Field
This disclosure provides techniques for simulating and rendering granular materials. More specifically, aspects of this disclosure present a material point method for simulation of granular materials.
Description of the Related Art
In physics engines, “solvers” are used to simulate physical behavior of objects (e.g., the physical response of an object to a collision with another object). These solvers typically employ numerical techniques to approximate the physics so that simulations can be efficiently performed on a computer. Specialized solvers have been used to simulate a variety of phenomena in graphics and computational physics. Such solvers include fluid simulators, rigid body simulators, and cloth simulators, among others, each of which is suited to simulating behavior of a particular type of material. For example, fluid simulators are suited for simulating liquids which deform with no memory, while rigid body simulators are suited for simulating destruction and debris where there is no deformation (e.g., glass shattering). When solids and fluids are needed simultaneously, two-way coupled systems have been used to obtain accuracy and performance for both phenomena.
Granular materials (e.g., snow, sand, dust, etc.) can have continuously varying phase effects, i.e., these materials sometimes behave as a rigid/deforming solid and sometimes as a fluid. Traditional solvers and coupled systems are unable to simultaneously handle a continuum of material properties efficiently to simulate the behavior of such granular materials. For example, to simulate snow, artists typically mix various simulation techniques intended for other phenomena. This process can be error-prone, time consuming, and typically does not produce good results.
One aspect of this disclosure provides a computer implemented method for simulating a granular material. The method generally includes receiving states of particles of the granular material. The method further includes updating the states of the particles by computing, on a grid, forces dictated by a strain based elasto-plastic constitutive model. In addition, the method includes rendering successive images of the granular material based on the updated states of the particles.
Other aspects include, without limitation, a computer-readable medium that includes instructions that enable a processing unit to implement one or more aspects of the disclosed method as well as a system configured to implement one or more aspects of the disclosed method.
So that the manner in which the above recited aspects are attained and can be understood in detail, a more particular description of aspects of the disclosure, briefly summarized above, may be had by reference to the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective aspects.
This disclosure provides techniques for simulating granular materials, such as snow. In one configuration, a simulation application generates video frames depicting a granular material phenomenon using a strain based elasto-plastic constitutive model integrated with a hybrid Eulerian/Lagrangian material point method (MPM). The elasto-plastic constitutive model includes physical equations which dictate forces that affect the granular material during the simulation. In one configuration, the elasto-plastic constitutive model allows elasticity to be blended with plasticity for more realistic simulation of granular materials. As used herein, “elasticity” generally refers to tendency of a material to deform under stress but recover its original shape after the removal of the stress. “Plasticity” generally refers to tendency of the material to be permanently deformed by a stress applied to the material even after the stress is removed. This is also referred to as having “memory” of the deformation. Granular materials tend to be “elasto-plastic” in the sense that they (1) can undergo deformation and lose memory of the deformation, but (2) can also be more rigid.
The MPM is a numerical procedure which allows simulations to be performed on a computer, and is particularly suited to simulating elasto-plastic materials such as granular materials. In a MPM simulation of a granular material, particles of the granular material and a background grid are coupled. The grid assists computing forces dictated by the physical equations of the elasto-plastic constitutive model. That is, in order to move particles, forces need to be computed, and the MPM procedure does so by transferring material parameters from the particles to the grid and computing forces on the grid by applying the elasto-plastic constitutive model. The grid permits numerical derivatives to be more easily computed than if only particles are used. At the same time, use of the particles in MPM makes tracking mass and fracture easier, as no mesh connectivity has to be tracked. The MPM procedure also implicitly handles fracture and self-collisions which are typically expensive in, e.g., rigid body simulations. In one configuration, the grid from the MPM procedure may further be rendered with volumetric rendering to generate video frames depicting the granular material. That is, MPM creates a volumetric grid of density as part of the simulation process, and such a grid may be rendered to generate the video frames.
In one configuration, the constitutive model includes user-controllable parameters defining thresholds to start plastic deformation (or fracture), thereby determining when the granular material starts breaking and allowing users to alter the granular material from being, e.g., a chunky material to being a powdery material. Further, the thresholds may be defined in terms of strain, rather than stress. Strain represents an amount of stretch or deformation (applied to the material) and is relatively intuitive for users to understand. In another configuration, the constitutive model may include a hardening parameter used to specify how fast the material breaks once it becomes plastic, i.e., once the thresholds are exceeded. In such a case, the hardening parameter may be defined so that stiffness parameters are increased when the granular material is compressed by a force. In an alternative configuration, the constitutive model may be controlled by a polar coordinate parameterization. Doing so reduces redundancies in the parameter space. In such a case, the parameters may include a plasticity threshold which controls how strong the granular material is, i.e., how much strength is required to break the granular material, as well as a chunkiness parameter which controls the chunk size of the granular material after it breaks and a Poisson's ratio parameter. Experience has shown that these parameters permit users to intuitively control how the granular material behaves during simulation. Thus, users may set parameter values such that the behavior of the simulated granular material resembles that of various types of actual granular materials.
