U.S. Pat. No. 7,344,000 B2 discloses a materials handling vehicle comprising a base, such as a power unit, and a carriage assembly, such as a platform assembly, wherein the carriage assembly is movable relative to the base. The vehicle further comprises a cylinder coupled to the base to effect movement of the carriage assembly relative to the base and a hydraulic system to supply a pressurized fluid to the cylinder. The hydraulic system includes an electronically controlled valve coupled to the cylinder. The vehicle further comprises control structure to control the operation of the valve such that the valve is closed in the event of an unintended descent of the carriage assembly in excess of a commanded speed.
In accordance with a first aspect of the present invention, a materials handling vehicle is provided comprising: a support structure including a first member; a movable assembly coupled to the support structure; a hydraulic system; and a control system. The support structure further comprises lift apparatus to effect movement of the movable assembly relative to the support structure first member. The lift apparatus includes at least one ram/cylinder assembly. The hydraulic system includes a motor, a pump coupled to the motor to supply a pressurized fluid to the at least one ram/cylinder assembly, and at least one electronically controlled valve associated with the at least one ram/cylinder assembly. The control structure may estimate a speed of the movable assembly from a speed of the motor and may control the operation of the at least one valve using a comparison involving the estimated movable assembly speed and a determined speed.
The control structure is capable of energizing the at least one valve so as to open the at least one valve to permit the movable assembly to be lowered in a controlled manner to a desired position relative to the support structure first member.
The control structure may de-energize the at least one valve in response to an operator-generated command to cease further descent of the movable assembly relative to the support structure first member.
The at least one valve may function as a check valve when de-energized so as to block pressurized fluid from flowing out of the at least one ram/cylinder assembly, and allowing pressurized fluid to flow into the at least one ram/cylinder assembly during a movable assembly lift operation.
The at least one valve may comprise a solenoid-operated, normally closed, proportional valve.
The at least one valve may be positioned in a base of the at least one ram/cylinder assembly.
The support structure may further comprise a power unit and the support structure first member may comprise a first mast weldment coupled to the power unit. The lift apparatus may comprise: a second mast weldment movable relative to the first mast weldment and a third mast weldment movable relative to the first and second mast weldments. The at least one ram/cylinder assembly may comprise: at least one first ram/cylinder assembly coupled between the first and second mast weldments for effecting movement of the second and third mast weldments relative to the first mast weldment and a second ram/cylinder assembly coupled between the third mast weldment and the movable assembly so as to effect movement of the movable assembly relative to the third mast weldment. The at least one electronically controlled valve may comprise: at least one first solenoid-operated, normally closed, proportional valve associated with the at least one first ram/cylinder assembly, and a second solenoid-operated, normally closed, proportional valve associated with the second ram/cylinder assembly.
The control structure may comprise: encoder apparatus associated with the movable assembly for generating encoder pulses as the movable assembly moves relative to the first mast weldment, and a controller coupled to the encoder apparatus and the first and second valves for receiving the encoder pulses generated by the encoder apparatus and determining a determined movable assembly speed based on the encoder pulses.
The controller may control the operation of the at least one first valve and the second valve by comparing the determined movable assembly speed with at least one of a first threshold speed based on the first estimated movable assembly speed and a fixed, second threshold speed.
The controller may function to de-energize the first and second valves causing them to move from their powered open state to their closed state in the event the movable assembly moves downwardly at the determined movable assembly speed in excess of one of the first and second threshold speeds.
The controller may slowly close the first and second valves in the event the movable assembly moves downwardly at a speed in excess of the first or the second threshold speed.
The controller may cause the first and second valves to move from their powered open position to their closed position over a time period of from about 0.3 second to about 1.0 second.
The controller may function to de-energize said first and second valves causing them to move from their powered open state to a partially closed state in the event said movable assembly moves downwardly at the determined movable assembly speed in excess of one of the first and second threshold speeds.
The control structure may estimate the movable assembly speed from the motor speed by: converting motor speed into a pump fluid flow rate, converting the pump fluid flow rate into a ram speed and converting the ram speed into the estimated movable assembly speed.
The control structure may use an estimated movable assembly speed and a determined movable assembly speed to generate an updated pump volumetric efficiency and use the updated pump volumetric efficiency when calculating a subsequent estimated movable assembly speed.
The control structure may be configured to measure an electric current flow into or out of the hydraulic system motor and to reduce an operating speed of the hydraulic system motor if the electric current flow into or out of the hydraulic system motor is greater than or equal to a predetermined threshold value.
The control structure may be configured to monitor a pressure of the pressurized fluid and to implement a response routine comprising controlling the at least one valve to control lowering of the support structure if the monitored pressure falls below a threshold pressure.
The threshold pressure may be dependent upon at least one of a maximum lift height of the movable assembly and a weight of a load supported by the support structure.
The hydraulic system motor may receive power from a battery for driving the hydraulic system pump.
The control structure may de-energize the at least one valve causing it to move from a powered open state to a partially closed state in the event the movable assembly moves downwardly at an unintended descent speed.
The movable assembly may move downwardly at an unintended descent speed when the determined movable assembly speed is in excess of a first threshold speed based on the estimated movable assembly speed.
The materials handling vehicle may further comprise a power unit and the support structure first member may comprise a first mast weldment coupled to the power unit so as to reciprocate back and forth relative to the power unit.
