Implementations will hereinafter be described in conjunction with the appended DRAWINGS (which are not necessarily to scale), where like designations denote like elements.
There are a variety of material separator implementations. Notwithstanding, with reference to
More specifically, frame 20 comprises box-like base 22 that includes: front wall 24, two opposite side walls 24 and 26, open back 30, a pair of slanted side support members 38 and 40, a pair of spaced apart upright front supports 35 and 36, and a pair of spaced apart upright back supports 32 and 34. The lower portions of the pair of upright back supports 32 and 43 are coupled opposite one another to the back ends of the opposite side walls 26 and 28, respectively. Slanted side support members 38 and 40 extend between upright front support 35 and upright back support 32 and upright front support 36 and upright back support 34, respectively. Slanted side support members 38 and 40 are adjacent the upper portions of sidewalls 26 and 28, respectively, with the tops of slanted side support members 38 and 40 flush with or below the tops of sidewalls 26 and 28, respectively. Slanted side support members 38 and 40 prevents material (material that can fall of when the material separator is being transported later) from building up on their top surfaces—more easily shed material off.
Frame 20 also comprises slanted grate deck 42 coupled between the pair of spaced apart upright front supports 35 and 36 and the pair of spaced apart upright back supports 32 and 34. Slanted grate deck 42 has two opposite end members 44 and 46 and a plurality of grate members 48 located between opposite end members 44 and 46. Upper and lower end members 44 and 46 respectively of slanted grate deck 42 may be coupled to and separate the upper portions of upright back supports 32 and 34 and the upper portions of upright front supports 35 and 36 along the upper portion of front wall 24. Grate members 48 may have a diamond shape in cross-section (see
Frame 20 may also include at least one lift member. For example, lift members 50 and 52 are shown extending downwardly from the upper end portion of slanted grate deck 42 in order to enable transport and movement of frame 20 or material separator 10 with a front end bucket of a backhoe, a front end loader, or the like for example as described below. Lift members 50 and 52 may be located spaced apart along upper end member 44 between upright supports 32 and 34. Lift members 50 and 52 may alternatively be located on the upper portions of two separate grate members 48. In addition, cross member 54 may be included that is removably coupled to the ends of lift members 50 and 52 by any appropriate fastening mechanisms to further facilitate the transport and movement of frame 20 or material separator 10 with a bucket of an excavator or the like.
Frame 20 may also include at least one rigging member to further facilitate the transport and movement of frame 20 or material separator 10 by an excavator or the like or to provide tie-down points for frame 20 when it is being transported on a truck for example from job site to job site. The rigging members accommodate and/or removably couple with any appropriate cables, swings, chokers, chains, and/or the like that may be used in conjunction with an excavator, truck , or the like. For example, a pair of spaced apart rigging members 55 and 56 and a pair of spaced apart rigging members 57 and 58 are shown, and they may be located on sidewalls 26 and 28, respectively, in the corners that are formed between upright back and front supports 32 and 35 and slanted side support member 38 and upright back and front supports 34 and 36 and slanted side support member 40 respectively. In this implementation, for example, rigging members 55, 56, 57, and 58 are holes through sidewalls 26 and 28.
Portable, interchangeable reducer grate deck 60 includes two opposite side members 62 and 64, two opposite end members 66 and 68, and a plurality of grate members 70 located between opposite end members 66 and 68. Grate members 70 may have a diamond shape in cross-section (see
Grate members 70 may be substantially parallel with the opposite side members 62 and 64, but could be placed in other orientations depending upon the orientation of grate bars 42 of slanted grate deck 42 for example. Regardless, when reducer grate deck 60 is installed on slanted grate deck 42, grate members 70 mesh or nest between grate members 48 to form a unitary, flush decking as can be seen from the cross section in
Reducer grate deck 60 may also include at least one external pick up member. For example, two external pick up members 72 and 74 are shown that attach to the tops or sides of two different grate members 70 so that a front end bucket of a backhoe may engage them and lift and move reducer grate deck 60 as described below.
Reducer grate deck 60 may also include at least one catch member capable of removably and pivotally engaging upper end member 44 of slanted grate deck 42 allowing pivoting of reducer grate deck 60 when unclogged material needs to be released. For example, two spaced apart catch members 76 and 78 are shown coupled to and extending from upper end member 66 of reducer grate deck 60. Catch members 76 and 78 may each be an angle member, one side coupled to upper end member 66 and the other side fitting around the outer perimeter of upper end member 44 of slanted grate deck 42 when reducer grate deck 60 is properly positioned in frame 20.