Note, although snow is used herein as a representative example of a granular material, this disclosure is not limited to simulating snow. Techniques disclosed herein may generally be used to simulate and render any granular materials, including sand, dust, and the like.
MPM relies on the continuum approximation and avoids the need to model every snow grain. While MPM typically uses a Cartesian grid to make topology changes and self-collisions automatic, MPM tends to outperform purely Eulerian methods which also rely on grids, as MPM tracks mass (and other conserved quantities) through non-dissipative Lagrangian particles. More specifically, MPM uses the grid as an efficient continuum scratch pad, which avoids high valence communication patterns derived from nearest-neighbor queries. Experience has shown that the MPM procedure is particularly well-suited to handle the dynamics of granular particles such as snow. The constitutive properties central to snow include volume preservation, stiffness, plasticity, and fracture. Volume preservation in snow is important even though, unlike a liquid, snow is compressible. Snow has varying resistance to volume change, which may be modeled similarly to a typical mesh-based solid simulation. Stiffness is also important in snow, and while MPM cannot handle stiffness as well as mesh-based elasticity (the deformation gradient is less accurate), it is more effective than grid-based elasticity as the deformation gradient is not dissipative and remains synchronized with positions. Plasticity and fracture are handled well by MPM, which also makes MPM desirable for snow simulation. Note, MPM's gains in plasticity and fracture come at the cost of reduced elastic accuracy, which is a good tradeoff for snow.
More formally, deformation of a body can be described as the mapping x=φ(X) from the body's undeformed configuration X to its deformed configuration x, with associated deformation gradient F=∂φ/∂X. Deformation φ(X) changes according to conservation of mass, conservation of momentum, and the elasto-plastic constitutive relation
where ρ is density, t is time, v is velocity, σ is the Cauchy stress, Ψ is the elasto-plastic potential energy density, FE is the elastic part of the deformation gradient F and j=det(F). As discussed in greater detail below, the elasto-plastic constitutive model in one configuration may be defined in terms of the elasto-plastic energy density function as
The MPM uses material particles to track mass, momentum, and deformation gradient. For example, particle p may have position xp, velocity vp, mass mp, and deformation gradient Fp. A Lagrangian (particle) treatment of these quantities simplifies discretization of the terms of the constitutive relation Dρ/Dt and ρDv/Dt, discussed above, for purposes of computer simulation. However, the lack of mesh connectivity between particles in such a Lagrangian treatment complicates the computation of derivatives needed for stress-based force evaluation. The MPM remedies this by using a regular background Eulerian grid. Interpolating functions over such a grid may then be used to discretize the ∇·σ terms in the standard finite element method (FEM) manner using the weak form. In one configuration, the grid basis functions used may be dyadic products of one-dimensional cubic B-splines:
where i=(i,j,k) is the grid index, xp=(xp,yp,zp) is the evaluation position, h is the grid spacing and
The more compact notation wip=Nih(xp) and ∇wip=∇Nih(xp) will be used herein. These interpolating functions are used to compute forces at the nodes of the Eulerian grid, discussed above. Consequently, in MPM, the simulation application first transfers mass and momentum from the particles to the grid so that the velocities can be updated at grid nodes. Then, the simulation application transfers the updated velocity back to the particles in either a Fluid-Implicit Particle (FLIP) or Particle-in-Cell (PIC) type manner. Such a transfer process may be accomplished using interpolating weights wip.
As discussed, multiplicative plasticity theory separates the deformation gradient F into an elastic part FE and a plastic part FP so that F=FEFP. In one configuration, the constitutive model may be defined in terms of the elasto-plastic energy density function:
with the elastic part given by a fixed corotated energy density, and the Lamé parameters being functions of the plastic deformation gradients
μ(FP)=μ0eξ(1−j
where JE=det FE, JP=det Fp, FE=RESE by the polar decomposition, λ0 and μ0 are the initial Lamé coefficients, and ξ is a dimensionless plastic hardening parameter. Note, although the hardening parameter ξ is shown as an exponential factor, the hardening parameter may generally take any form so that stiffness parameters are increased quickly with compression of the snow. Intuitively, this increase of thickness resulting from compression corresponds to the packing effect seen in some granular materials. For example, snow tends to compact (e.g., into a snowball) and become harder under compression, rather than becoming softer under compression as in plastic materials.