The lift apparatus may comprise a second mast weldment movable relative to the first mast weldment and a third mast weldment movable relative to the first and second mast weldments.
In accordance with a second aspect of the present invention, a materials handling vehicle is provided comprising: a first mast weldment; at least one movable mast weldment coupled to the first mast weldment; a fork carriage apparatus movably coupled to the at least one movable mast weldment; at least one first ram/cylinder assembly coupled to the first mast weldment and the at least one movable mast weldment to effect movement of the at least one movable mast weldment relative to the first mast weldment; a second ram/cylinder assembly coupled to the fork carriage apparatus and the at least one movable mast weldment to effect movement of the fork carriage apparatus relative to the at least one movable mast weldment; a hydraulic system; and a control structure. The hydraulic system may include a motor, a pump coupled to the motor to supply a pressurized fluid to the first and second ram/cylinder assemblies, and at least one first electronically controlled valve and a second electronically controlled valve associated with the at least one first ram/cylinder assembly and the second ram/cylinder assembly. The control structure may estimate a speed of the fork carriage assembly relative to the first mast weldment from a speed of the motor and control the operation of the first and second valves using a comparison involving the estimated fork carriage assembly speed and a determined speed.
The control structure may control the operation of the valves by comparing a determined fork carriage apparatus speed and a threshold speed based on the estimated fork carriage apparatus speed.
The hydraulic system motor may receive power from a battery for driving the hydraulic system pump.
The truck 100 further includes a vehicle power unit 102, see
The vehicle power unit 102 includes an operator's compartment 110. An operator standing in the compartment 110 may control the direction of travel of the truck 100 via a tiller 120. The operator may also control the travel speed of the truck 100, and height, extension, tilt and side shift of first and second forks 402 and 404 via a multifunction controller 130, see
The monomast 200 may be constructed as set out in U.S. Patent Application Publication No. 2010/0065377 A1, entitled “Monomast for a Materials Handling Vehicle,” filed on Sep. 10, 2009, the entire disclosure of which is incorporated herein by reference. Briefly, the monomast 200 comprises a fixed first stage mast weldment 230 (also referred to herein as a fixed member), a second stage mast weldment 240 positioned to telescope over the first stage weldment 230 and a third stage mast weldment 250 positioned to telescope over the first and second stage weldments 230 and 240, see
Support structure is defined herein as comprising the power unit 102, the fixed first mast weldment 230 and lift apparatus. Lift apparatus is defined herein as comprising the second and third mast weldments 240 and 250, the mast weldment lift structure 220 and the fork carriage apparatus lift structure 400.
The mast weldment lift structure 220 comprises a hydraulic ram/cylinder assembly 222 comprising a cylinder 222A and a ram 222B, see
An engagement plate 1300 of a pulley assembly 302 is coupled to an end portion 1222B of the ram 222B, see
The fork carriage apparatus 300, also referred to herein as a movable assembly, is coupled to the third stage weldment 250 so as to move vertically relative to the third stage weldment 250, see
The fork carriage apparatus lift structure 400 comprises a hydraulic ram/cylinder assembly 410 including a cylinder 412 and a ram 414, see
The materials handling vehicle 100 comprises a hydraulic system 401 comprising the lift motor 301, which drives the hydraulic lift pump 302, as noted above. The lift motor 301 comprises a velocity (RPM) sensor. The pump 302 supplies pressurized hydraulic fluid to the hydraulic ram/cylinder assembly 222 of the mast weldment lift structure 220 and the hydraulic ram/cylinder assembly 410 of the fork carriage apparatus lift structure 400.
The hydraulic system 401 further comprises a hydraulic fluid reservoir 402, see
The hydraulic system 401 also comprises an electronic normally closed ON/OFF solenoid-operated valve 420 and first and second electronic normally closed proportional solenoid-operated valves 430 and 440. The valves 420, 430 and 440 are coupled to an electronic controller 1500 for controlling their operation, see
The first electronic normally closed proportional solenoid-operated valve 430 is located within and directly coupled to a base 1222A of the cylinder 222A of the mast weldment lift structure hydraulic ram/cylinder assembly 222, see
When a lift command is generated by an operator via the multifunction controller 130, both the cylinder 412 of the fork carriage apparatus lift structure 400 and the cylinder 222A of the mast weldment lift structure 220 are exposed to hydraulic fluid at the same pressure via the lines 411A-411C. Because the ram 414 of the fork carriage apparatus lift structure 400 and the ram 222B of the mast weldment lift structure 220 include base ends having substantially the same cross sectional areas and for all load conditions, the fork carriage apparatus lift structure 400 requires less pressure to actuate than the mast weldment lift structure 220, the ram 414 of the fork carriage apparatus lift structure 400 will move first until the fork carriage apparatus 300 has reached its maximum height relative to the third stage weldment 250. Thereafter, the second and third stage weldments 240 and 250 will begin to move vertically relative to the first stage weldment 230.
