The invention relates to a material handling apparatus and to a method for operating a material handling apparatus. The material handling apparatus can be provided in the form of a compact loader.
A general class of material handling apparatus that is commonly available and can be referred to as “compact loaders.” In general, compact loaders have a rear mounted engine for providing a counterbalancing effect and are sized to have an operating capacity of between about 600 lbs. and about 3,800 lbs. and an engine horsepower range of between about 16 hp. and about 110 hp. Prior art compact loaders typically have an operator compartment located forward of the engine, and a boom assembly including a pair of lift arms extending along each side of the vehicle attached to rear towers and an attachment, such as, a bucket, provided at the end of the lift arms.
The general class of “compact loader” is recognized as including vehicles referred to as “skid steer loaders” and “compact track loaders.” Skid steer loaders generally refer to those vehicles having wheels and tires, or having wheels and tires with tracks installed around the wheels and tires, that steer as a result of the tires or tracks skidding. Compact track loaders are similar to skid steer loaders but generally refer to those vehicles having a dedicated tracks system for ground engagement. Types of compact track loaders include multi-terrain loaders, all surface loaders, and all season vehicles. Exemplary compact track loaders are available from Takeuchi, Bobcat Company, and ASV Inc. which is an affiliate of Caterpillar. Another type of compact loader is commonly available and is generally referred to as an all-wheel steer loader. This type of vehicle is available from Bobcat Company. Compact loaders are available from numerous companies including Bobcat Company, JCB, Case, New Holland, Gehl, Caterpillar, John Deere, Takeuchi, ASV, and Daewoo.
Exemplary patents describing compact loaders include U.S. Pat. No. 4,055,262 to Bauer et al.; U.S. Pat. No. 4,705,449 to Christianson et al.; U.S. Pat. No. 6,132,163 to Andrews et al.; U.S. Pat. No. D-419,568 to Baig et al.; U.S. Pat. No. D-423,521 to Walter et al.; and U.S. Pat. No. D-231,482 to Bauer.
A material handling apparatus is provided according to the invention. The material handling apparatus includes a vehicle having a front end, a rear end, a left side, a right side, a chassis, and a ground engagement device attached to the chassis for providing movement of the vehicle across ground; an engine constructed for propelling the vehicle; a loader assembly; a hydraulic system constructed for driving the loader assembly; and an operator area including controls for controlling movement of the vehicle and for controlling operation of the loader assembly. The material handling apparatus can include a forward tools area extending from the operator seating area to the front end of the vehicle. The forward tools area can include a dump box or a work platform. The material handling apparatus can include an entrance to the operator area through the rear end of the vehicle. The material handling apparatus can include a rear implements area provided at the rear of the vehicle and can include a hitch and a power take-off (PTO). The loader assembly can include a tower that rotates relative to the chassis.
A method for operating a material handling apparatus is provided according to the invention. The method can include loading material into a bucket attached to a loader assembly provided on the material handling apparatus, moving the bucket to a position over the dump box, and opening the bucket to cause material to drop from the bucket into the dump box. The method can include loading an object onto a work platform or into a dump box on the material handling apparatus.
A material handling apparatus is provided according to the invention. The material handling apparatus of the invention can be a type of vehicle that falls within the general class referred to as “compact loaders.” Compact loaders are known to many in the industry as including vehicles referred to as skid steer loaders, compact track loaders, and wheel steer loaders. Skid steer loaders generally describe those types of compact loaders having a rear mounted engine for counterbalancing effect, and includes wheels and tires or wheels and tires with tracks installed around the wheels and tires. Compact track loaders generally refer to compact loaders having a dedicated track system for ground engagement. Compact track loaders include those compact loaders that are often referred to as multi-terrain loaders, all surface loaders, and all season vehicles. All-wheel steer loaders include those types of compact loaders that allow for the front and the back wheels to turn in opposite directions to provide steering. Many all-wheel steer loaders can switch between a conventional skid steer steering mode and an all-wheel steering mode
Exemplary compact loaders according to the invention can be rated as having an operating capacity in the range of about 600 lbs. to about 3,800 lbs. The operating capacity of a compact loader is defined as half the load required to cause the compact loader to tip forward when lifting with a standard digging bucket according to SAE Standard J818.