The portion of deformation that is elastic and plastic may be defined using the singular values of the deformation gradient. Further, a critical compression θc and a stretch θs parameter may be used as the thresholds to start plastic deformation (or fracture). That is, the singular values of FE are restricted to the interval [1−θc, 1+θs]. Other parameters may include an initial density (kg/m3) parameter ρ0, an initial Young's modulus (Pa) parameter E0 (larger=more packed, smaller=softer), and a Poisson's ratio parameter v (larger=less compressible, smaller=more compressible). In an alternative configuration, the critical compression θc and stretch θs parameters may be reparametrized in polar coordinates to be more intuitive for users to control. Experience has shown that using the critical compression θc and stretch θs parameters directly might not be intuitive in how they affect the final look of the simulated substance (e.g. snow), so using some combination of the parameters may be more convenient from this perspective. In one embodiment, the critical compression θc and stretch θs parameters may be reparametrized in polar coordinates to produce new parameters corresponding to rotation and range in the polar coordinates. One such new parameter may be a strength parameter that controls how strong the snow is, i.e., how much strength it takes to break the snow. Another new parameter may control the chunk size of the snow, i.e., the size of the chunks of snow once the snow breaks. The polar coordinate parameterization may also depend on a Poisson's ratio parameter. In a particular embodiment, the parameters in the polar coordinate parameterization may include plasticity threshold parameter r which can be used to control wetness of snow, chunkiness parameter α which can be used to control shattering of snow chunks, and Poisson's ratio parameter v which can be used to control granularity of the snow. These parameters may be related to the original critical compression θc and stretch θs parameters as follows:
According to the constitutive model just discussed, the snow is elastic in the regime of small deformations as dictated by the FE dependence in equation (3). When the deformation exceeds either the stretch θs or the compression θc threshold, then the material starts deforming plastically, as discussed in greater detail below. Exceeding either threshold also affects the material properties in accordance with equation (4), making it stronger under compression (packing) and weaker under stretch (fracture).
To simulate different types of granular material (e.g., different types of snow), experience has shown that the following heuristics are useful. The critical stretch θs and compression θc parameters determine when the material starts breaking (larger=chunky, smaller=powdery). The hardening coefficient determines how fast the material breaks once it is plastic (larger=brittle, smaller=ductile). For example, dry and powdery snow may be associated with smaller critical compression and stretch constants, while the opposite is true for wet and chunky snow. Icy snow may be modeled with a higher hardening coefficient and Young's modulus, with the opposite producing muddy snow.
Panel A shows the results of a simulation of a block of snow 210 breaking over a wedge 220 using the following parameter values: E0=4.8×105, θc=2.5×10−2, θs=7.5×10−3, ξ=10. Although snow is used in this example, other granular materials (e.g., sand, dust, etc.) may also be simulated in a similar manner. Panel B shows the same simulation with a lower hardening parameter: ξ: E0=4.8×105, θc=2.5×10−2, θs=7.5×10−3, ξ=5. As discussed, a larger hardening parameter causes the snow to be more brittle, whereas a smaller hardening parameter causes the snow to be more ductile. Panel C shows the same simulation with a lower Young's modulus and the following parameter values: E0=4.8×105, θc=2.5×10−2, θs=7.5×10−3, ξ=10. As discussed, a smaller Young's modulus tends to produce softer snow with less packing, whereas a higher Young's modulus may produce more packed or crusted snow. Panels D-F show the same simulation with lower critical compression, lower critical compression and stretch, and lower critical stretch, respectively. As discussed, the critical compression and stretch parameters determine when the snow starts breaking, with larger values causing the material to be chunkier and smaller values causing the material to be more powdery. In the panel D simulation, the following parameter values were used: E0=4.8×105, θc=1.9×10−2, θs=7.5×10−3, ξ=10. In the panel E simulation, the following parameter values were used: E0=4.8×105, θc=1.9×10−2, θs=5.0×10−3, ξ=10. In the panel F simulation, the following parameter values were used: E0=4.8×105, θc=2.5×10−2, θs=5.0×10−3, ξ=10.