When a lowering command is generated by an operator via the multifunction controller 130, the electronic controller 1500 causes the electronic normally closed ON/OFF solenoid-operated valve 420 to open. Presuming the rams 222B and 414 are fully extended when a lowering command is generated, the first proportional valve 430 is energized by the controller 1500, causing it to fully open in the illustrated embodiment to allow fluid to exit the cylinder 222A of the mast weldment lift structure 220, thereby allowing the second and third stage weldments 240 and 250 to lower. Once the second and third stage weldments 240 and 250 near their lowermost positions, the controller 1500 causes the second proportional valve 440 to substantially fully open and the first proportional valve 430 to partially close. Partially closing the first valve 430 causes the fluid pressure in the lines 411A-411C to lower. By opening the second valve 440 and partially closing the first valve 430, the ram 414 begins to lower, while the ram 222B continues to lower. After the ram 222B reaches its lowermost position, the ram 414 continues to lower until the fork carriage apparatus 300 reaches its lowermost position. Except for the partial closure of the first proportional valve 430 when the second and third stage weldments 240 and 250 near their lowermost positions, the speed at which fluid is metered from the cylinder 222A of the mast weldment lift structure 220 and the cylinder 412 of the fork carriage apparatus lift structure 400 is generally controlled by the pump 302.
First and second encoder units 600 and 602, respectfully, also forming part of the “control structure,” are provided and may comprise conventional friction wheel encoder assemblies or conventional wire/cable encoder assemblies, see
Also in the illustrated embodiment, the second encoder unit 602 comprises a second friction wheel assembly mounted to the fork carriage apparatus 300 such that a second friction wheel engages and moves along the third mast stage weldment 250. Hence, as the fork carriage apparatus 300 moves relative to the third stage weldment 250, the second friction wheel encoder generates pulses to the controller 1500 indicative of the fork carriage apparatus 300 movement relative to the third stage weldment 250.
As noted above, the first and second encoder units 600 and 602 generate corresponding pulses to the controller 1500. The pulses generated by the first encoder unit 600 are used by the controller 1500 to determine the position of the third stage weldment 250 relative to the second stage weldment 240 as well as the speed of movement of the third stage weldment 250 relative to the second stage weldment 240. The controller 1500 also determines the speed and position of the third stage weldment 250 relative to the fixed first stage weldment 230, wherein the speed of the third stage weldment 250 relative to the first stage weldment 230 is equal to twice the speed of the third stage weldment 250 relative to the second stage weldment 240. Further, the distance from a reference point on the third stage weldment 250 to a reference point on the first stage weldment 230 is twice the distance from the reference point on the third stage weldment 240 to a reference point on the second stage weldment 230, wherein the reference point on the second stage weldment 240 is at a location corresponding to the reference point location on the first stage weldment 230. The pulses generated by the second encoder unit 602 are used by the controller 1500 to determine the position of the fork carriage apparatus 300 relative to the third mast stage weldment 250 as well as the speed of movement of the fork carriage apparatus 300 relative to the third mast stage weldment 250. By knowing the speed and position of the third stage weldment 250 relative to the first stage weldment 230 and the speed and position of the fork carriage apparatus 300 relative to the third stage weldment 250, the controller 1500 can easily determine the speed and position of the fork carriage apparatus 300 relative to the first stage weldment 230.
In accordance with the present invention, during a lowering command, the controller 1500 compares a determined or sensed speed of the fork carriage apparatus 300 relative to the first stage weldment 230 to first and second threshold speeds. This involves the controller 1500 determining a first speed comprising a determined or sensed speed of the third stage weldment 250 relative to the first stage weldment 230, determining a second speed comprising a determined or sensed speed of the fork carriage apparatus 300 relative to the third stage weldment 250 and adding the first and second determined speeds together to calculate a third determined speed. The third determined speed is equal to the determined or sensed speed of the fork carriage apparatus 300 relative to the first stage weldment 230.
As noted above, for every one unit of vertical movement of the second stage weldment 240 relative to the first stage weldment 230, the third stage weldment 250 moves vertically two units relative to the first stage weldment 230. In order to determine the first speed, the controller 1500 determines the speed of third stage weldment 250 relative to the second stage weldment 240 using the pulses from the first encoder unit 600, as noted above, and multiplies the determined speed of movement of the third stage weldment 250 relative to the second stage weldment 240 by “2”. Hence, this provides the first speed, i.e., the determined speed of the third stage weldment 250 relative to the first stage weldment 230.
The second speed is equal to the determined speed of movement of the fork carriage apparatus 300 relative to the third mast stage weldment and is found using the pulses generated by the second encoder unit 602 as noted above.
During a lowering command, the controller 1500 may compare the third determined speed, i.e., the determined speed of the fork carriage apparatus 300 relative to the first stage weldment 230, to the first and second threshold speeds. In the illustrated embodiment, the comparison of the third determined speed to the first and second threshold speeds may be made by the controller 1500 once every predefined time period, e.g., every 5 milliseconds. The comparison of the third determined speed to the first and second threshold speeds is referred to herein as a “comparison event.” If the third determined speed is greater than the first threshold speed during a predefined number of sequential comparison events, e.g., between 1-50 comparison events, or greater than the second threshold speed during a single comparison event, then the electronic controller 1500 implements a response routine, wherein the controller de-energizes the first and second electronic normally closed proportional solenoid-operated valves 430 and 440 so as to prevent further downward movement of the rams 222B and 414. The controller 1500 may cause the first and second valves 430 and 440 to move from their powered open positions to their closed positions immediately or over an extended time period, such as from about 0.3 second to about 1.0 second. By causing the first and second valves 430 and 440 to close over an extended time period, the magnitude of pressure spikes within the cylinders 222A and 412, which occur when the pistons 222B and 414 stop their downward movement within the cylinders 222A and 412, is reduced. Further, closing of the first and second valves 430 and 440 by the controller 1500 may comprise partially closing the first and second valves 430 and 440, i.e., not fully closing the first and second valves 430 and 440, so as to allow the fork carriage apparatus 300 and the second and third stage weldments 240, 250 to lower slowly to the ground. It is presumed that when the third determined speed is greater than one of the first and second threshold speeds, the fork carriage apparatus 300 is moving too quickly relative to the first stage weldment 230, i.e., at an unintended descent speed, which condition may occur when there is a loss of hydraulic pressure in the fluid being metered from one or both of the cylinders 222A and 412. Loss of hydraulic pressure may be caused by a breakage in one of the fluid lines 411A-411C.
