stock material feeders.
While the embodiment only illustrates a single auxiliary stock material feeder 210, other embodiments can include a plurality of auxiliary material feeders 210. Further, the plurality of auxiliary material feeders may be on either side of stock material feeder 110. Further, a plurality of auxiliary material feeders 210 may be linked together without any intervening stock material feeders 110 including a drive motor 114.
With reference to
Due to the daisy chained arrangement, the stock material feeder 110 through drive wheels 118, 119 engages a first side of the piece of material 190 at a first location and drives the stock material 190 along the feed axis. The material feed system 200 also simultaneously engages the first side of the piece of material 190 at a second location, remote from the first location, and simultaneously drives the piece of material along the feed axis 112 at that second remote location. As used herein “remote location” shall refer to a location that is located at a separate stock material feeder (either a auxiliary or drive stock material feeder).
It should be noted that the material feed system 200 actually contacts the side of the stock material 190 at a plurality of points at a single location. More particularly, the individual stock material feeders 110, 210 each engage a single side of the stock material with drive wheels 118, 119. However, in view of the discussion of “remote location” above, these two different contact points by a single stock material feeder 110, 210 are not considered different locations, as used herein.
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Patent Application No. 61/074,077, filed Jun. 19, 2008, the disclosure and teachings of which are incorporated herein, in their entireties, by reference.
Number | Date | Country | |
---|---|---|---|
61074077 | Jun 2008 | US |