At step 310, the simulation application rasterizes the particle data to a grid. The grid may be a regular background Eulerian grid. In one configuration, the grid may be an adaptive sparse grid. Doing so may improve memory efficiency, as memory would be saved for uninfluenced nodes which do not need to be iterated over. Rasterizing the particle data to the grid may include transferring mass and velocities from the particles p to the grid. The simulation application may transfer mass using the weighting function min=Σpmpwipn. Velocity is also transferred, but weighting with wipn does not result in conserved momentum. In one configuration, the normalized weights vin=Σpvpnmpwipn/min may be used instead to transfer velocity to the grid.
At step 315, the simulation application computes particle volumes and densities. These computations may be performed only for a first timestep. The discretization of forces in the grid requires a notion of a particle's volume in the initial configuration. The simulation application may estimate a cell's density as mi0/h3, which may be weighted back to the particle as ρp0=Σimi0wip0/h3. The simulation application may then estimate the particle's volume as Vp0=mp/ρp0.
At step 320, the simulation application computes grid forces using the constitutive model, discussed above with respect to
∫Ω
where Ω0 is the undeformed configuration of the material. The MPM spatial discretization of the stress-based forces is equivalent to differentiation of a discrete approximation of this energy with respect to the Eulerian grid node material positions. However, the simulation application may not actually deform the Eulerian grid, so the change in grid node locations may be thought of as being determined by the grid node velocities. That is, if xi is the position of grid node i, then {circumflex over (x)}i=xi+Δtvi would be the deformed location of that grid given the current velocity vi of the node. Let the vector of all grid nodes {circumflex over (x)}i be {circumflex over (x)}. Then, the MPM approximation to the total elastic potential may be written as
Φ({circumflex over (x)})=ΣpVp0Ψ({circumflex over (F)}Ep({circumflex over (x)}),FPpn), (6)
where Vp0 is the volume of material originally occupied by particle p, FPpn is the plastic part of F at particle p at time tn and FEp is the elastic part which is related to {circumflex over (x)} as
{circumflex over (F)}Ep({circumflex over (x)})=(I+Σi({circumflex over (x)}i−xi)(∇wipn)T)FEpn. (7)
With this convention, the MPM spatial discretization of the stress-based forces is given as:
That is, fi({circumflex over (x)}i) is the force on grid node i resulting from elastic stresses. This may be written in terms of the Cauchy stress
as
fi({circumflex over (x)})=−ΣpVpnσp∇wipn, (9)
where Vpn=JpnVp0 is the volume of the material occupied by particle p at time tn. In one configuration, the simulation application may compute grid forces at step 315 using equation (9) with {circumflex over (x)}i=xi.
At step 325, the simulation application updates velocities on the grid. The simulation application may evolve grid velocities implicitly in time, and, in such a case, an implicit step may be taken on the elastic part of the update by utilizing the Hessian of the potential with respect to {circumflex over (x)}. The action of such a Hessian on an arbitrary increment δu may be expressed as
and the notation A=C:D meaning that Aij=CijklDkl with the summation implied on indices kl.
In one configuration, the simulation application may update the velocities to vi* using the equation vi*=vin+Δtmi−1fin, discussed in greater detail below. As the grid itself is not actually deformed such that grid node positions become {circumflex over (x)}i=xi+Δtvi, {circumflex over (x)}={circumflex over (x)}(v) may be considered to be defined by v, and the following notations are used herein:
At step 330, the simulation application computes collided grid velocities. That is, the simulation application modifies the grid velocities determined at step 325 in response to collisions between the grid and another body or bodies. In one configuration, the simulation application may process collisions against collision bodies twice at each time step. In such a case, the first time the collisions are processed may be on the grid velocities vi* immediately after forces are applied to grid velocities. In the case of semi-implicit integration, discussed in greater detail below, this contributes to the right hand side of the linear system, and degrees of freedom corresponding to the colliding grid nodes are projected out during the solving of the linear system. The simulation application may apply collisions once more to particle velocities vpn+1 before updating positions to account for minor discrepancies between particle and grid velocities due to interpolation. In each case, collision processing is performed in the same manner, and collisions may be treated as inelastic, i.e., kinetic energy is lost as a result of the collision.