In a further embodiment, the controller 1500 compares the third determined speed, i.e., the determined speed of the fork carriage apparatus 300 relative to the first stage weldment 230, to only the first threshold speed. The comparison of the third determined speed to the first threshold speed is made by the controller 1500 once every predefined time period, e.g., every 5 milliseconds. The comparison of the third determined speed to the first threshold speed is also referred to herein as a “comparison event.” If the third determined speed is greater than the first threshold speed, during a predefined number of sequential comparison events, e.g., between 1-50 comparison events, then the electronic controller 1500 implements a response routine, wherein the controller 1500 de-energizes the first and second electronic normally closed proportional solenoid-operated valves 430 and 440 so as to prevent further downward movement of the rams 222B and 414.
The first threshold speed may be determined by the electronic controller 1500 as follows. First, the controller 1500 may estimate the magnitude of a combined lowering speed of the ram 222B of the mast weldment lift structure 220 and the ram 414 of the fork carriage apparatus lift structure 400 from a speed of the lift motor 301. As discussed above with respect to a lowering operation, with the fork carriage apparatus 300 and the second and third stage weldments 240 and 250 fully extended, the ram 222B begins to lower first, then the rams 222B and 414 lower simultaneously during a staging part of the lowering operation until the ram 222B reaches its lowermost position. Thereafter, the ram 414 continues its downward movement until it reaches its lowermost position.
First, the controller 1500 converts the lift motor speed into a lift pump fluid flow rate using the following equation:
pump fluid flow rate (gallons/minute)=[(lift motor speed(RPM))*(lift pump displacement (cc/revolution))*(lift motor volumetric efficiency)]/(3786 cc/gal)
The controller 1500 may then determine an estimated downward linear speed (magnitude) of the fork carriage apparatus 300 relative to the first stage weldment 230 using the following equation, which equation is believed to be applicable during all phases of a lowering operation, including staging when both the rams 222B and 414 are being lowered simultaneously:
estimated linear speed of the fork carriage apparatus 300 relative to the first weldment 230 (inches/second)=[(pump fluid flow rate (gallons/minute))*(231 in3/gallon)*(speed ratio)]/[(inside area of cylinder (in2))*(60 seconds/minute)]
wherein,
“inside area of cylinder”=cross sectional area of cylinder 222B, which equals the cross sectional area of cylinder 412 (only the cross sectional area of a single cylinder is used in the equation);
“speed ratio”=(the third weldment speed/first weldment speed)=(fork carriage apparatus speed/third weldment speed)=2/1 in the illustrated embodiment.
In the illustrated embodiment, the first threshold speed is equal to the estimated speed of the fork carriage apparatus 300 relative to the first weldment 230 times either a first tolerance factor, e.g., 1.6, or a second tolerance factor, e.g., 1.2. Once an operator gives a command via the multi-function controller 130 to lower the fork carriage apparatus 300, the controller 1500 executes a ramping function within its software so as to increase the magnitude of the downward lowering speed of the fork carriage apparatus 300 in a controlled manner at a predetermined rate, e.g., a speed change of from about 4 feet/minute to about 40 feet/minute every 16 milliseconds, based on the position of the multifunction controller 130, until the commanded downward speed is reached. The first tolerance factor is used when the fork carriage apparatus lowering speed is in the process of being ramped to the commanded speed, i.e., the controller 1500 is still executing the ramping function, and the second tolerance factor is used when the controller 1500 is no longer increasing the speed of the lift motor 301, i.e., the controller 1500 has completed the ramping function. The first tolerance factor is greater than the second tolerance factor to account for the physical lag time occurring between when an operator commands a speed change and the speed of the fork carriage apparatus actually occurs. It is also contemplated that in an alternative embodiment, the first threshold speed may equal the estimated speed of the fork carriage apparatus 300 relative to the first weldment 230.
The controller 1500 may use the determined downward speed of the fork carriage apparatus relative to the first stage weldment, the estimated fork carriage apparatus downward speed relative to the first weldment and the current pump volumetric efficiency to generate an updated pump volumetric efficiency, which updated pump volumetric efficiency may be used by the controller 1500 the next time it converts lift motor speed into a lift pump fluid flow rate. The controller 1500 may determine the updated pump volumetric efficiency using the following equation:
updated pump volumetric efficiency=(determined fork carriage apparatus speed*current volumetric efficiency)/(estimated fork carriage apparatus speed).
