1. Field
This invention is directed to a materials dewatering and crusher unit which is particularly constructed for receiving and processing large quantities of oil refinery residues, particularly from the delayed coking process as coke feed chunks, or coal feed chunks or the like, including fines, which have been mixed with large volumes of water, whereby by the way of the present apparatus and method of operation the water is rapidly removed from the material chunks and the chunks are readily reduced to desired sizes such that the consequent substantially dried product can be conveyed readily to further processing equipment or stations by conventional conveyor systems.
As background information, the pet coke is manufactured in tall towers, approximately 30′ diameter and 100′ tall. To remove material from the towers (ovens) a hole is bored down thru in the center of the hardened coke in each tower of 18-24″ in diameter, and then a high pressure water spray blasts the broken pieces of coke from the ovens (900-1200 gpm of water at 3500 psi). Water and “Pet Coke” comes out of the tower bottom and is captured by the present unit. Our drag chain conveyor moves material and water over a deck and screens where the material is dewatered and then crushed. Additional screens are positioned preferably down stream of the crusher for additional dewatering. We run approximately 500 tons per hour of coke. The pet coke is around 55 pounds per cubic foot and crushes easily. It normally is high BTU (12000 BTU plus) and high sulfur (4 to 6 percent). Normal painted surfaces rust quickly so we are using stainless steel decks and screens and employ a galvanized frame.
Typically where delayed coking units are employed, the coke from the coking towers or drums which can hold typically 200-400 metric tons of coke can extend vertically for sixty fee or more. The coke is blasted out of the towers by high pressure water jets outletting from a hollow shaft extending down thru a large hole cut down thru the center of the solidified coke.
This pressure blasting comprises drilling a hole down thru the coke by means of a cutting device on the shaft while jetting high pressure water against the coke. This process typically takes several hours and results in many tons of cracked up coke and water being mixed in the tower. The water/coke mixture is then discharged through a bottom port of the tower to dewatering or other systems such as crushing, classifying or conveying apparatus
2. Prior Art
In such coke discharge operations, a large amount of contaminated wastewater results and must be contended with out flooding of the coking site. Many types of dewatering systems have and are being used such as shown in U.S. Patents or applications; US2003/0217960 A1; U.S. Pat. Nos. 5,460,699; 7,108,793 B2; 4,420,404; 2,474,251; 3,257,309; 5,355,696; and 4,986,910. None of the above prior apparatus or methods afford the simplicity and effectiveness of the present invention which is summarized below.
A dewatering unit for separating chunks of petroleum (PET) coke from the large quantity of water used to unload coking towers, wherein the unit employs a conveyor having a series of drag bars extending laterally across the conveyor and longitudinally spaced apart and connected at their ends to tandem continuous chains, the top flight of the chains and the drag bars ride on top of a screening deck and the bottom flight of the chains and bars ride on top of a sluice deck, wherein water drain screens are provided in the screening deck, the forward portion (dewatered material discharge end) of the screen deck or the conveyor itself preferably is angled upwardly toward the discharge end of the conveyor, both decks are contained within wall means which provides a water containment means, and wherein water discharge port means is provided in a tail end portion of the wall means.
The invention will be further understood from the drawings herein and their description below, wherein the various structures are not drawn to scale or consistent proportions, and wherein;
Conventional conveyors pull feed chunk coke material beneath a single roll crusher which normally crushes the material to 6″ by 0 size so that it can be handled on conventional belts without damage to the belt. The present invention is designed mainly for a special use at an oil refinery that produces petroleum coke. At the end of the refinery process, there is an oily material left which is pumped into coking towers. It is then baked for about 12 hours in towers to remove the liquids. The material solidifies into “pet coke” which looks and handles a lot like coal.
The present unit receives a discharge from the coking towers of about 500 tons/hour of chunks of coke material and water. The coke is about 55 pounds per cubic foot and crushes easily. The present unit receives, dewaters, crushes, and conveys that material. The water is then discharged in a controlled environmentally safe manner into holding tanks below the machine or into ponds where it is recycled and used for the blasting of coke from the next tower.
Dragging the material and water by drag bars (flights) over screen areas as shown in the drawings does the dewatering. Water and fines pass through the screens by gravity and are moved by the bottom flight in the opposite direction to the dewatered material carried on by the top flight. The openings of the screens can be varied to collect small particulates and coke fines and the drying effectively allows the material to be transported to further processing sites on a normal belt system. The dewatering occurs in spaced sections of the conveyor deck and is more effective by widening the conveyor, by slowing the conveyor chain and by thinning the amount of material so water passes through more easily. The bars dragging across the screens has proven to be very effective and is different from other screen processes wherein the screen is the moving mechanism. In a most preferred embodiment, additional screens are provided downstream of the crusher device whereby more efficient dewatering results from the more porous bed of crushed coke.