Referring to
The compact loader 10 includes three general areas or regions. These areas or regions include a tools region 12, a propulsion and powering region 14, and a controls region 16. It should be understood that these regions are not necessarily located in discrete or isolated areas. Certain regions may overlap and may be found throughout the compact loader 10 and reflect the type of function that can occur in that region. The characterization of the three different regions is provided for assisting in the description of the compact loader 10 and its operation.
The Tools Region
The tools region 12 includes those areas in which tools and/or implements can be located or attached if it is desirable to have the tools or implements located in those areas. The tools region 12 can include a loader attachment area 18, a forward tools area 20, and a rear tools area 22. The three areas can be used for coordinating and/or combining work tasks with different types of tools, implements, apparatus, or devices which can significantly expand the work capability and usefulness of the compact loader 10. The various types of equipment shown attached to the compact loader 10 in various alternative embodiments of the invention are provided for illustrating the scope of utility of the compact loader 10 in using tools, implements, apparatus, and devices singly or simultaneously.
The forward tools area 20 is provided as a site for locating tools and/or implements that facilitate certain tasks. This area is referred to as the “forward tools area” because it is located in front of the operator of the compact loader 10 when the operator is facing forward. The forward tools area 20 can be considered as extending from the operator area 19 to the vehicle front end 21. In addition, the forward tools area can extend between the vehicle left side 23 and the vehicle right side 25. The operator area 19 can be considered as being provided between the forward tools area 20 and the vehicle rear end 27.
A dump box 24 is an exemplary tool or implement that can be provided at the forward tools area 20. The dump box 24 can be moved between a hauling position 26 (
The dump box 24 can include a tailgate 35 that swings open to control the flow of materials out of the dump box 24. The tailgate 35 can be conveniently removable from the dump box 24. In addition, a tailgate control device 37 can be provided to controllably restrain the movement of the tailgate 35 to regulate the flow of materials when dumping and to prevent the flow of materials when hauling. An exemplary tailgate control device 37 is a chain 39. The type of materials that can be provided within the dump box 24 includes any material commonly found in dump boxes including dirt, gravel, stones, sand, debris, grain, manure, etc.
The dump box 24 is shown having a configuration that allows a portion of the dump box to fit within the vehicle body 45 between the left vehicle body side 46 and the right vehicle body side 48, and another portion of the dump box to rest on top of the left vehicle body side 46 and the right vehicle body side 48. And advantage of having the dump box 24 provided with a configuration that allows it to fit within the vehicle body 44 is that it is believed that additional capacity can be achieved. Another advantage is a general lowering of the center of gravity of a load provided in the dump box 24. The dump box 24 includes a main box area 50 and a secondary box area 52. When the dump box 24 is provided in the hauling position 26, the secondary box area 52 fits between the left vehicle body 46 and the right vehicle body 48, and the main box area 50 rests above the left vehicle body 46 and the right vehicle body 48. By providing the dump box 24 with a main body area 50 and a secondary box area 52, it is possible to increase the hauling capacity and lower the center of gravity of the load compared with having only the main body area 50 as the dump box. As shown in
A protective cover 56 can be provided for covering the internal area 58 between the left vehicle body 46 and the right vehicle body 48. The interior area 58 can contain various components or parts such as the transmission case (not shown), hydraulic lines (not shown), etc. The protective cover 56 can be provided for protecting the components in the interior area 58 from debris. The protective cover 56 can be referred to as a transmission cover when it covers the transmission. It is advantageous to provide a protective cover 56 that can be easily removed to provide access to the interior area 58. The protective cover 56 can be attached to the vehicle body 44 and rotated out of the way to access the interior area 58 as shown in
The dump box 24 can be used to hold materials such as gravel, stones, dirt, sand, grain, debris, manure, etc. The capacity of the dump box can vary depending upon the desired size of the dump box side walls 60 and by controlling the size of the floor 57 and shoulders 54 and 55 (or the floor 51). In general, the capacity of the dump box will depend on the size of the compact loader. The capacity of the dump box can be provided to hold about 3 to 4 loads from the loader bucket associated with the compact loader. The dump box 24 can be considered a five sided dump box because it has four sides (including a tailgate) and a floor. It should be understood that the phrase “five sided dump box” refers to a container that generally has an open top 61. That is, there can be additional sides or a single side can have multiple angles as long as the dump box forms a container capable of holding materials that can be loaded into the container through the open top 61. Of course, a cover can be provided over the open top 61 in order to help hold materials within the dump box during transport or to protect the materials from, for example, weather.