An initial pump volumetric efficiency, i.e., one used when the controller 1500 is first activated and one applied in the above equation as the “current volumetric efficiency” the first time an updated pump volumetric efficiency is calculated, e.g., the first time after a lowering operation is commenced, may equal 95% or any other appropriate value. The initial pump volumetric efficiency may be stored in memory associated with the controller 1500. In accordance with another aspect of the invention, rather than using a single initial pump volumetric efficiency, multiple volumetric efficiency points that correspond to, for example, the speed of the truck 100, although other vehicle conditions could be used, such as hydraulic fluid pressure, hydraulic fluid temperature, hydraulic fluid viscosity, direction of rotation of the hydraulic lift pump 302, etc., may be stored in a data or look up table. The correct volumetric efficiency point based on a corresponding one or more of the vehicle condition(s) may be looked up in the data table and applied as the initial pump volumetric efficiency to calculate an updated pump volumetric efficiency. It is noted that using the initial pump volumetric efficiency is not intended to be limited to only being used once per lowering operation. That is, the initial pump volumetric efficiency may be used in generating an updated pump volumetric efficiency for several implementations of the above equation. For example, the initial pump volumetric efficiency may be used in generating an updated pump volumetric efficiency for a predefined time period, such as, for example, the first 0.5 seconds after a lowering operation is commenced.
The second threshold speed may comprise a fixed speed, such as 300 feet/minute. When the fork carriage apparatus 300 is moving at a speed equal to or greater than 300 feet/minute, it is presumed to be moving at an unintended, excessive speed.
Referring to
If the controller 1500 determines during step 701 that the value in the first lockout memory location is 0, the controller 1500 next determines, during step 702, if the magnitude of the third determined speed is greater than a fixed lower threshold speed, e.g., 60 feet/minute, and whether the direction of movement of the lift motor 301, as indicated by the velocity sensor (noted above) associated with the motor 301, indicates that the fork carriage apparatus 300 is being lowered. If the answer to either or both of these queries is NO, then the “concern-count” value is set equal to 0, see step 703, and the controller 1500 returns to step 702. Step 702 may be continuously repeated once every predetermined time period, e.g., every 5 milliseconds. If the answer to both queries is YES, then the controller 1500 determines, in step 704, if an operator commanded lowering speed for the fork carriage apparatus 300 is being ramped, i.e., the ramping function is still being executed. If the answer is YES, then the first tolerance factor is used and the first threshold speed is equal to the estimated speed of the fork carriage apparatus 300 relative to the first weldment 230 times the first tolerance factor, see step 705. If the answer is NO, then the second tolerance factor is used and the first threshold speed is equal to the estimated speed of the fork carriage apparatus 300 relative to the first weldment 230 times the second tolerance factor, see step 706.
After the first threshold speed has been calculated, the controller 1500 determines, during step 707, whether the third determined speed is greater than the first threshold speed. If NO, the controller 1500 sets the “concern-count” value to 0 and returns to step 704. If YES, i.e., the controller 1500 determines that the third determined speed exceeds the first threshold speed, the controller 1500 increments the “concern-count” by “1,” see step 709. At step 711, the controller 1500 determines if the “concern-count” is greater than the “concern-max” count or whether the third determined speed is greater than the second threshold speed. If the answer to both queries is NO, then the controller 1500 returns to step 704. Steps 704 and 707 may be continuously repeated once every predetermined time period, e.g., every 5 milliseconds. If the answer to one or both queries is YES, then the controller 1500 implements a response routine, wherein the controller 1500 de-energizes the first and second electronic normally closed proportional solenoid-operated valves 430 and 440, see step 713. As noted above, the valves 430 and 440 may be closed over an extended time period, e.g., from about 0.3 second to about 1.0 second.
Once the valves 430 and 440 have been closed, the controller 1500 determines, based on pulses generated by the encoder units 600 and 602, the height of the fork carriage apparatus 300 relative to the first stage weldment 430 and defines that height in non-volatile memory as a first “reference height,” see step 714. The controller 1500 also sets the value in the first lockout memory location to “1,” see step 716, as an unintended descent fault has occurred. As long as the value in the first lockout memory location is set to 1, the controller 1500 will not allow the valves 430 and 440 to be energized such that they are opened to allow descent of the fork carriage apparatus 300. However, the controller 1500 will allow, in response to an operator-generated lift command, pressurized fluid to be provided to the cylinders 222A and 412, which fluid passes through the valves 430 and 440.
If, after an unintended descent fault has occurred and in response to an operator-generated command to lift the fork carriage apparatus 300, one or both of the rams 222A and 414 are unable to lift the fork carriage apparatus 300, then the value in the first lockout memory location remains set to 1. On the other hand, if, in response to an operator-generated command to lift the fork carriage apparatus 300, one or both of the rams 222A and 414 are capable of lifting the fork carriage apparatus 300 above the first reference height plus a first reset height, as indicated by signals generated by the encoder units 600 and 602, the controller 1500 resets the value in the first lockout memory location to 0, see steps 718 and 720. Thereafter, the controller 1500 returns to step 702 and, hence, will allow the valves 430 and 440 to be energized such that they can be opened to allow controlled descent of the fork carriage apparatus 300. Movement of the fork carriage apparatus 300 above the first reference height plus a first reset height indicates that the hydraulic system 401 is functional. The first reset height may have a value of 0.25 inch to about 4 inches.
