The present disclosure relates in general to a method of manufacturing and the material used to manufacture packaging/containers. Such packaging/containers may be readily used to transport product and/or display the contents of the packaging/containers following delivery of the packaging/containers to a user.
Various packages and containers are conventionally provided for transporting product to and storing product in a retail environment and for display to prospective customers. As is conventionally known in the packaging industry, such containers can be transported to manufacturing and/or retail environments for display in knock-down form, i.e., flattened but otherwise being glued, stapled or otherwise affixed or joined together, such that they are already substantially pre-assembled. In such a knock-down state, personnel assembling the container need only open the sides and/or ends of the container and affix the container bottom wall or walls into its assembled condition or the container can be moved to its assembled condition by an automated process requiring no personnel to actually move any of the sides and/or ends of the container. As a result, such final assembly may be performed prior to loading manufactured product. Alternatively, such final assembly may be performed such that the product can be placed into a resulting assembled container for ready display.
Conventionally, it has been deemed advantageous at times to stack a plurality of such containers, one on top of the other, for the purposes of transport to a retail environment or during display in the retail environment. In this use, it is necessary that the containers stacked above the bottom-most container are amply supported and also that a stack of a number of such containers, when loaded with product, will not collapse.
The following is a simplified summary to provide a basic understanding of aspects of various embodiments according to the present disclosure.
In accordance with the present disclosure and the illustrated embodiment or embodiments, a method of manufacturing containers, the resulting containers, and the associated blanks and pre-assemblies used are provided, which, when utilized, result in a container that has increased side panel strength and corner strength so as to enable a manual and/or an automated erection or final assembly of the resulting container via a manual or an automated process and the effective vertical stacking of containers when the container includes product.
Additionally, in accordance with the present disclosure, the manufactured container provides the dual use of being both a transporting container for transporting product to a retail environment and a display container configured to display the product in that retail environment.
Other aspects of the present disclosure will become apparent from the following descriptions when considered in conjunction with the accompanying drawings.
In the following description of an embodiment or embodiments in accordance with the present disclosure, reference is made to the accompanying drawings. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope and spirit of the present disclosure.
The manufacture and use of containers that may be used for more than one purpose, e.g., for transport of product and subsequent display of product in a retail environment, are becoming increasingly popular among both manufacturers and retailers because such containers enable a reduction or minimization of the amount of container material while increasing or maximizing the amount of display space available for product. Thus, it is conventionally known that blanks, e.g., items made from some type of paperboard and/or other material that is die-cut and scored for subsequent manipulation to form a pre-assembly or pre-assemblies, e.g., a partially assembled container wherein the blank, or blanks, is manipulated and affixed to itself, or to each other but is not finally assembled. Containers, e.g., packaging, cartons, boxes, etc., made from the pre-assembly or pre-assemblies, may be provided that enable product to be transported to a retail environment in a transporting container and displayed in the retail environment within the transporting container. Minor modification of the container may be required.
The durability, strength and stackability of such packaging or containers often require increasing the amount of material content within the container. However, further reducing the amount of material content within containers has become a significant goal of many manufacturers and retailers because of the adverse effect that container has on landfills and the environment in general as well as the cost of manufacturing, transporting and disposing of such containers. In addition, it is desirable, where appropriate, to manufacture containers by using two pieces of material, or blanks, with one blank used to produce the container and the other to create a tray and/or to reinforce the corners. Such use of two blanks may be more cost effective and/or efficient rather than attempting to achieve the cost effectiveness or efficiency with only one blank.
Thus, both manufacturers and retailers are recognizing a need to reduce the number of containers used to provide product to an end-consumer in a retail supply chain. Thus, is done in an effort to conserve natural resources, reduce an impact on the environment, improve efficiency by saving the time it takes to erect a container by reducing the number of human touches it takes, and reduce costs associated with product manufacture and sale. In an effort to achieve these goals, various initiatives have been put in place by both suppliers and retailers to reduce the overall number of product containers and the materials used therein by some percentage, e.g., five percent.
One conventional mechanism for reducing the amount of containers necessary to provide product to potential consumers in a retail environment is by providing dual-use containers wherein a container can be used both to contain product during transporting and also to display the product once that product has arrived in a retail environment, e.g., a store or other environment offering product for sale.