The loader attachment area 18 includes a loader assembly 62. The loader assembly 62 can be provided as a pair of booms 64 including a left boom 66 and a right boom 68. It is expected that many compact loader designs according to the invention will be provided with a pair of booms rather than a single boom because it is believed that a pair of booms provide better control and stability. It should be understood, however, a compact loader according to the invention can be provided with a single boom. For the purpose of discussing the loader assembly 62, the description will focus on the left boom 66 and it should be understood that a similar structure can be provided as the right boom 68.
A loader assembly outside cover 70 and a loader assembly inside cover 71 can be provided to support a rotation connection 73 about which the tower 72 can rotate. In addition, the loader assembly outside cover 70 and the loader assembly inside cover 71 can help conceal the loader assembly 62 and helps keep debris or other foreign materials away from the moving parts. In
The left boom 66 includes a tower 72, a tower cylinder 74, a lift arm 76, a lift arm cylinder 78, an attachment arm 80, an attachment arm cylinder 82, an attachment 84, and an attachment cylinder 86. The attachment arm 80 and the lift arm 76 rotate relative to each other about the rotation connection 75 by the movement of the attachment arm cylinder 82. The attachment 84 and the attachment arm 80 rotate relative to each other about the rotation connection 77 by the action of the attachment cylinder 86. The attachment arm 76 and the tower 72 rotate relative to each other about the rotation connection 79 by the movement of the lift arm cylinder 78. The tower 72 rotates relative to the chassis 30 about the rotation connection 73 by the operation of the tower cylinder 74.
The tower 72 includes a first tower end 90 and a second tower end 92. The first tower end 90 is attached to the compact loader at the rotation connection 73. The tower cylinder 74 includes a first tower cylinder end 96 and a second tower cylinder end 98. The second tower cylinder end 98 is attached to the compact loader via the rotation connection 100. It should be understood that the compact loader and the chassis can be referred interchangeably when characterizing the portion of the compact loader that attaches to the rotation connection 73 and the rotation connection 100. In general, the chassis 30 provides support for the compact loader, and if the rotation connections 73 and 100 are not directly attached to the chassis 30, they are attached to a structure that eventually attaches to the chassis 30. The first tower cylinder end 74 attaches to the first tower end 92 at the rotation connection 102. Extension or contraction of the tower cylinder 74 causes the tower 72 to rotate about the rotation connection 73.
The lift arm 76 includes a first lift arm end 104 and a second lift arm end 106. The first tower end 92 attached to the second lift arm end 106 at the rotation connection 108. The lift arm cylinder 78 includes a first lift arm cylinder end 110 and a second lift arm cylinder end 112. The second lift arm cylinder end 112 attaches to the second tower end 90 at the rotation connection 114, and the first lift arm cylinder end 110 attaches to the knee 88 at the rotation connection 116. The knee 88 is attached to and forms a part of the lift arm 76 at the first lift arm end 104 so that the knee 88 does not rotate relative to the lift arm 76. Extension or contraction of the lift arm cylinder 78 causes the lift arm 76 to rotate relative to the tower 72 about the rotation connection 108. The knee 88 can be viewed as an extension of the lift arm 76.