If the controller 1500 determines during step 701 that the value in the first lockout memory location is 1, the controller 1500 continuously monitors the height of the fork carriage apparatus 300, via signals generated by the encoder units 600 and 602, to see if the fork carriage apparatus 300 moves above the first reference height, which had previously been stored in memory, plus the first reset height, see step 718.
In the illustrated embodiment, during a lowering command, the controller 1500 compares a determined speed of the fork carriage apparatus 300 relative to the first stage weldment 230 to first and second threshold speeds. It is also contemplated that, during a lowering command, the controller 1500 may separately compare the first speed, i.e., the determined speed of the third stage weldment 250 relative to the first stage weldment 230, to the first and second threshold speeds and separately compare the second speed, i.e., the determined speed of the fork carriage apparatus 300 relative to the third stage weldment 250, to the first and second threshold speeds. During staging, it is contemplated that reduction of the first and second threshold speeds may be required. If the first determined speed is greater than the first threshold speed during a predefined number of sequential comparison events, e.g., between 1-50 comparison events, or greater than the second threshold speed during a single comparison event, then the electronic controller 1500 may de-energize the first and second electronic normally closed proportional solenoid-operated valves 430 and 440. If the second determined speed is greater than the first threshold speed during a predefined number of sequential comparison events, e.g., between 1-50 comparison events, or greater than the second threshold speed during a single comparison event, then the electronic controller 1500 may de-energize the first and second electronic normally closed proportional solenoid-operated valves 430 and 440.
The first threshold speed as calculated above may be used by the controller 1500 when comparing the first speed to the first threshold speed and the second speed to the first threshold speed.
Additionally, an electric current consumed or generated by the lift motor 301, i.e., an electric current flow into or out of the lift motor 301, may be monitored in accordance with an aspect of the invention. The monitored electric current flow into or out of the lift motor 301 may be used to change one or more operating parameters of the truck 100. For example, in some conditions, particularly with cold hydraulic fluid, it is possible that there is too much pressure drop in the hydraulic system 401 to allow the lift motor 301 to drive the hydraulic lift pump 302 at a speed at which the fork carriage apparatus 300 is lowered at a predetermined, desired lowering speed, e.g., 240 feet/minute. Specifically, the hydraulic lift pump 302 requires a minimum operating pressure to ensure that the hydraulic lift pump 302 is completely filled with hydraulic fluid, and is not rotating faster than it can fill with the hydraulic fluid, which may result in cavitation of the hydraulic fluid.
It has been determined that if the monitored electric current flow into or out of the lift motor 301 rises above a predetermined threshold value, the minimum operating pressure of the hydraulic lift pump 302 may not be met, which may be indicative of the hydraulic lift pump 302 rotating faster than it can fill with the hydraulic fluid and thus leading to cavitation of the hydraulic fluid, as noted above. When this condition is sensed, i.e., when the monitored electric current flow into or out of the lift motor 301 rises above the predetermined threshold value, the speed of the lift motor 301 is reduced until the electric current flow into or out of the lift motor 301 is back below the threshold value. Once the monitored electric current flow into or out of the lift motor 301 drops below the threshold value, the lift motor 301 can be adjusted back up to its normal operating speed. By monitoring the electric current flow into or out of the lift motor 301 and adjusting the operating speed of the lift motor 301, the cavitation of the hydraulic fluid in the hydraulic lift pump 302 can be prevented.
At step 800, the electric current flow into or out of the lift motor 301 is monitored. This step 800 may be implemented, for example, every 5 milliseconds, and may be implemented continuously during a lowering operation as described herein.
At step 802, it is determined whether the electric current flow into or out of the lift motor 301 is at or above a predetermined upper threshold value. In an exemplary embodiment in which the method is being employed in a regenerative lowering operation, the threshold value may be 0 amps, but may be other suitable values, or may be a percentage of a maximum or minimum current flow into or out of the lift motor 301.
If the electric current flow into or out of the lift motor 301 is determined at step 802 to be below the predetermined upper threshold value, the lift motor 301 is maintained at a normal operating speed at step 804. This cycle of steps 800-804 is repeated during a lowering operation until the electric current flow into or out of the lift motor 301 is determined to be at or above the predetermined upper threshold value.
If the electric current flow into or out of the lift motor 301 is determined at step 802 to be at or above the predetermined upper threshold value, the speed of the lift motor 301 is reduced at step 806 to a reduced operating speed. Reducing the speed of the lift motor 301 to the reduced operating speed causes a corresponding reduction in the rotating speed of the hydraulic lift pump 302. Step 806 is implemented to reduce or avoid cavitation of the hydraulic fluid in the hydraulic lift pump 302, as discussed above.
The lift motor 301 is maintained at the reduced operating speed at step 808 until the electric current flow into or out of the lift motor 301 is determined to be below a predetermined lower threshold value.
Upon the electric current flow into or out of the lift motor 301 dropping below the predetermined lower threshold value, the speed of the lift motor 301 is increased at step 810 back up to the normal operating speed.