Reducer grate deck 60 may also include at least one internal bumper configured to engage a front end bucket of a backhoe for example to help clear any clogged material on/in reducer grate deck 60. For example, two internal bumpers 84 and 86 are shown attached to the bottoms or sides of two different grate members 70. The grate members 70 may be the same grate members to which pick up members 72 and 74 are attached, or they may be different grate members, such as adjacent grate bar members. Bumpers 84 and 86 may be triangular or rectangular in shape for example. Triangular shaped bumpers 84 and 86 are actually shown and serve many useful purposes. The front end bucket of a backhoe just needs to be aligned with bumpers 84 and 86 and then the backhoe just needs to drive forward to slidably push the free, non-pivoting end of reducer grate deck 60 upwards to clear any clogged materials as described below and depicted in
Reducer grate deck 60 may also include at least one seating tab on each of opposite side members 62 and 64 that help align and seat reducer grate deck 60 on slanted grate deck 42 during installation of the same or when using a front end bucket of a backhoe for example to engage bumpers 84 and 86 and push the free, non-pivoting end of reducer grate deck 60 upwards to clear any clogged materials (i.e. keep reducer grate deck 60 centered with slanted grate deck 42 so as to not change the spacing between grate members 48 and 70 and ultimately the size of screened material). For example, two pairs of seating tabs are shown, namely, spaced apart seating tabs 88 and 89 coupled on side member 62 and spaced apart seating tabs 90 and 91 coupled on side member 64. Seating tabs 88, 89, 90, and 91 all extend outwardly at a downward angle from side members 62 and 64, respectively.
Reducer grate deck 60 may also include at least one rigging member to further facilitate the transport and movement of reducer grate deck 60 by an excavator or the like or to provide tie-down points for reducer grate deck 60 when it is being transported on a truck for example from job site to job site. The rigging members accommodate and/or removably couple with any appropriate cables, swings, chokers, chains, and/or the like that may be used in conjunction with an excavator, truck, or the like. For example, as depicted, rigging members 80 and 82 may be located on catch members 76 and 78 respectively (or spaced apart along upper end member 66 for example) and rigging members 73 and 75 may be located on external pick up members 72 and 74 respectively (or spaced apart along lower end member 68 for example). In this implementation, for example, rigging members 73 and 75 are holes through pick up members 72 and 74, respectively, while rigging members 80 and 82 are upside down U-or J-shaped channel sections coupled to catch members 76 and 78, respectively.
Many additional implementations are possible in addition to those previously discussed.
For the exemplary purposes of this disclosure, other material separator implementations may comprise a substantially unitary, flush decking arrangement, as opposed to the unitary, flush decking arrangement depicted in
For the exemplary purposes of this disclosure, still other material separator implementations may comprise grate members of a reducer grate deck of a different size (e.g., larger or smaller) than grate members of a slanted grate deck. For example, if there is a wide spacing between grate members of a slanted grate deck, two or more reducer grate decks may be provided with grate members of a different size (e.g., larger or smaller) than the grate members of the slanted grate deck so as to provide for screened material across a range of various sizes.
For the exemplary purposes of this disclosure, yet other material separator implementations may comprise a double sided or plated front wall. The double sided front wall may comprise a U-shaped or H-shaped base member, an inside wall plate and an outside wall plate coupled to the inside surfaces of the side walls of the U-shaped or H-shaped base member, and at least one (e.g., two) internal upright support members separating the inside wall plate and the outside wall plate. Such a double sided front wall not only prevents material from building up on exposed surfaces (material that can fall of when the material separator is being transported) but it provides protection from wall damage due to a bucket of a backhoe maneuvering inside the base of the frame.
For the exemplary purposes of this disclosure, even other material separator implementations may comprise one longer, angled catch member, a plurality of shorter angled catch members, and the like. Additionally, the upper end member itself of the reducer grate deck could function as a catch member or catch members. That is, for example, the upper end member itself may be an angle catch member or may have one or more integral flanges.
For the exemplary purposes of this disclosure, still other material separator implementations may comprise rigging members other than holes or channel sections for example, such as rings, eyelets, hooks, clips, and/or any other suitable rigging mechanisms. Additionally, a plurality of rigging members may be included positioned at different locations on the sidewalls of the base for example.
