The present application is directed to the field of material distribution. More specifically, the present application is directed to the field of loading, distributing, unloading and storing large amounts of material such as proppant to frac well sites.
Proppants are silica sand and ceramic beads that are used to stimulate oil and gas wells. The process of utilizing proppants in wells is done to increase the well performance. The industry typically uses over 50 million tons of proppant annually. The products are typically processed and/or manufactured at a large production facility. The finished products are typically shipped by rail to transload sites where the proppants are stored and loaded to truck for transportation to the well site.
A typical transload is a site with rail track and storage silos used to off load proppant materials from the railcar. Proppants are transported in rail hopper cars from the production facilities to these transload sites and either off loaded to tanks or stored in the hopper car itself until sold. A common problem with storing proppant in hopper cars is that the car utilization for transport is lost, and depending on location, rail demurrage charges can accumulate. Demurrage can accumulate to millions of dollars annually.
Another problem that has developed in the industry is congestion at the transload sites which sometimes causes an embargo by the servicing railroads. Also, proppant storage is limited to areas with the typical needed infrastructure.
Further, the industry transloading process can be problematic in that infrastructures are typically large and permanent. Currently, hopper railroad cars are pulled into the processing plant and loaded through the top. The railcars then go to a transload site. The transload sites have yards with rail track and large storage tanks, and the railcars are emptied into the tanks. The empty railcars are pulled out and sent back to the plant. Typically, there's not enough tank storage at the transload site to hold all of the proppant, such as sand, so it is typically stored in the railcar. Some of the railcars may sit on the track for significant lengths of time, incurring significant costs for the supplier.
Further, hydraulic fracturing, or “frac” wells are becoming much larger and have more volume per well when compared with prior wells, necessitating railcars for storage. This fills up all the railroad track, resulting in railroad embargos on track, thus resulting in lost sales.
In another aspect, most conventional container systems used in the oil and gas industry are in the 12 to 23 ton range. This is generally the maximum capacity of a conventional steel transport system because the total weight of the system and material has to stay within legal road haul limits.
In one aspect, the material transport system of the present application is designed to transport and store proppants for the oil and gas industry. In another aspect, the bolt together design and modular container designs described herein typically permits the use of lighter weight materials for the system. Each pound that is removed from the weight of a transport system container allows for an additional pound of material to be placed in the container and transported, thereby reducing transportation expense on a per ton basis. In another aspect, the construction of the present application can reduce the expense associated with repair and maintenance on the transport system as well as the downtime of a transport system while the system is being repaired.
In another aspect, a material transport system according to the present application can include a removable material container positioned within a frame. In one aspect, the material container can be formed of a composite material. The use of such composite materials can reduce the overall weight of the material transport system according to this application. In other aspects, the container can include flanges that can be used to secure the container to the system frame. In other aspects, lower portions of the container can be supported by the system frame.
Following are additional aspects of the transport system of the present application:
Typical capacity of approximately 25 tons per transport system while maintaining the existing footprint;
In other aspects, typical capacity of approximately 24 to 28 tons per transport system;
Approximate typical tare weight of 3800 pounds with potential to go lighter depending upon the materials used;
In other aspects, approximate typical tare weight of 3200 pounds with potential to go lighter depending upon the materials used;
Typical structural framework can be reduced in size and optional hopper materials will be bolted together rather than welded;
Typical elimination of need for tools, pneumatics, hydraulics or other special resources typically needed to open and close the hopper gate;
Inclusion of a top hatch that can typically allow for optional flow through applications between stackable transport systems; and
Inclusion of a bolt on hopper section that can typically permit flexibility of materials used for hopper section.
In other aspects, inclusion of a molded composite container or hopper section that can typically permit flexibility of materials used for the container or hopper section.
The advantage is that the systems may be shipped on a flat car and unloaded and stored off the track on a piece of property. That flat car may then go right back to the plant, eliminating that slack time, and storage time.
As a further advantage, the same amount of volume may be moved, and demurrage charges and railcar and rail charge will be minimized or eliminated.