In one configuration, the collision objects may be represented as level sets, which makes collision detection (φ≤0) trivial. When a collision occurs, the simulation application may compute the local normal n=∇φ and object velocity vco. First, the simulation application may transform the particle/grid velocity v into the reference frame of the collision object, vrel=v−vco. If the bodies are separating (vn=vrel·n≥0), then no collision is applied. Let vt=vrel−nvn be the tangential portion of the relative velocity. If a sticking impulse is required (∥vt∥≤−μvn), then the simulation application may let vrel′=0, where the prime indicates that the collision has been applied. Otherwise, the simulation application may apply dynamic friction, and let vrel′=vt+μvnvt/∥vt∥, where μ is the coefficient of friction. Then, the simulation application may transform the collided relative velocity back into world coordinates with v′=vrel′+vco.
In one configuration, two types of collision objects may be used: rigid and deforming. In the case of rigid objects, a stationary level set and a potentially time-varying rigid transformation may be stored, and the simulation application may use such a level set and transformation to compute φ, n, and vco at any point. In the case of deforming objects, the simulation application may load level set key frames and interpolate such frames using φ(x,t+γΔt)=(1−γ)φ(x−γΔtvco,t)+γφ(x+(1−γ)Δtvco,t+Δt), with the velocity being computed as vco=(1−γ)v(x,t)+γv(x,t+Δt) rather than using the average velocity.
In another configuration, the simulation application may use a sort of sticky collision in situations where a user wants the snow to stick to vertical or under-hanging surfaces. In such a case, Coulomb friction may be insufficient, since the normal relative velocity would be zero (vertical) or positive (under-hanging and separating due to gravity.). Instead, the sticky collision may be achieved by setting vrel′=0 unconditionally for collision against these surfaces.
At step 335, the simulation application solves a linear system for semi-implicit time integration. A system of equations on grid cells is used, rather than on individual particles of the snow, improving computational efficiency. In one configuration, the simulation application may perform semi-implicit integration by solving the following linear system for vin+1:
where the right hand side is
vi*=vin+Δtmi−1fin (13)
and β chooses between explicit (β=0), trapezoidal (β=½), and backward Euler (β=1). As discussed, the following notations are used herein: fin=fi({circumflex over (x)}(0),fin+1=fi({circumflex over (x)}(vn+1)), and
where fi and Φ are as defined above. Given these derivatives, the implicit update may be formed using
This leads to the (mass) symmetric system of equation (12) for solving for vin+1.
At step 340, the simulation application updates the deformation gradients of the particles. The deformation gradient for each particle may be updated as Fpn+1=(I+Δt∇vpn+1)Fpn, where ∇vpn+1 is computed as ∇vpn+1=Σivin+1(wipn)T. In one configuration, the simulation application may begin by temporarily defining {circumflex over (F)}Epn+1=(I+Δt∇vpn+1)FEpn as in equation (7) and {circumflex over (F)}Ppn+1=FPpn, so that initially all the changes are attributed to the elastic part of the deformation gradient
Fpn+1=(I+Δt∇vpn+1)FEpnFPpn={circumflex over (F)}Epn+1{circumflex over (F)}Ppn+1. (14)
The simulation application may take the part of {circumflex over (F)}Epn+1 that exceeds a critical deformation threshold and push this part into {circumflex over (F)}Ppn+1. The simulation application may then compute the singular value decomposition {circumflex over (F)}Epn+1=Up{circumflex over (Σ)}pVpT and clamp the singular values to the permitted range Σp=clamp({circumflex over (Σ)}p,[1−θc,1+θs]). The elastic and plastic components of the deformation gradient may then be computed as
FEpn+1=UpΣpVpT and FPpn+1=VpΣp−1UpTFpn+1. (15)
It can be easily verified that Fpn+1=FEpn+1FPpn+1.
At step 345, the simulation application updates the particles' velocities. New particle velocities may be computed as vpn+1=(1−α)vPICpn+1+αvFLIPpn+1, where vPICpn+1 is the PIC part vPICpn+1=Σivin+1wipn, and vFLIPpn+1 is the FLIP part vFLIPpn+1=vpn+Σi(vin+1−vin)wipn. The constant α may be chosen as, for example α=0.95.
At step 350, the simulation application computes particle-based body collisions. Such collisions may be computed on vpn+1 in a similar manner as the body collisions discussed above with respect to step 330 for the grid.
Then, at step 355, the simulation application updates particle positions. This update may be performed using simply xpn+1=xpn+Δt∇vpn+1.
At step 360, the simulation application renders the snow. Rendering may generally include generating one or more video frames depicting the snow. The discrete grid in the MPM procedure measures density relative to the material points, providing a way to show visual variation between snow that is loose and tightly packed. At render time, the simulation application may rasterize the final simulated material points to the simulation grid using the same kernels discussed above with respect to the MPM procedure. That is, the MPM procedure gives a volumetric grid which may be directly rendered with a volume renderer, with data for the volume rendering being obtained using the data representation from the MPM procedure. This is in contrast to traditional techniques for rendering snow, which typically rendered the surface of the snow. Alternatively, improved anti-aliasing may be obtained with better kernels or a completely different grid.