The attachment arm 80 includes a first attachment arm 118 and a second attachment arm 120. The second attachment arm 120 can be configured so that it extends to both sides of the lift arm 76 to provide additional support. An extension 123 (see
The first attachment arm 118 attaches to the universal attachment mount 63 at the rotation connection 85. For the compact loader shown in
When the attachment 84 is provided as a bucket 140, the loader assembly 62 can be used to load materials such as gravel, stones, dirt, grain, sand, manure, etc. into the dump box 24. The loader assembly 62 can be operated so that the bucket 140 containing a load of materials can be moved rearwardly toward the operator area 19. While the bucket 140 is provided above the dump box 24, the bucket 140 can be operated causing the materials to flow into the dump box. The materials can flow from the bucket 140 into the dump box 24 so that the flow is into the dump box and not toward the operator area 19. The bucket 140 can be referred to as a clam shell bucket because it includes a forward member 141 and a rearward member 142 that can separate by rotating about the rotation connection 143 to allow the materials to dump therefrom. The separation is similar to that shown in
In addition, the loader assembly 62 can be used to load and unload heavy materials such as a welder, a boulder, etc. into the dump box 24 or onto a tools platform provided in the forward tools area 20 in place of the dump box 24. In addition, the rotation of the tower 72 so that the tower second end moves toward the rear of the compact loader makes it more convenient to load materials into the dump box 24 using the bucket 140. Loading the dump box 24 or a tools platform by use of the loader assembly 62 can be referred to as “self-loading” because the load is placed into the dump box or onto a work platform by the compact loader 10. When the operator controls all steps in the “self-loading” operation, the process can be referred to as “manual self-loading.” When an electrical arrangement such as a computer program controls portions of the “self-loading” operation, the process can be referred to as “auto loading.” During manual self-loading, the operator can control the rearward movement of the loader assembly 62 and the generally down and rearward movement of the bucket 140 over the dump box 24 through separate operator control actions. The auto loading operation can allow the operator to trigger a signal that causes the loader assembly 62 to move the bucket 140 over the dump box 24. The operator can then control the movement of the bucket 140 to control the movement of the materials into the dump box 24. The auto loading feature can be computer driven to enhance the safe operation of the compact loader.
The rear tools area 22 can be provided as an area for attaching tools or implements. The rear tools area 22 is referred to as the rear tools area because it is located behind an operator sitting in the operator area 19 in an orientation facing the vehicle front end 21. The rear tools area 22 can include a hitch 150 and a hydraulic cylinder 152 that causes the hitch 150 to rotate. A cylinder cover (not shown) can be provided for covering the hydraulic cylinder 152. The hitch 150 can be hydraulically operated as a lift hitch 154 and can include lower lift arms 156 and 158 and can include a draw bar 160. The lift arms 156 and 158 can serve to limit the degree to which the compact loader can tip rearward. The lift hitch 154, when provided in a lowered position, can serve as a rear stabilizer 155 that can help limit the degree to which the compact loader can tip rearward when moving or when using some tools such as a front loader mounted auger that can tip the compact loader rearward during operation. Rear tipping can be controlled by adding other devices to the lower lift arms 156 and 158, such as pads (not shown) or a grouser bar (not shown) which helps to prevent the loader from being pulled towards the work when using, for example, a front loader mounted back hoe device. Accordingly, the hitch 150 can be used as a stabilizer or additional components can be attached at the location of the hitch 150 to provide stabilization. That is, the compact loader can include a structure provided in place of the hitch 150 or in combination with the hitch 150 to provide stabilization.
The hitch 150 with the attached hydraulic cylinder 152 can also include lower lift arms 156 and 158 and an upper arm 162 for use as a three-point hitch 164 for attaching and using three-point tools and implements. Exemplary three-point implements include a box scraper, a rear grading blade, etc. which can be provided for work and for rear stabilization through downward pressure on the rear implement instead of having to add an extra pair of commonly available rear stabilizers. During operations such as using a front loader mounted tree spade, it is often desirable to provide rear stabilization.
The rear tools area 22 can include a hydraulically or mechanically driven power takeoff (PTO) 166 for providing power for rear implements and/or tools. The rear implements hydraulic cylinder line 167 can be provided to operate the hydraulic cylinder provided on a rear implement.
The Propulsion and Powering Region
The propulsion and powering region 14 is provided for driving the compact loader 10 and for powering the various tools and/or implements attached to the compact loader 10. The propulsion and powering region 14 includes a ground engaging device 170, an engine (not shown), a hydraulic motor (not shown), an engine radiator (not shown), and a hydraulic motor radiator (not shown). The ground engagement device 170 can be tires 172 on wheels 174. Alternatively, the ground engagement device can be tracks around wheels or a dedicated track system. The engine can be attached at the rear of the compact loader to provide a counterbalancing effect. The engine can drive the hydraulic motor that powers the loader assembly 62 and other hydraulic devices, apparatuses or tools that run off of hydraulic power. The engine radiator and the hydraulic motor radiator provide cooling of the engine and the hydraulic motor, respectively.