Further, this transport system may increase the volume of your shipping, as embargo situations will not occur.
In the present description, certain terms have been used for brevity, clearness and understanding. No unnecessary limitations are to be applied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different systems and methods described herein may be used alone or in combination with other systems and methods. Dimensions and materials identified in the drawings and applications are by way of example only and are not intended to limit the scope of the claimed invention. Any other dimensions and materials not consistent with the purpose of the present application can also be used. Various equivalents, alternatives and modifications are possible within the scope of the appended claims. Each limitation in the appended claims is intended to invoke interpretation under 35 U.S.C. § 112, sixth paragraph, only if the terms “means for” or “step for” are explicitly recited in the respective limitation.
Referring to
Removable Sidewall Material Transport System Configuration
Referring to
Referring to
Removable Sidewalls
In another aspect, system 10 typically includes optionally removable sidewalls 2100, 2200, 2300, and 2400. The sidewalls 2100, 2200, 2300, and 2400 are typically constructed from a material that is sufficiently strong, durable, and resilient for use in connection with transporting granular materials such as sand or other proppant. In another aspect, sidewalls 2100, 2200, 2300, and 2400 are typically constructed from a material having a lower density or lower weight than the materials used for frame 1000. In one aspect, the sidewalls 2100, 2200, 2300, and 2400 can be constructed from 3/16 inch corrugated aluminum. Alternatively, any other thickness and material not inconsistent with the purpose of the present application can be used for the sidewall. Such sidewalls are optionally corrugated to enhance the durability and strength of such sidewalls. The angled sidewalls resulting from such corrugation typically distribute the force and load created by the materials being transported, thereby reducing the likelihood of sidewall failure when compared to a sidewall that is not corrugated or otherwise configured to distribute such load forces.
In another aspect, the sidewalls 2100, 2200, 2300, and 2400 are typically bolted to the system frame 1000. Referring to
The ability to replace a sidewall 2100, 2200, 2300, or 2400 by unbolting the sidewall from the frame assembly can reduce the time and cost associated with such replacement when compared to repairs on a conventional system. In addition, the number of people needed to make such repair can be reduced. Typically, a single person will be able to unbolt, remove, and replace the sidewall, especially in view of the lighter weight material used for the sidewall. A repair to the sidewall of a conventional system typically requires at least two people, especially if the sidewall panel is constructed from steel.
Optionally Removable Top
Referring to
Hopper Assembly
Referring to
In other aspects, the slope of the hopper sidewalls 3100 is typically thirty-six (36) degrees (see, e.g,
In other aspects, as illustrated in
Discharge Gate Assembly
Referring to
In one aspect, each end of the slide gate shaft 4100 extends from the spur gear 4300 located proximate the sliding discharge flange 4200 and outward toward the frame 1000 assembly, typically interfacing with a slide gate shaft support bearing disposed on or otherwise interconnected with the frame assembly. In other aspect, each end of the slide gate shaft 4100 terminates at a distance inward from the outer edge of frame 1000 assembly, which can protect the shaft end from damage in the event the system contacts another object. A tee bar (not shown) can typically by interfaced with the end of the shaft 4100 to rotate the shaft 4100 and cause the sliding discharge flange 4200 to open or close as desired. In other aspects, another device could be interconnected over the end of the shaft to cause such rotation. For example, a tee bar or wheel could be interconnected with the rotating shaft to the inside of the bearing towards the spur gear. Such an integral tee bar, wheel, or other structure would eliminate the need for a separate tee bar or other structure that could become misplaced during transportation and cause reduced efficiency by causing a delay as the misplaced tee bar is located.