In one configuration, the simulation application may render the snow using a volumetric path tracer to solve the volume scattering equation using a Henyey-Greenstein phase function that approximates the Mie scatting theory of ice crystals. In a particular configuration, the simulation application may use a mean-cosine of g=0.5 to obtain forward scattering, and use an extinction coefficient σt=724 m−1 and scattering albedo
where σs is the scattering coefficient.
The CPU 405 retrieves and executes programming instructions stored in the memory 420. Similarly, the CPU 405 stores and retrieves application data residing in the memory 420. The interconnect 417 facilitates transmission, such as of programming instructions and application data, between the CPU 405, I/O device interface 410, storage 430, network interface 415, and memory 420. CPU 405 is included to be representative of a single CPU, multiple CPUs, a single CPU having multiple processing cores, and the like. And the memory 420 is generally included to be representative of a random access memory. The storage 430 may be a disk drive storage device. Although shown as a single unit, the storage 430 may be a combination of fixed and/or removable storage devices, such as magnetic disk drives, flash drives, removable memory cards or optical storage, network attached storage (NAS), or a storage area-network (SAN). Further, system 400 is included to be representative of a physical computing system as well as virtual machine instances hosted on a set of underlying physical computing systems. Further still, although shown as a single computing system, one of ordinary skill in the art will recognized that the components of the system 400 shown in
As shown, the memory 420 includes an operating system 421 and a snow simulation application 422. Illustratively, the operating system 421 may include Linux®. The snow simulation application 422 is configured to simulate snow and render snow phenomena to one or more video frames. In one configuration, the snow simulation application 422 may use a constitutive model which includes user-controllable parameters for modeling dynamics of the snow, as discussed above with respect to
Advantageously, techniques disclosed herein permit the efficient simulation and rendering of granular materials such as snow at a macroscopic scale using the MPM procedure. The elasto-plastic constitutive model for computing forces in the simulation may allow blending between elasticity and plasticity for more realistic simulation of the granular material. The parameters of the constitutive model may further be user-controllable such that the properties of the granular material may be adjusted as desired. As a result, techniques disclosed herein may be used to simulate, e.g., a wide variety of snow behaviors, including dense and wet snow. Particular parameters may include thresholds defined in terms of strain, which is more intuitive for users to control than stress. Experience has shown that a polar coordinate reparametrization which includes a plasticity threshold controlling how strong the granular material is, a chunkiness parameter controlling the size of chunks of the granular material, and a Poisson's ratio parameter, is particularly intuitive for users. Further, configurations disclosed herein use the MPM grid in volumetric rendering, such that individual particles do not need to be rendered.
The preceding description references aspects of the disclosure. However, it should be understood that the disclosure is not limited to specific described aspects. Instead, any combination of the preceding features and elements, whether related to different aspects or not, is contemplated to implement and practice the disclosure. Furthermore, although aspects of the disclosure may achieve advantages over other possible solutions and/or over the prior art, whether or not a particular advantage is achieved by a given aspect is not limiting of the disclosure. Thus, the preceding aspects, features, and advantages are merely illustrative and are not considered elements or limitations of the appended claims except where explicitly recited in a claim(s). Likewise, reference to “the disclosure” shall not be construed as a generalization of any inventive subject matter disclosed herein and shall not be considered to be an element or limitation of the appended claims except where explicitly recited in a claim(s).
