The present invention relates to blades, and more specifically, the present invention relates to blades that are configured to distress a surface of a material.
It has become fashionable to subject furniture and other objects/fixtures or surfaces of walls or flooring of a structure, such as a residence to a design style or technique sometimes referred to as distressing or antiquing. These design styles are intended to “age” the surface of the item or object treated to achieve a unique and/or rustic look. In one aspect of this design style, the surface of the item may be subjected to operations such as sanding, denting, and/or scraping. Typically these types of operations would be performed on furniture or other items, including walls or flooring that are composed of a cellulose-containing material, such as wood and composite board to produce a distressed surface.
Aspects of a distressed surface can include random irregularities formed in the surface of a material, such as variations relating to depth, width and length of the formed surface irregularity by a tool brought into contact with the material surface, as well as random locations along the surface of the material being scraped. In addition, imperfections are typically desirable, and can occur in response to variations, especially abrupt changes, in mechanical properties of a material having a surface to be distressed. Such changes or variations in mechanical properties could relate to density or hardness of the material. Examples include knots, burls and changes in grain direction, such as commonly associated with wood. The desirable appearance of a material surface variation such as a burl, for example, would typically exhibit discontinuities, sometimes referred to as “chattering”, such as formed by a scraping tool in the material surface both prior to and subsequent to a scraping tool encountering the burl.
Known constructions of apparatus have been devised in an attempt to produce materials having the desired aspects associated with a distressed material surface. Such constructions, have included sanding heads having discontinuities formed therein, molded heads that are placed in a pressurized contact with a material surface, as well as embossing drums or plates. However, all known apparatus have failed to produce the desired features associated with a distressed material surface.
A blade that can produce the desired features associated with a distressed material surface in a material would be desirable in the art.
According to an embodiment, a blade includes a body having a front surface and a curved back cutting surface of between about a 12 inch radius and about an 18 inch radius. The front surface has a mount angle of between about 92 degrees and about 98 degrees relative to a material surface of a material facing the back cutting surface. The back cutting surface has a substrate clearance angle of between about 1 and about 3 degrees relative to the material surface. In response to at least one of the blade and the material surface being brought into cutting contact and moved relative to each other, a resulting portion of the material surface is distressed.
According to another embodiment, a blade includes a body having a front surface and a curved back cutting surface of about a 15 inch radius. The front surface has a mount angle of about 96 degrees relative to a material surface of a material facing the back cutting surface. The back cutting surface has a substrate clearance angle of about 2 degrees relative to the material surface. In response to at least one of the blade and the material surface being brought into cutting contact and moved relative to each other, a resulting portion of the material surface is distressed.
According to another embodiment, a method for distressing a surface of a material includes providing a body having a front surface and a curved back cutting surface of between about a 12 inch radius and about an 18 inch radius. The body includes an angle subtended between the front surface and the back cutting surface and being between about 77 degrees and about 85 degrees. The method further includes positioning the front surface between about 92 degrees and about 98 degrees relative to a material surface of a material facing the back cutting surface. The method further includes positioning the back cutting surface between about 1 and about 3 degrees relative to the material surface. The method further includes directing the blade and the material surface into cutting contact, and moving at least one of the blade and the material surface relative to each other.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided is a blade for distressing a surface of a material such as by cutting, which is intended to include scraping. Embodiments of the present disclosure permit fabrication of materials having distressed surfaces not previously available, providing a substantially equal distribution of forces applied to the material surface by the blade. The blade is configured to have an extended life cycle. The blade is configured to be positioned in a substantially fixed orientation relative to the material surface, resulting in an optimum cutting contact with the material surface. It is intended that the term cutting contact include scraping, i.e., that the blade is removing shavings and/or chips from the material surface.
For purposes of the disclosure, a distressed surface is intended to exhibit a number of characteristics or aspects. For example, a distressed surface or material surface having a distressed appearance or the like is intended to include random irregularities formed in the surface of a material, such as variations relating to depth, width and length of the formed surface irregularity, such as by at least one embodiment of a blade of the present disclosure brought into contact with the material surface, as well as random locations along the surface of the material being distressed. In addition, a distressed surface is intended to include imperfections that may occur in response to variations, especially abrupt changes, in mechanical properties of a material having a surface to be distressed. Such changes or variations in mechanical properties could relate to density or hardness of the material. Examples include knots, burls and changes in grain direction, such as commonly associated with wood. With a distressed surface, the desirable appearance of a material surface variation such as a burl, for example, would typically exhibit discontinuities, sometimes referred to as “chattering”, such as formed by an embodiment of a blade of the present disclosure. The discontinuities would be manifested in the material surface at locations both prior to and subsequent to an embodiment of a blade of the present disclosure encountering the burl.
