(1) Field of the Invention
The present invention relates to a method of improving and increasing sustainable shear force capabilities at an interfacing surface between a rigid material and a flexible material.
(2) Description of the Prior Art
It is well known to utilize a resilient bushing having a pair of concentric rigid, typically metal sleeves.
In the past, most interfacing surfaces 25 and 27 were relatively smooth; that is, their surface roughness was generally less than 170 RMS as measured by SAE Standard J448a. A method of increasing adhesion resistance to shear failure was the addition of a phosphate coating of various thicknesses. However, the surface roughness did not exceed roughly 170 RMS.
It is also well known to increase shear force capabilities between two surfaces by sandblasting the interfacing surfaces, see for example U.S. Pat. No. Re. 29,823 issued to Sievers et al. (hereinafter referred to as Sievers et al.). Sievers et al. disclose sandblasting at least one of the interfacing surfaces 25 and 27 and generating a generally even surface having a surface roughness to between greater than 170 RMS and less than about 260 RMS.
The object of this invention is to improve and increase sustainable shear force capabilities at an interfacing surface between a rigid material (for example: a structural metal) and a flexible material (for example: an elastomeric dampening material).
Another object of the present invention is to improve and increase the sustainable shear force capabilities at an interfacing surface without internal or external fastening devices such as bolts, screws, washers, and the like.
Yet another object of the present invention is to improve and increase the sustainable shear force capabilities at an interfacing surface in a smaller, more compact volume than previous methods.
Yet another object of the present invention is to improve and increase the sustainable shear force capabilities at an interfacing surface with a simplistic (that is without a large number of parts) and economy.
A method and apparatus for improving resistance to adhesion failure between two interfacing surfaces utilizing by producing a particular shape and roughness is disclosed. The present invention utilizes both coarse and fine surface roughness producing techniques. The surface, to be treated, has a coarse (large scale) surface roughness component on the order of about three to four orders of magnitude greater than the fine (small scale) surface roughness component. The invention uses a plurality of superimposed roughnesses rather than one range of roughness, as seen in prior art. The appropriate surfaces of the rigid part are roughened (e.g., by machining, casting, molding, soundblasting) to yield surfaces having both small (fine) and large (coarse) scale roughness components. The large-scale roughness component is about three orders of magnitude greater than the small scale roughness component.
These and other features and advantages of the present invention will be better understood in view of the following description of the invention taken together with the drawings wherein:
Referring to
In a preferred embodiment, a 50 durometer fluorosilicone elastomer was used. However, 40, 50, 60, and 70 durometer elastomers have also been tested. It should be stressed, however, that the choice of the elastomeric material 30 will depend on the circumstances of its intended use and is not limited in any way to these stated durometer values or to fluorosilicone elastomers.
The inner and outer rigid members 33 and 35 may also be selected from any material. The material chosen will again depend upon the circumstances in which it is intended to be used. Typically, the inner and outer rigid members 33 and 35 are made from metal (e.g., aluminum); however, the material can be any material having the necessary rigidity such as steel, plastic, laminates, composites, ceramics, biological material (bones, teeth, tusks), etc. Optionally, the inner and outer rigid members 35 and 33 may be anodized. The decision to anodize the inner and outer rigid members 35 and 33 will depend on a combination of the material chosen and the operating conditions.
The inner rigid member 35 has an outer surface 40 while the outer rigid member 33 has an inner surface 39. The outer surface 40 and the inner surface 39 are machined, or otherwise created, to have a coarse surface roughness component. In one preferred embodiment, the coarse surface roughness component was created first, using a standard industrial milling machine, and the fine roughness component was produced afterwards, by sandblasting. The outer surface 40 and/or inner surface 39 are sandblasted or otherwise created using standard industrial techniques.
Most typically, the dual coarse-fine roughness is produced on the rigid material surface by two separate operations; e.g., a machining operation followed by a blasting operation. However, alternatively, both course and fine roughness components may be produced at the same time; e.g., by a casting operating for metals, or by a molding operation for rigid plastics. This invention uses a plurality of roughness components working cooperatively. In one embodiment, the coarse roughness component was created using a milling operation. In another embodiment, the coarse roughness component was created using an elox operation. In one embodiment, the fine roughness component was created by grit blasting with aluminum oxide.
The coarse roughness component would generally be within the range of 50,000 to 1,000,000 micro-inches. Coarse roughness components may center around any coarse roughness (e.g., 50,000, 200,000, etc.) within this 50,000 to 1,000,000 micro-inch range. The fine roughness component would generally be within the range of 100 to 2,000 micro-inches. Fine roughness components may center around any fine roughness (e.g., 200, 550, 1,000, etc.) within this 100 to 2,000 micro-inch range. In one particular successful embodiment, a fine roughness component of 550 micro-inches was specified with a tolerance of ±150 micro-inches producing an actual measured fine roughness component between 400 to 700 micro-inches.
The coarse roughness component is three orders of magnitude greater than the fine roughness component; i.e., the ratio of coarse roughness component to fine roughness component will, in one embodiment, be 1,000. Examples of various embodiments of this invention, which demonstrate the relationship between the coarse roughness component and the fine roughness component, are presented.
The outer surface 40 and/or inner surface 39 are characterized by having surface roughness components that include both coarse 50, (large scale),
The coarse surface roughness component 50 is of the order of three orders of magnitude greater than the roughness of the fine surface roughness component 51. In a preferred embodiment, coarse surface 50 has a surface roughness component of about 200,000 micro inches and a fine surface 51 roughness component has a surface roughness of about 500 micro inches.
In another embodiment, a coarse surface 50 roughness of 300,000 micro-inches and a fine surface 51 roughness of 200 micro-inches was used. The interface 55 having both coarse 50 and fine 51 surface roughness components allows the interface to sustain greater shear and other forces than surfaces having only fine or coarse roughness surfaces.
The coarse and fine surface 55 can be applied to any device with a rigid-to-flexible interface that needs to resist shear, tension, torsion, compression, or any disturbing steady-state or variable force or forces. The coarse and fine surface 55 could be used on virtually any type of anti-shock, vibration, or noise mount; e.g., automobile engine mounts (
Rigid components 62, 72, would be designed using well-known engineering criteria for design and performance and would be manufactured using any suitable standard art. Flexible material 30, 66, 76, would be selected using well-known engineering criteria for required characteristics (e.g., damping, strength, durometer value, shock, and vibration properties) and would be manufactured using any suitable molding process which leaves or encourages the desired resilient properties and facilitates bonding to interfacing surfaces 64. It would be advantageous, as with any molding process, to pay attention to eliminating voids (e.g., gas, air bubbles) and contaminants (e.g., dirt, grease) at the interface 64. As with standard methods, proper surface preparation is advised. It should be noted that an interface with this improved method of bonding geometry will be stronger than other methods at all levels of cleanliness.
In light of the above, it is therefore understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application is a divisional of pending prior U.S. patent application Ser. No. 11/229,424 filed on 12 Sep. 2005 and claims the benefit under 35 U.S.C. §121 of the prior application's filing date.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.
Number | Date | Country | |
---|---|---|---|
Parent | 11229424 | Sep 2005 | US |
Child | 12462659 | US |