The Controls Region
The controls region 16 is where the operator sits and controls the operation of the compact loader 10. The controls region 16 includes an operator seat 180, an engine radiator and/or hydraulic motor radiator cover 182, a vehicle steering control 184, a loader assembly and attachment control 186, a tools control 187 and a cage 188 for protecting the operator. It should be understood that various forms of steering controls can be provided. The vehicle steering control 184 can be referred to as a stick control and generally includes a left stick and a right stick. The left stick controls forward and rearward movement of the left wheels, and the right stick controls forward and rearward movement of the right wheels. Accordingly, by moving the left stick and the right stick, it is possible to steer the compact loader 10. The loader assembly and attachment control 186 can be used to operate the raising and lowering of the loader assembly 62 and the movement of the attachment 84. The tools control 187 can be mounted on the vehicle steering control 184, the loader assembly attachment control 186, or in some other location in the controls region 16. The tools control 187 can be used to operate the forward tools area 20 including the dump box and/or the tools platform. It should be understood that the various controls can be provided as hand and/or foot controls. Various controls configurations are available from different compact loader manufacturers including Bobcat Company, JCB, Case, New Holland, Gehl, Caterpillar, John Deere, Takeuchi, ASV, and Daewoo.
The area in which the operator sits and controls the compact loader 10 can be referred to as the operator area 19. The cage 188 extends over the operator area 19 to protect the operator against falling material or injury from a roll-over. The cage can be provided with protective mesh for additional protection and/or transparent panels for additional protection and to enclose the operator area 19 if it is to be heated and/or air conditioned. The operator seat 180 can be provided generally above the engine. The engine radiator and the hydraulic motor radiator can be provided behind the operator's seat 180. The cover 182 can include a louvered area 192 to provide for air to flow through for cooling the engine radiator and the hydraulic motor radiator. The cover 182 can be constructed so that it swings open to allow one access to the rear of the engine, the engine radiator, the hydraulics motor radiator, and other components such as filters, etc. The engine cover 182 can include rear lights 183.
The operator area 19 can be accessed through the rear end 27 of the vehicle. An advantage of providing a compact loader with rear entry is that it removes the necessity to step over the loader assembly in order to gain access to the operator's seat. As shown in
The size of the left rear entry can be provided so that an operator can enter the compact loader from the rear end 192 by stepping onto the step 194 and then onto the floor 196 and walk around to the operator's seat 180 from the left side. The sizing of the right entry side can be provided so that the operator can enter the compact loader 10 from the rear end 192 by stepping onto the step 195 and then onto the floor 197 to walk to the operator's seat 180 from the right side. An intermediate stepping area can be provided somewhere between the steps 194 and 195 and the floor 196 and 197. It should be understood that the right entry side can be available for entry, the left entry side can be available for entry, or both sides can be available for entry. The right entry side or the left entry side can be used for the operator to enter the operator area 19 and the remaining side can be used for placing other components such as the radiator, a hydraulic fluids supply tank, etc.
It is pointed out that many commercially available compact loaders require front entry which means climbing over or around a front attachment if one is attached to the boom arms, then over a front boom crossmember before entering the operator area to be seated. It is believed that the rear entry method for entering the compact loader according to the invention is easier, safer, and more convenient than front entry techniques. In addition, the compact loader according to the invention can be entered from the front similar to many commercially available compact loaders. It is believed that a rear entry of a compact loader is simply more convenient than having to climb over or around a front attachment. Although the compact loader according to the invention can be constructed for rear entry and/or side entry into the operator area, the compact loader can be constructed for front entry similar to conventional compact loaders.
The compact loader 10 can be modified to allow for side entry into the operator area 19. For example, it is possible to move the tower 72 and the tower cylinder 74 forward to create a passageway for an operator to enter from outside the compact loader to inside the operator area 19. It should be understood that by moving the tower 72 and the tower cylinder 74 forward, it may be appropriate to modify the configuration of other components of the loader assembly 62. An advantage of providing for side entry into the operator area 19 is that additional equipment can be provided in the rear of the compact loader that would provide an obstruction to entry from the rear of the compact loader. By providing for side entry, an operator can step onto the steps 194 and/or 195 from the sides of the vehicle and then step up onto the floor 196 and/or 197.