It is to be appreciated that another material may include cellulose-containing materials, such as composite board.
As shown in
In one embodiment, blade 10 is constructed of a single, contiguous material, such as a steel, such as M2 tool steel, or other suitable material that maintains an edge, even when subjected to impact, such as between the blade and the material surface. In another embodiment, blade 10 may be formed of several materials joined together, such as by welding, if desired. It is to be understood that the material, as well as the geometry of the blade and the orientation of the blade relative to the surface of a material brought into cutting contact with the blade, contribute to an increase life cycle of the blade of the present disclosure, as compared to other blade constructions.
As shown in
As further shown in the figures, in one embodiment, curved back cutting surface 20 defines a profile of between about a 12 inch radius and about an 18 inch radius, between about a 13 inch radius and about an 18 inch radius, between about a 14 inch radius and about an 18 inch radius, between about a 15 inch radius and about an 18 inch radius, between about a 16 inch radius and about an 18 inch radius, between about a 17 inch radius and about an 18 inch radius, between about a 12 inch radius and about a 17 inch radius, between about a 12 inch radius and about a 16 inch radius, between about a 12 inch radius and about a 15 inch radius, between about a 12 inch radius and about a 14 inch radius, between about a 12 inch radius and about a 13 inch radius, between about a 14 inch radius and about a 17 inch radius, between about a 15 inch radius and about a 16 inch radius, or any suitable range or sub-range thereof. In one embodiment curved back cutting surface 20 defines a profile that has about a 12 inch radius, about a 13 inch radius, about a 14 inch radius, about a 15 inch radius, about a 16 inch radius, about a 17 inch radius, about an 18 inch radius, or any suitable sub-range thereof. In other embodiments, curved back cutting surface 20 can define any radius or non-radial (e.g., oval) curve falling within this range. In another embodiment, as shown in
As shown in
As shown in
Mount angle 22, blade angle 34, substrate clearance angle 24 and curved back cutting surface 20 associated with blade 10 and surface 14 of material 12 not only exhibit at least the beneficial results separately, as previously identified, but in combination, also unexpectedly results in optimized operation of the blade during cutting contact between blade 10 and surface 14 of material 12 for forming distressed material surface 32. For example, in response to blade 10 encountering changes in mechanical properties of material 12, such as relating to changes or variations in density or hardness of the material 12, blade 10 exhibits discontinuities, sometimes referred to as “chattering”. That is, the discontinuities are manifested in the material surface at locations both prior to and subsequent to blade 10 encountering such discontinuities. As a result, the blade of the present disclosure, when brought into cutting contact and moved relative to a material surface, such as the surface of a cellulose-containing material, unexpectedly includes a resulting portion of the material surface having a distressed appearance. In one embodiment, surface 14 of material 12 is substantially planar. In another embodiment, surface 14 of material 12 is nonplanar. It is to be understood that blade 10 of the present disclosure can be used to distress nonplanar surfaces if the blade angular relationships or parameters previously discussed, such as mount angle 22 and substrate clearance angle 24 can be maintained.
In addition, a distressed surface is intended to include imperfections that may occur in response to variations, especially abrupt changes, in mechanical properties of a material having a surface to be distressed. Such changes or variations in mechanical properties could relate to density or hardness of the material. Examples include knots, burls and changes in grain direction, such as commonly associated with wood. With a distressed surface, the desirable appearance of a material surface variation such as a burl, for example, would typically exhibit discontinuities, sometimes referred to as “chattering”, such as formed by an embodiment of a blade of the present disclosure. The discontinuities would be manifested in the material surface at locations both prior to and subsequent to an embodiment of a blade of the present disclosure encountering the burl.
It is to be understood that since the angular orientations of the blade are relative to the material surface, there is no set orientation of the material relative to horizontal or vertical reference positioning. That is, the blade and material may be positioned such that chips and/or shavings fall away from the material, due to gravity. In one embodiment the blade can be configured to include a “chip breaker”, if desired, as long as the angular relationships between the blade and the material surface, as previously discussed, are maintained.
It is to be appreciated that the amount of force applied between the blade and the material surface can vary widely, depending upon factors including the density or hardness of the material, the speed of the cutting contact of the blade relative to the speed of the material, as well as other factors.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.