Referring to the drawings die present invention, in certain preferred embodiments, comprises a materials conveyor and crusher unit generally designated 8 having a materials receiving or tail end 9 and a materials discharge or head end 10 for receiving, dewatering, crushing and conveying chunks of coke, coal, or the like feed material 11. This structure has an elongated longitudinal dimension 12 and a substantially uniform lateral dimension 13. The unit has laterally spaced continuous chains 14, 14A mounted around a drive sprocket 15 and an idle sprocket 17 mounted on frame means 19 and providing top 16 and bottom 18 chain flights. A drive means 21 for rotating sprocket 15 for cycling (running) said chains in tandem is mounted on said frame. A plurality of longitudinally spaced (e.g., 1-3 ft.) material drag (flight) bars 20 span and are connected at their ends 23 to said chains as shown in
As seen from
Further to the drawings, and in particular to
In a further embodiment the conveyor includes screening sections of different screen opening dimensions to thereby size the final product as desired.
As shown in
A preferred method embodiment of the present invention comprises the steps of feeding a stream of chunks of crushable material and water to a stationary screening deck of a continuous conveyor having top and bottom flights carrying lateral drag bars, wherein the deck is laterally oriented between the flights, operating the conveyor to slide the bars and material along the screening deck and over dewatering screens mounted in the screening deck to gravity separate the water from the material and to drain the water onto a sluice deck located underneath the bottom flight and supporting the drag bars thereon, continuing conveying the dewatered material on the top flight forwardly to further downstream processing equipment such as a materials crusher while dragging the water (and fines) on the sluice deck rearwardly to a discharge location at a tail end portion of said sluice deck.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications will be effected with the spirit and scope of the invention.
This application claims priority under 35 U.S.C. 119(e)(1) based on Applicant Provisional U.S. Patent Application Ser. No. 61/134,643 filed Jul. 11, 2008 and titled “MATERIALS PROCESSING CONVEYOR UNIT”.
Number | Name | Date | Kind |
---|---|---|---|
955843 | Bossert | Apr 1910 | A |
1872301 | Klugh | Aug 1932 | A |
1920158 | Albertson | Jul 1933 | A |
2127987 | Slater | Aug 1938 | A |
2178456 | Pool | Oct 1939 | A |
2436795 | Dennis | Mar 1948 | A |
2593353 | Shelton, Jr. | Apr 1952 | A |
2835388 | McLean | May 1958 | A |
2845180 | McAfee | Jul 1958 | A |
2861688 | Harms | Nov 1958 | A |
2865509 | Harlan | Dec 1958 | A |
2919806 | Hock et al. | Jan 1960 | A |
3102857 | Dauenhauer | Sep 1963 | A |
3420658 | Berhenke et al. | Jan 1969 | A |
3570674 | Dahlem | Mar 1971 | A |
3795316 | Wood | Mar 1974 | A |
3926302 | Smith | Dec 1975 | A |
4243527 | Leonard | Jan 1981 | A |
4639258 | Schellstede et al. | Jan 1987 | A |
4731180 | Huff | Mar 1988 | A |
4948299 | Cronk et al. | Aug 1990 | A |
5156749 | Williams | Oct 1992 | A |
5268100 | Hartzell | Dec 1993 | A |
5339961 | Mayhak | Aug 1994 | A |
5421147 | Holden et al. | Jun 1995 | A |
5451315 | Miller | Sep 1995 | A |
5565112 | Bratten | Oct 1996 | A |
5569382 | Reynders | Oct 1996 | A |
5571404 | Derenthal | Nov 1996 | A |
5601729 | Bratten | Feb 1997 | A |
5603846 | Uchiyama et al. | Feb 1997 | A |
5624579 | Bratten | Apr 1997 | A |
5643468 | Ure | Jul 1997 | A |
5779887 | Rector et al. | Jul 1998 | A |
5832873 | Tu | Nov 1998 | A |
5858218 | Setlock et al. | Jan 1999 | A |
5961847 | Creps et al. | Oct 1999 | A |
5968353 | Herbert et al. | Oct 1999 | A |
6026765 | Tu | Feb 2000 | A |
6494167 | Chen | Dec 2002 | B1 |
6540911 | Bajema | Apr 2003 | B1 |
6899807 | Cummings | May 2005 | B2 |
7122119 | Gribble et al. | Oct 2006 | B2 |
7824547 | Reynders et al. | Nov 2010 | B2 |
7913854 | Bratten et al. | Mar 2011 | B2 |
8029670 | Dietenhauser et al. | Oct 2011 | B2 |
20030127375 | Gribble et al. | Jul 2003 | A1 |
20030230520 | Cummings | Dec 2003 | A1 |
20070051672 | Reynders et al. | Mar 2007 | A1 |
20070210013 | Bratten et al. | Sep 2007 | A1 |
20110005985 | Dietenhauser et al. | Jan 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
61134643 | Jul 2008 | US |