Further, in an effort to further use available space in a retail environment, retailers may be interested in using the display function of such dual-use containers in a manner such that containers may be stacked on top of one another to improve or optimize vertical space utility in the retail environment. Simply put, having the ability to be able to stack display cartons enables a store operator to present more product and/or different types of product in a manner that a customer can see. For example, by providing the opportunity to stack such containers, e.g., display cartons, on a counter, a store operator is able to increase the use of counter space such that more than one carton can occupy the same horizontal counter foot print. As is understood in the retail industry, such a configuration increases sales because customers are able to see more available product and product types for sale.
However, a problem with stacking such display cartons and shipping cartons, whether such packaging is dual-use transporting/display containers or otherwise, is that the weight of the carton(s) in combination with the weight of the product(s) stored in the container(s) can cause one or more containers to be damaged or collapse. As a result, a store operator is left with damaged, ineffective or completely non-functioning display container(s), which causes operational problems and reduces likelihood of sales to consumers.
Accordingly, based on all of these factors, there is a need to provide a method of manufacturing reduced-material content-containers and associated pre-assemblies and blanks, which, when utilized, result in a container that has significantly improved stacking strength, or anti-nesting characteristics, over conventional containers and optionally provides the dual use both as a transporting container for transporting product to a retail environment and a display container configured to display the product in that retail environment. With this understanding of one area of packaging/container utility in mind, a description of at least one illustrative embodiment, according to the present disclosure, follows.
According to at least one illustrated embodiment, there is disclosed a shipping container, display container and/or a dual-use container, e.g., for transporting product and subsequent display of the product, as well as corresponding container pre-assemblies and blanks, that includes, overall, a reduced amount of material content while maintaining or increasing the stacking strength of such a container by the use of internal support sections in the corners of the container. Such internal support sections may allow for a reduction of the material in the outer shell of the container leading to an overall reduction in the amount of material. In view of recent retailer initiatives to reduce the amount of material content in containers, such containers may have increased utility to manufacturers and retailers. Thus, providing containers with reduced material content and requiring fewer human touches to erect a container using a manual or an automated process would be of increased value. Additionally, because of the unique structure provided in accordance with the at least one illustrated embodiment, side wall strength may be increased as well.
Additionally, based on the at least one illustrated example of a container provided with corner support sections, as disclosed herein, it should be appreciated that the incorporation of the support sections also increases stackability of the resulting containers without requiring a lengthier time period for final assembly and without a need for assemblers (either human or automated or semi-automated equipment) to have superior capabilities. This is because, as explained herein, the majority, if not all, of manipulation of the pre-assembly to form or put in place the corner support sections is already performed as part of the final assembly of the container. As a result, the additional operations needed to provide for the corner support sections, in accordance with the present disclosure, is reduced or eliminated relative to what would be conventionally required for installing or assembling conventional corner supports.
Understanding of the manufacturing of a container, blanks and/or pre-assemblies, in accordance with the present disclosure, may best be understood by first introducing a manufactured container in accordance with an illustrated embodiment and according to the present disclosure.
As shown in
One of the reasons for support sections 102A and 102C being comprised differently from support sections 102B and 102D is for ease of erecting the container 100 by reducing the number of human touches or allowing for automated steps to erect container 100 (see
A display cut-out 145 may be provided in front panel 120 of the primary blank 101. Accordingly, although not shown, cut-out 145 may be formed when a perforation is used to remove material (not shown) from the container 100 so as to provide an access opening for product displayed in the container 100. Opening 145 may be in communication with an open top end of the container 100, which, during use as a display, may be free of any top wall or panel following modification of the container 100 for the display function of the dual-use container. It is within the scope of the present disclosure that the opening 145 may be omitted, for example, if the container 100 is to be used only as a shipping container. Additionally, it is within the scope of the present disclosure that container 100 may include a top (not shown).
Regardless of which supplementary blank 103 is affixed to which side panel 105, 115, the initial opening of the pre-assembly 300 results in the support sections 102B and 102D snapping into positions extending diagonally across their respective corners of the container 100 and results in the support sections 102A and 102C extending at a predetermined angle such as, for example, substantially a 90° angle relative to their central sections 160A,C, as shown in
The appropriate faces or surfaces of the primary blank 101 and supplementary the blanks 103 may be affixed to each other in one or more suitable manners including application of adhesive on one or both of the affixed faces, use of staples, tape, etc. However, of particular utility may be the use of adhesive to attach the blanks 101 and 103 together. Such an adhesive may be selected from various different types of adhesives that enable varying speeds of set times and strengths of adherence. For example, the blanks 101 and 103 may be adhered to one another using an adhesive that may be what is referred to in the packaging industry as a “cold-set” adhesive, meaning that the adhesive is not heated prior to application. Such adhesives generally take longer to set, i.e., provide adherence of the materials being joined. However, such adhesives also generally provide a relatively strong bond. Cold-set adhesives differ from what are referred to as “hot-melt” adhesives, which generally set relatively faster but provide a relatively weaker bond.