Further, a pressure of the hydraulic fluid in the truck 100 may be monitored and compared with a threshold pressure TP in accordance with another aspect of the invention during the implementation of lifting and/or lowering commands, or during other vehicle operation procedures. The monitored pressure may be measured by a transducer TD (see
The threshold pressure TP may comprise a variable that is dependent on one or more parameters, such as the height of a portion of the truck 10, e.g., a maximum lift height of the movable assembly, e.g., the maximum height of the tops of the forks 402, 404 relative to the ground, or a maximum height of the top of the third stage mast weldment 250 relative to the ground, and the weight of a load 250A that is carried on the forks 402, 404. According to one exemplary aspect of the invention, these values, i.e., the height of the truck portion and the weight of the load that is carried on the forks 402, 404, can be used to determine the threshold pressure TP according to the following equation:
TP(psi)=[A(psi/pound)*Load(pounds)]/100(unitless)+[(Height(inches)*100(unitless)]/B(inches/psi)
where TP is the threshold pressure (psi), A is a system gain defined by a numerical constant equal to 10 (psi/pound) in the illustrated embodiment, Load is the weight of the load carried on the forks 402, 404 (pounds), 100 is a unitless scaling factor, Height is the maximum lift height of the movable assembly (inches), 100 is a unitless scaling factor, and B is a system offset defined by a numerical constant equal to 600 (inches/psi) in the illustrated embodiment.
According to one aspect of the invention, the comparison of the monitored pressure of the hydraulic fluid in the hydraulic structure to the threshold pressure TP may be made by the controller 1500, e.g., when the truck 10 is implementing a lowering command or a lifting command, once every predefined time period, e.g., every 5 milliseconds. If the monitored pressure of the hydraulic fluid in the hydraulic structure falls below the threshold pressure TP, it may be an indication that the hydraulic structure has lost its load-holding ability, e.g., as a result of a break in one of the fluid lines 411A-411C. If the monitored pressure of the hydraulic fluid in the hydraulic structure falls below the threshold pressure, the controller 1500 implements a response routine by de-energizing the first and second electronic normally closed proportional solenoid-operated valves 430 and 440 so as to prevent further downward movement of the rams 222B and 414. The controller 1500 may cause the first and second valves 430 and 440 to move from their powered open positions to their closed positions immediately or over an extended time period, such as from about 0.3 second to about 1.0 second. By causing the first and second valves 430 and 440 to close over an extended time period, the magnitude of pressure spikes within the cylinders 222A and 412, which occur when the pistons 222B and 414 stop their downward movement within the cylinders 222A and 412, is reduced. Further, closing of the first and second valves 430 and 440 by the controller 1500 may comprise partially closing the first and second valves 430 and 440, i.e., not fully closing the first and second valves 430 and 440, so as to allow the fork carriage apparatus 300 and the second and third stage weldments 240, 250 to lower slowly to the ground.
In one embodiment of the invention, so as to avoid false trips when the monitored pressure is compared to the threshold pressure TP, the response routine is only implemented by the electronic controller 1500 if it is also determined that the fork carriage apparatus 300 is moving at a speed greater than a predetermined speed relative to the first stage weldment 230, wherein the speed of the fork carriage apparatus 300 relative to the first stage weldment may be determined as described in detail herein. The predetermined speed may be greater than or equal to about 90 feet/minute.
It is noted that the comparison of the monitored pressure of the hydraulic fluid in the hydraulic structure to the threshold pressure TP can be performed by the controller 1500 to implement a response routine in addition to or instead of one or more of the other comparisons described herein, such as the comparison of the determined or sensed speed of the fork carriage apparatus 300 relative to the first stage weldment 230 to the first and/or second threshold speeds and/or the comparison of the monitored electric current flow into or out of the lift motor 301 to the predetermined threshold (current) value.
Moreover, alternate response routines to the response routines previously described herein can be implemented by the controller 1500 if a comparison event, e.g., the comparison of the determined or sensed speed of the fork carriage apparatus 300 relative to the first stage weldment 230 to the first and/or second threshold speeds, the comparison of the monitored electric current flow into or out of the lift motor 301 to the predetermined threshold (current) value, and/or the comparison of the monitored pressure of the hydraulic fluid in the hydraulic structure to the threshold pressure TP, yields an outcome that requires that a response routine be implemented. For example, the controller 1500 could initially implement a step decrease in electric current to the first and second electronic normally closed proportional solenoid-operated valves 430 and 440 to a level at or slightly above a breakout current. The breakout current is 250 milliamps in one embodiment of the invention and is the minimum current that will effect hydraulic fluid through the valve. The controller 1500 may then increase the current to the first and second electronic normally closed proportional solenoid-operated valves 430 and 440 in stepwise fashion to a level below a maximum commanded current. The maximum commanded current is 600 milliamps in one embodiment of the invention and is the current that fully opens the valves 430 and 440. The controller 1500 may then ramp the current to the first and second electronic normally closed proportional solenoid-operated valves 430 and 440 down to the breakout current over a time period of, for example, approximately 400 milliseconds. By causing the first and second valves 430 and 440 to close over an extended time period, the magnitude of pressure spikes within the cylinders 222A and 412, which occur when the first and second valves 430 and 440 are abruptly closed, is reduced. Further, controlling the first and second valves 430 and 440 in this manner, e.g., not fully closing the first and second valves 430 and 440 abruptly, improves response time and reduces oscillations in the fork carriage apparatus 300 that may otherwise occur as a result of a velocity fuse event, while allowing the fork carriage apparatus 300 and the second and third stage weldments 240, 250 to slow their descent to the ground in a controlled manner.