For the exemplary purposes of this disclosure, yet other material separator implementations may comprise portable, interchangeable slanted screen decks. These portable, interchangeable slanted screen decks may be positioned and removably coupled in any suitable manner. For example, some portable, interchangeable slanted screen decks may be configured similar to the reducer grate decks previously described to include at least one catch member that couples to a horizontal bar between the upper end portions of the upright support members. Alternatively, other portable, interchangeable slanted screen decks may each be configured with a lip extending around the perimeter of the slanted screen deck. The lip may fit around each of the upper ends of the upright front and back supports for example when the interchangeable slanted screen deck is installed. Various locking mechanisms for holding the portable, interchangeable slanted screen decks in place may also be provided.
Further implementations are within the CLAIMS.
It will be understood that material separator implementations are not limited to the specific components disclosed herein, as virtually any components consistent with the intended operation of a material separator implementation may be utilized. Accordingly, for example, although particular components material separator implementations are disclosed, such components may comprise any shape, size, style, type, model, version, measurement, concentration, material, quantity, and/or the like consistent with the intended operation of a material separator implementation. Implementations are not limited to uses of any specific components, provided that the components selected are consistent with the intended operation of a material separator implementation.
Accordingly, for the exemplary purposes of this disclosure, the components defining any material separator implementation may be formed of any of many different types of materials or combinations thereof that can readily be formed into shaped objects provided that the components selected are consistent with the intended operation of a material separator implementation. For example, the components may be formed of: polymers; composites; metals, such as titanium, iron, steel, carbon steel, alloy steel, tool steel, stainless steel, aluminum, any combination thereof, and/or other like materials; alloys; any other suitable material; and/or any combination thereof.
Additionally, for the exemplary purposes of this disclosure, components may be formed of metal tube or bar stock, plate stock, angle stock, channel stock, and the like. For example, the grate members may be square tubes (e.g., 2″×2″×¼″) or bars (e.g., 2″×2″), rectangular tubes or bars, or the like that are turned on their edges so that they have a substantially diamond shape in cross-section. Spacing between main deck grate members of one material separator implementation may be about 4″, while in other implementations spacing of virtually any dimension may be provided, such as about 1″ to about 12″ for example. Spacing between reducer deck grate members and main deck grate members may be of virtually any dimension (e.g. about ¼″ to about 11″) subject to the spacing of main deck grate members.
Furthermore, the components defining any material separator implementation may be purchased pre-manufactured or manufactured separately and then assembled together. However, any or all of the components may be manufactured simultaneously and integrally joined with one another. The various implementations may be manufactured using conventional procedures as added to and improved upon through the procedures described here. Accordingly, manufacture of these components separately or simultaneously may involve extrusion, pultrusion, vacuum forming, injection molding, blow molding, resin transfer molding, casting, forging, cold rolling, milling, drilling, reaming, turning, grinding, stamping, cutting, bending, welding, soldering, hardening, riveting, punching, plating, and/or the like. Components that are manufactured separately may then be coupled with one another in any manner, such as with adhesive, a weld, a fastener (e.g. a bolt, a nut, a screw, a nail, a rivet, a pin, and/or the like), wiring, any combination thereof, and/or the like for example, depending on, among other considerations, the particular material forming the components. Other possible steps might include sand blasting, polishing, powder coating, zinc plating, anodizing, hard anodizing, and/or painting the components for example.
Material separator implementations are particularly useful for the separation and recycling of excavated material. However, implementations are not limited to uses relating to the foregoing. Rather, any description relating to the foregoing is for the exemplary purposes of this disclosure, and implementations may also be used with similar results for a variety of other applications and to sort all forms of aggregate materials, including stone, rubble, soil, gravel, sand, and recyclable materials, including concrete, brick, cinderblock, asphalt, and other demolition debris.
In describing the use of material separator implementations further and for the exemplary purposes of this disclosure,
Referring to
As specifically illustrated in
Next, referring to
Turning to
Referring to
This application claims priority to U.S. Provisional Patent Application to Dale Dees entitled “Material Separator,” Ser. No. 60/746,314, filed May 3, 2006, now pending, the disclosure of which is incorporated entirely herein by reference.
Number | Date | Country | |
---|---|---|---|
60746314 | May 2006 | US |