The operator's seat 180 can be constructed so that it moves between a forward facing position 202 and a rearward facing position 203 (see
Commercially available compact loaders traditionally have the engine located in the rear of the compact loader and behind the operator in order to make the compact loader proportionally heavier in the rear than in the front when the compact loader is not carrying a load in the bucket. This is done to counterbalance the weight of a bucket and its load or to counterbalance the weight of another front mounted tool. In general, many commercially available compact loaders are manufactured having a weight ratio that is meant to shift relatively more weight from the rear of the machine to the front of the machine when carrying a load. This shifting of proportionally more weight from back to front and vice versa places more load on either the front or the rear of the ground engagement devices which allows the compact loader to turn on a relative point. Many manufacturers offer machines having different front and back machine weight ratios that provide varying degrees of turnability. A relatively evenly weighted compact loader would have a tendency to use more engine power when turning and the tracks or tires would tend to wear out more quickly. In general, many commercially available skid steer loaders are designed so that, without a load in the bucket, about 70% of the machine's weight is on the rear axles and about 30% is on the front axles. With most of the load on the rear axles, the machine turns or pivots on the rear wheels, and the front wheels skid right or left. Accordingly, many of these compact loaders are prone to tipping rearward when the bucket is empty because of their designed weight ratio which makes them generally unsuitable for pulling.
One advantage of the compact loader according to the invention as shown in
The compact loader can include an auto load operation where positioning of the bucket 140 over the dump box 24 is machine controlled. By providing an auto load operation, the operator can simply trigger a signal that causes the compact loader 10 to move the loader assembly 62 so that the load in the bucket 140 is automatically positioned over the dump box 24 for unloading. By providing an auto load operation, the operator can use a single control that coordinates the movement of the tower 72, the lift arm 76, and the attachment arm 80 so that the bucket 140 moves to a location above the dump box 24. The operator can then control the release of the bucket 140 causing the material to load into the dump box 24. When manually self loading, the operator initiates and coordinates at least two separate control movements. These control movements include elevating the bucket 140 and placing the bucket 140 over the dump box 24. An additional control movement that can be provided in both auto load operation and manual self loading includes releasing the materials from the bucket 140. The elevation of the bucket 140 can be accomplished by extending the lift arm cylinder 78, retracting the tower cylinder 74, or combination thereof. An advantage to using the tower cylinder 74 to elevate the bucket 140 is that the overall height of the bucket 140 can be limited. Moving the bucket 140 over the box can be controlled by the attachment arm cylinder 82 and, to a certain extent, by the other cylinders. It should be understood that any of the various cylinders can be operated to provide appropriate movement of the attachment 84 to a desired location.
In the auto load method a sensing source and controller can be used to provide control in the lift cycle and the movement of the attachment arm assembly in a manner which will position the bucket 140 over the dump box. The lift arm cylinder can be locked out or bypassed in the auto load method so the load can not be raised too high which could possibly tip the compact loader over backwards. The operator controls used in the auto load method can be a combination of hand and foot controls or hand controls only. Either a hand control or a foot control can be used in the auto load method. Also when the lift arm cylinder is locked out or bypassed in the auto load method the control means normally used for raising and lowering the loader boom (a foot control or hand control activation) can be automatically switched from its normal function of actuating the lift arm cylinders for lifting to actuating only the tower cylinder 116 which controls all lifting and lowering in the auto load method. Not using the lift arm cylinder 78 in auto loading would be convenient for the operator since the same controls for lift movements can be used while limiting the height for safety reasons. It should be understood however that a separate control means, such as a joystick and or lever, can also be provided for loader operations when using the auto load method.
Now referring to
The work platform 310 can have a configuration that allows a portion of the work platform to fit within the vehicle body similar to the dump box bottom floor shown in
The vacuum/blower device 340 can be used as a vacuum source to help reduce dust when using tools such as rock wheels for cutting hard surfaces such as cement, and when using planers, scrapers, or other device that generates dust and/or debris. In addition, the vacuum/blower device 340 can be used for picking up liquids. Vacuuming and/or blowing power supplied by the vacuum/blower device 340 can be used for vacuuming or blowing leaves, debris, corner dust, etc. when the hose 346 is detached and manipulated by hand. In addition, the vacuum/blower device 340 can be used for catching grass when attached to a mowing device.