Modular Container Material Transport System Configuration
Referring to
Referring to
In another aspect, the upper lateral frame members 5210, 5220, 5230, and 5240 are removably interconnected with each other and the upright frame members 5110, 5120, 5130, and 5140 using coupling members 5010, 5020, 5030, and 5040 to permit the removal of the container 6000 as desired. In one aspect, the upper lateral frame members 5210, 5220, 5230, and 5240 are bolted together and oriented as shown in
Referring to
The container 6000 can be optionally connected to the frame 5000 using bolts that extend through apertures in the flanges and upright frame members. Other connection structures such as pins can likewise be used to connect the flange with the frame. In other aspects, other connection structures can be used to connect the container with the frame
In another aspect, the flanges 6010, 6020, 6030, and 6040 can be optionally integral with the container 6000 and cast in place during the container molding process. In other aspects, the flanges 6010, 6020, 6030, and 6040 can be a separate component from the container 6000 and mechanically fastened to the container 6000.
Referring to
Referring to
Referring to
Referring to
In other aspects, the lower lateral frame members can also include fork tubes 5510, 5520 to receive the forks of a fork truck.
Following is a nonlimiting example of replacing a damaged container 6000 according to another aspect of the application. In the event that the container 6000 becomes damaged, the damaged container 6000 can be removed from the frame 5000 and replaced by a new, undamaged container. The bolts connecting the container flanges 6010, 6020, 6030, 6040 to the frame uprights 5110, 5120, 5130, 5140, are removed. The bolts connecting the top lateral frame members 5210, 5220, 5230, and 5240 to the coupling structures 5010, 5020, 5030, and 5040 atop each of the upright frame members 5110, 5120, 5130, and 5140 are removed. The top lateral frame members 5210, 5220, 5230, and 5240 are removed from the assembly, and the coupling structures 5010, 5020, 5030, and 5040 are also removed from the top of each upright frame member 5110, 5120, 5130, and 5140. The damaged container 6000 is then lifted from the frame 5000 assembly using hooks (not shown) that are connected with rings (not shown) mounted in the container 6000 top. A new, undamaged container is then lowered into the frame assembly. Bolts are inserted through each aperture in the upright frame members 5110, 5120, 5130, 5140 and the corresponding apertures in each flange 6010, 6020, 6030, 6040. The coupling structures 5010, 5020, 5030, and 5040 are replaced on the top of each upright frame member 5110, 5120, 5130, and 5140, and the top lateral frame members 5210, 5220, 5230, and 5240 are then reconnected with the coupling structures 5212, 5222, 5232, 5242. Once the foregoing components are properly seated, all of the bolts are tightened to a desired torque. The foregoing example is nonlimiting, as a variety of other suitable techniques could also be used to replace a damaged container. Additionally, the location of flanges or other support members on the container, as well as the geometry of the container 6000 in relation to the frame 6000 will affect the steps and procedures for replacing a container 6000 or other components of system 20.
The system of the present application can be used in a variety of applications. In addition to usage at a transloading facility as described above, the present system can be incorporated right into the oil drilling pad at a drilling location. Instead of sending a large number of pneumatic trucks to a transload facility when sand is needed, usage of the system described herein could permit all the sand needed to be staged on site or close by. Such nearby storage could solve the typical concern over possibly losing continual flow of sand into the well during operations. In addition, the system described herein could be used in the grain and coal industries, as well as other bulk dry goods that are typically shipped today using conventional methods.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make anew the invention. Any dimensions or other size descriptions are provided for purposes of illustration and are not intended to limit the scope of the claimed invention. Additional aspects can include slight variations, as well as greater variations in dimensions as required for use in the industry. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application claims the benefit of prior-filed, co-pending U.S. Provisional Patent Application No. 62/403,369, filed Oct. 3, 2016, and U.S. Provisional Patent Application No. 62/545,664, filed Aug. 15, 2017, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3602400 | Cooke | Aug 1971 | A |
5762222 | Liu | Jun 1998 | A |
8585341 | Oren et al. | Nov 2013 | B1 |
20090057272 | Modgil | Mar 2009 | A1 |
20110127178 | Claussen | Jun 2011 | A1 |
20120181086 | Addison | Jul 2012 | A1 |
20150086307 | Stefan | Mar 2015 | A1 |
20150291348 | Lopez | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
20150192061 | Dec 2015 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2017/054748 dated Feb. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20180093823 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62545664 | Aug 2017 | US | |
62403369 | Oct 2016 | US |