Thus, it should further be appreciated that cold-set adhesives provide for the ability to alter positioning by, for example, a lateral sliding movement, immediately following initial contact between the blanks 101 and 103. Therefore, it should be understood that the folding operations performed as part of pre-assembly manufacture, and explained further below, may result in some lateral sliding movement between the blanks 101 and 103 during the pre-assembly folding operations.
Following from what is shown or suggested in
Because the working scores 111A, 111C on the primary blank 101 are needed to move the working scores 602A, 602C on supplemental blanks 103A, 103C to properly move and place the support panels 202A and 202C in a flattened position yet maintaining their capacity to function properly during erection of pre-assembly 300 into container 100, the support section movers 200A and 200C need to be disposed on the support sections 102A and 102C of supplemental blanks 103A and 103C nearest the working scores 111A and 111C of primary blank 101. Thus disposed, when the pre-assembly 300 is opened to a partially erected condition (see
Thus, as shown in
As a result of cooperation of the components of blanks 101 and 103 when container 100 is erected, one or more optional air cells 170 may be created in the container 100, as shown, for example, in
A finally assembled container 100 is formed, for example, in a rectangular configuration, with side panels 105, 110 and front and rear panels 120, 110 forming a respective pair of opposing walls. Further, container 100 includes increased strength by not only the support sections 102A-D at the corners of the container 100 where the various panels intersect, but also by the optional air cell 170 provided at those same corners. However, it should be appreciated that a majority of the increased strength and anti-nesting characteristics is due to the plurality of support sections 102A-D of the supplementary blanks 103 extending diagonally across respective corners of the container 100.
Although
Pre-assembly is normally performed at a container manufacturing facility to produce a pre-assembly, which may also be thought of and referred to as a knock-down of the container. These pre-assemblies may be shipped to a customer location such as a product manufacturing facility. At the product manufacturing facility, the customer may perform final assembly/erection of the containers by, for example, folding and assembling various panels of the container to provide a container that is configured to hold manufacture product, e.g., for shipping and/or display.
In such operations, the labelling of the resulting containers may be performed by the customer of the pre-assemblies and/or as part of manufacture of the pre-assemblies as illustrated in
Subsequent to blank manufacturing 1315, multi-blank pre-assembly operations may be performed, such as suggested in step 1320 in
Thus, at the beginning of such operations, raw material 1325 is used to produce blanks 1330. Such raw materials 1325 may include but are not limited to various grades, types, configurations and combinations of corrugated fiberboard and/or solid paperboard, liner board, board of various fluting types and combinations as well as various types of sealants, non-organic materials and inks and dies of various suitable types.
It should be understood that implementation of the method of manufacturing and the pre-assembles and blanks according to the present disclosure involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof.
While the present disclosure has been described in conjunction with an illustrated embodiment described above, it should be evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the embodiment of the present disclosure, as set forth above, is intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the present disclosure. Thus, it should be understood that containers come in many different varieties but most packaging containers can be folded and then assembled from a flat form, known as a blank or pre-assembly. Accordingly, it should be understood that the pattern for any blank, pre-assembly or container may be different than that described herein.
Although the present disclosure has been described and illustrated in detail, it is to be clearly understood that this is done by way of illustration and example only and is not to be taken by way of limitation. The scope of the present disclosure is to be limited only by the terms of the appended claims.
This application claims benefit to and priority of U.S. Provisional Application No. 61/165,716 filed on Apr. 1, 2009 and is a continuation-in-part of prior U.S. patent application Ser. Nos. 12/121,414, filed on Jun. 6, 2008, and 12/323,821 filed on Nov. 8, 2008, the entirety of all three application being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61165716 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12121414 | May 2008 | US |
Child | 12752355 | US | |
Parent | 12323821 | Nov 2008 | US |
Child | 12121414 | US |