Aspects of the present disclosure may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware aspect, an entirely software aspect (including firmware, resident software, micro-code, etc.) or an aspect combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus or device.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to various aspects of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by special-purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
While the foregoing is directed to aspects of the present disclosure, other and further aspects of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 61/922,602, filed Dec. 31, 2013, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6456289 | O'Brien | Sep 2002 | B1 |
6456293 | Grandy | Sep 2002 | B1 |
7373284 | Stabelfeldt | May 2008 | B2 |
8204725 | Thuerey et al. | Jun 2012 | B1 |
8970592 | Petterson | Mar 2015 | B1 |
9285293 | Seta | Mar 2016 | B2 |
20100049489 | Tanaka | Feb 2010 | A1 |
20100277475 | McAdams | Nov 2010 | A1 |
20100292965 | Yilbas et al. | Nov 2010 | A1 |
20120053908 | Kim et al. | Mar 2012 | A1 |
20120095741 | Jin | Apr 2012 | A1 |
20120253756 | Favier | Oct 2012 | A1 |
20130127874 | Peterson | May 2013 | A1 |
20140214377 | Kazama | Jul 2014 | A1 |
20140226884 | Porikli | Aug 2014 | A1 |
20140309971 | Ueno | Oct 2014 | A1 |
20150161305 | Kazama | Jun 2015 | A1 |
20150213163 | Yang | Jul 2015 | A1 |
Entry |
---|
Andersen, Søren, and Lars Andersen. “Modelling of landslides with the material-point method.” Computational Geosciences 14.1 (2010): 137-147. |
Yao, Yang-Ping, Haruyuki Yamamoto, and Nai-Dong Wang. “Constitutive model considering sand crushing.” Soils and foundations 48.4 (2008): 603-608. |
O'brien, James F., and Jessica K. Hodgins. “Graphical modeling and animation of brittle fracture.” Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999. |
El Youssoufi, Moulay Saïd, J-Y. Delenne, and Farhang Radjai. “Self-stresses and crack formation by particle swelling in cohesive granular media.” Physical Review E 71.5 (2005): 051307. |
McDowell, G. R., M. D. Bolton, and D. Robertson. “The fractal crushing of granular materials.” Journal of the Mechanics and Physics of Solids 44.12 (1996): 2079-2101. |
Seta, E., T. Kamegawa, and Y. Nakajima. “Prediction of snow/tire interaction using explicit FEM and FVM.” Tire Science and Technology 31.3 (2003): 173-188. |
Chanclou, Benoit, Annie Luciani, and Arash Habibi. “Physical models of loose soils dynamically marked by a moving object.” Computer Animation'96. Proceedings. IEEE, 1996. |
Contrafatto, Loredana, and Massimo Cuomo. “Comparison of two forms of strain decomposition in an elastic-plastic damaging model for concrete.” Modelling and Simulation in Materials Science and Engineering 15.4 (2007): S405. |
Svendsen, Bob, et al. “Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation.” International journal of solids and structures 35.25 (1998): 3363-3389. |
Aldu 'An, I., and Otaduy, M. 2011. SPH granular flow with friction and cohesion. In Proc. of the 2011 ACM SIGGRPH/Eurographics Symp. on Comp. Anim., 25-32. |
Aldu 'An, I., Tena, A., and Otaduy, M. 2009. Simulation of high-resolution granular media. In Proc. of Congreso Espa{tilde over ( )}nol de Inform ‘atica Gr’afica, vol. 1. |
Bargteil, A., Wojtan, C., Hodgins, J., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. In ACM Trans. on Graph., vol. 26, 16. |
Bell, N., Yu, Y., and Mucha, P. 2005. Particle-based simulation of granular materials. In Proc. of the 2005 ACM SIGGRAPH/Eurographics symposium on Comp. animation, 77-86. |
Brown, R. 1980. A volumetric constitutive law for snow based on a neck growth model. J. of Appl. Phys. 51, 1, 161-165. |
Chanclou, B., Luciani, A., and Habibi, A. 1996. Physical models of loose soils dynamically marked by a moving object. In Comp. Anim.'96. Proc., 27-35. |
Chao, I., Pinkall, U., Sanan, P., and Schr Oder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. on Graph. 29, 4, 38. |
Cresseri, S., and Jommi, C. 2005. Snow as an elastic viscoplastic bonded continuum: a modelling approach. Italian Geotechnical J. 4, 43-58. |
Cresseri, S., Genna, F., and Jommi, C. 2010. Numerical integration of an elastic-viscoplastic constitutive model for dry metamorphosed snow. Intl. J. for Num. and Anal. Meth. in geomechanics 34, 12, 1271-1296. |
Dutykh, D., Acary-Robert, C., and Bresch, D. 2011. Mathematical modeling of powder-snow avalanche flows. Studies in Appl. Math. 127, 1, 38-66. |