Now referring to
The outer tower wall 604 and the inner tower wall 606 can be attached together by a crossmember 640 and by the various rotation connections 608, 620, 632, and 636 to provide structural support. The left support 610 and the right support 611 are shown extending to an upper edge 650. In general, the limit of the upper edge 650 should be sufficient so that the left support 610 and the right support 611 do not interfere with the rotation of the tower 600. An advantage of the tower 600 is that the tower structure can take the place of the outer cover and the inner cover 70 and 71 of the compact loader 10.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application is a continuation of U.S. application Ser. No. 10/294,464 that was filed with the United States Patent and Trademark Office on Nov. 13, 2002 now U.S. Pat. No. 6,997,667. The entire disclosure of the U.S. application Ser. No. 10/294,464 is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
631096 | Smith | Aug 1899 | A |
2052471 | Hula | Aug 1936 | A |
2424670 | Shimer | Jul 1947 | A |
2427132 | Godbey | Sep 1947 | A |
2482612 | Drott et al. | Sep 1949 | A |
2821313 | Warner | Jan 1958 | A |
2845192 | Klaus | Jul 1958 | A |
3215292 | Halls | Nov 1965 | A |
3231117 | Melroe et al. | Jan 1966 | A |
3338438 | Holtkamp | Aug 1967 | A |
3356240 | Zink | Dec 1967 | A |
RE26718 | Kelley | Nov 1969 | E |
3651971 | McGuinness | Mar 1972 | A |
D224588 | Bauer | Aug 1972 | S |
3685675 | Sundberg | Aug 1972 | A |
3765554 | Morrison | Oct 1973 | A |
3794191 | Kuhn | Feb 1974 | A |
D231482 | Bauer | Apr 1974 | S |
3937339 | Geis et al. | Feb 1976 | A |
3963131 | Dimmer | Jun 1976 | A |
3985250 | Mononen | Oct 1976 | A |
3995761 | Hurlburt | Dec 1976 | A |
4055262 | Bauer et al. | Oct 1977 | A |
4068771 | Zimmerman | Jan 1978 | A |
D247814 | Johnson et al. | May 1978 | S |
4117944 | Beckstrom et al. | Oct 1978 | A |
4122960 | Bauer et al. | Oct 1978 | A |
D251088 | Johnson et al. | Feb 1979 | S |
4166712 | Oberg | Sep 1979 | A |
4207022 | Castel | Jun 1980 | A |
4260320 | Steiger | Apr 1981 | A |
4363151 | Knowlton | Dec 1982 | A |
4705449 | Christianson et al. | Nov 1987 | A |
RE33131 | Morrison | Dec 1989 | E |
D317926 | Lynnes et al. | Jul 1991 | S |
D322792 | Park | Dec 1991 | S |
5182057 | Johnson | Jan 1993 | A |
5240366 | Bamford | Aug 1993 | A |
5609464 | Moffitt et al. | Mar 1997 | A |
5613822 | Gasparini et al. | Mar 1997 | A |
5618155 | Tighe | Apr 1997 | A |
D405098 | Andrews et al. | Feb 1999 | S |
D406594 | Miller et al. | Mar 1999 | S |
D407415 | Flatau et al. | Mar 1999 | S |
D407416 | Miller et al. | Mar 1999 | S |
D407417 | Miller et al. | Mar 1999 | S |
D407418 | Miller et al. | Mar 1999 | S |
5885053 | Deye | Mar 1999 | A |
D408278 | Konop | Apr 1999 | S |
5921743 | Slagter | Jul 1999 | A |
D419568 | Baig et al. | Jan 2000 | S |
D423521 | Walter et al. | Apr 2000 | S |
D428425 | Ratcliffe | Jul 2000 | S |
6132163 | Andrews et al. | Oct 2000 | A |
6146081 | Anderson | Nov 2000 | A |
6322151 | Dombek et al. | Nov 2001 | B2 |
6409457 | Korycan et al. | Jun 2002 | B1 |
7008169 | Miyanishi | Mar 2006 | B1 |
20010040405 | Jansen et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
2095800 | Feb 1992 | CN |
2 258 210 | Feb 1993 | GB |
20-0167202 | Apr 1999 | KR |
20-0200480 | Oct 2000 | KR |
2 032 293 | Apr 1995 | RU |
2 076 167 | Mar 1997 | RU |
2 175 823 | Nov 2001 | RU |
343003 | Jul 1972 | SU |
364537 | Nov 1973 | SU |
637495 | Dec 1978 | SU |
Number | Date | Country | |
---|---|---|---|
20060182591 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10294464 | Nov 2002 | US |
Child | 11330793 | US |