Fearing, P. 2000. Computer modelling of fallen snow. In Proc. of the 27th annual conf. on Comp. Graph. and interactive techniques, 37-46. |
Feldman, B., and O'Brien, J. 2002. Modeling the accumulation of wind-driven snow. In ACM SIGGRPH 2002 conf. abstracts and applications, 218-218. |
Goktekin, T., Bargteil, A., and O'Brien, J. 2004. A method for animating viscoelastic fluids. In ACM Trans. On Graph., vol. 23, 463-468. |
Gray, D., and Male, D. 1981. Handbook of snow: principles, processes, management & use. Pergamon Press. |
Ihmsen, M., Wahl, A., and Teschner, M. 2012. Highresolution simulation of granular material with SPH. In Workshop on Virtual Reality Interaction and Phys. Sim., 53-60. |
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics symposium on Comp. animation, 131-140. |
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutr'e, P., and Gross, M. 2005. A unified lagrangian approach to solid-fluid animation. In Point-Based Graph., 2005. Eurographics/IEEE VGTC Symp. Proc., 125-148. |
Kim, T., and Lin, M. 2003. Visual simulation of ice crystal growth. In Proc 2003 ACM SIGGRAPH/Eurographics Symp. Comput. Anim., 86-97. |
Kim, T., Adalsteinsson, D., and Lin, M. 2006. Modeling ice dynamics as a thin-film Stefan problem. In Proc. 2006 ACM SIGGRAPH/Eurographics Symp. Comput. Anim., 167-176. |
Luciani, A., Habibi, A., and Manzotti, E. 1995. A multiscale physical model of granular materials. In Graphics Interface, 136-136. |
Marechal, N., Guerin, E., Galin, E., Merillou, S., and Merillou, N. 2010. Heat transfer simulation for modeling realistic winter sceneries. Comp. Graph. Forum 29, 2, 449-458. |
McAdams, A., Selle, A., Ward, K., Sifakis, E., and Teran, J. 2009. Detail preserving continuum simulation of straight hair. ACM Trans. on Graphics 28, 3, 62. |
Meschke, G., Liu, C., and Mang, H. 1996. Large strain finite-element analysis of snow. J. of Engng. Mech. 122, 7, 591-602. |
Milenkovic, V. 1996. Position-based physics: simulating the motion of many highly interacting spheres and polyhedra. In Proc. of the 23rd annual conf. on Comp. Graph. and interactive techniques, 129-136. |
Miller, G., and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Comp. & Graph. 13, 3, 305-309. |
Narain, R., Golas, A., and Lin, M. 2010. Free-flowing granular materials with two-way solid coupling. In ACM Trans. On Graph., vol. 29, 173. |
Nicot, F. 2004. Constitutive modelling of snow as a cohesive-granular material. Granular Matter 6, 1, 47-60. |
Nishita, T., Iwasaki, H., Dobashi, Y., and Nakamae, E. 1997. A modeling and rendering method for snow by using metaballs. In Comp. Graph. Forum, vol. 16, C357-C364. |
O'Brien, J., Bargteil, A., and Hodgins, J. 2002. Graphical modeling and animation of ductile fracute. ACM Trans. On Graph. 21, 3, 291-294. |
Pauly, M., Keiser, R., Adams, B., Dutr'e, P., Gross, M., and Guibas, L. 2005. Meshless animation of fracturing solids. In ACM Trans. on Graph., vol. 24, 957-964. |
Pla-Castells, M., Garc'ia-Fern 'Andez, I., and Mart'inez, R. 2006. Interactive terrain simulation and force distribution models in sand piles. Cellular Automata, 392-401. |
St Lawrence, W., and Bradley, C. 1975. The deformation of snow in terms of structural mechanism. In Snow Mech. Symp., 155. |
Stomakhin, A., Howes, R., Schroeder, C., and Teran, J. 2012. Energetically consistent invertible elasticity. In Eurographics/ACM SIGGRAPH Symp. on Comp. Anim., 25-32. |
Sumner, R., O'Brien, J., and Hodgins, J. 1999. Animating sand, mud, and snow. In Comp. Graph. Forum, vol. 18, 17-26. |
Terzopoulos, D., and Fleischer, W. 1988. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Proc. ACM SIGGRAPH 1988 22, 4, 269-278. |
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. In ACM Trans. on Graph., vol. 27, 47. |
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graph. 24, 3, 965-972. |
Zhu, B., and Yang, X. 2010. Animating sand as a surface flow. Eurographics 2010, Short Papers. |
Barbara Solenthaler et al., A unified particle model for fluid-solid interactions, Wiley InterScience, Comp. Anim. Virtual Worlds 2007; 18: 69-82. |
P.C. Wallstedt et al., An evaluation of explicit time integration schemes for use with the generalized interpolation material point method, Elsevier Ltd, Journal of Computational Physics 227 (2008) 9628-9642. |
Number | Date | Country | |
---|---|---|---|
20150187116 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61922602 | Dec 2013 | US |