In accordance with a second embodiment of the present invention, a materials handling vehicle is provided comprising, for example, a stand-up counter balance truck or like vehicle, including a power unit (not shown), a mast assembly 1000, a mast weldment lift structure 1100, a fork carriage apparatus (not shown) and a fork carriage apparatus lift structure 1200, see
The mast weldment lift structure 1100 comprises first and second lift ram/cylinder assemblies 1102 and 1104, which are fixed at their cylinders 1102B and 1104B to the first weldment 1002, see
A first chain 1211 is fixed to the cylinder 1102B of the first ram/cylinder assembly 1102 and a second chain 1213 is fixed to the cylinder 1104B of the second ram/cylinder assembly 1104. The first chain 1211 extends over a first pulley 1004B coupled to an upper end of the second mast weldment 1004 and is coupled to a lower portion 1006A of the third weldment 1006, see
The fork carriage apparatus comprises a pair of forks (not shown) and a fork carriage mechanism upon which the forks are mounted. The fork carriage mechanism may be mounted for reciprocal movement directly to the third mast weldment 1006. Alternatively, the fork carriage mechanism may be mounted to a reach mechanism (not shown), which is mounted to a mast carriage assembly (not shown), which is mounted for reciprocal movement to the third mast weldment 1006.
The fork carriage apparatus lift structure 1200 is coupled to the third weldment 1006 and the fork carriage apparatus to effect vertical movement of the fork carriage apparatus relative to the third weldment 1006. The lift structure 1200 includes a ram/cylinder assembly 1210 comprising a cylinder 1212 fixed to the third mast weldment 1006 such that it moves vertically with the third weldment 1006. A ram 1211, see
The materials handling vehicle of the second embodiment includes a hydraulic system 1300 as illustrated in
The hydraulic system 1300 further comprises a hydraulic fluid reservoir 402, which is housed in the power unit, and fluid hoses/lines 411A-411D coupled between the pump 302 and the mast weldment lift structure 1100 comprising the first and second lift ram/cylinder assemblies 1102 and 1104 and the fork carriage apparatus lift structure 1200 comprising the ram/cylinder assembly 1210. The fluid hoses/lines 411A and 411B are coupled in series and function as supply/return lines between the pump 302 and the mast weldment structure first hydraulic ram/cylinder assembly 1102. The fluid hoses/lines 411A and 411C are coupled in series and function as supply/return lines between the pump 302 and the fork carriage apparatus lift structure hydraulic ram/cylinder assembly 1210. The fluid hoses/lines 411A and 411D are coupled in series and function as supply/return lines between the pump 302 and the mast weldment structure second hydraulic ram/cylinder assembly 1104. Because the fluid hose/line 411A is directly coupled to the fluid hoses/lines 411B-411D, all four lines 411A-411C are always at the substantially the same fluid pressure.
The hydraulic system 401 also comprises an electronic normally closed ON/OFF solenoid-operated valve 420 and first, second and third electronic normally closed proportional solenoid-operated valves 1430, 1435 and 1440. The valves 1420, 1430, 1435 and 1440 are coupled to an electronic controller 1500 for controlling their operation, see
The first electronic normally closed proportional solenoid-operated valve 1430 is located within and directly coupled to a base 1102C of the cylinder 1102B of the mast weldment lift structure first hydraulic ram/cylinder assembly 1102, see
When a lift command is generated by an operator via a multifunction controller, the cylinder 1212 of the fork carriage apparatus lift structure 1200 and the cylinders 1102B and 1104B of the mast weldment lift structure 1100 are exposed to hydraulic fluid at the same pressure via the lines 411A-411D. The ram 1211 of the fork carriage apparatus lift structure 1200 has a base end with a cross sectional area and each of the rams 1102A and 1104A of the mast weldment lift structure 1100 includes a base end having a cross sectional area equal to about ½ of the cross sectional area of the ram 1211 of the fork carriage apparatus lift structure 1200. Hence, the combined cross sectional areas of the rams 1102A and 1104A equals the cross sectional area of the ram 1211. As a result, for all load conditions, the fork carriage apparatus lift structure 1200 requires less pressure to actuate than the mast weldment lift structure 1100. As a result, the ram 1211 of the fork carriage apparatus lift structure 1200 will move first until the fork carriage apparatus has reached its maximum height relative to the third stage weldment 1006. Thereafter, the second and third stage weldments 1004 and 1006 will begin to move vertically relative to the first stage weldment 1002.
When a lowering command is generated by an operator via the multifunction controller 130, the electronic controller 1500 causes the electronic normally closed ON/OFF solenoid-operated valve 420 to open. Presuming the rams 1211, 1102A and 1104A are fully extended when a lowering command is generated, the first and second proportional valves 1430 and 1435 are energized by the controller 1500, causing them to fully open in the illustrated embodiment to allow fluid to exit the cylinders 1102B and 1104B of the mast weldment lift structure 1100, thereby allowing the second and third stage weldments 1004 and 1006 to lower. Once the second and third stage weldments 1004 and 1006 near their lowermost positions, the controller 1500 causes the third proportional valve 1440 to substantially fully open and the first and second proportional valves 1430 and 1435 to partially close. Partially closing the first and second valves 1430 and 1435 causes the fluid pressure in the lines 411A-411D to lower. By opening the third valve 1440 and partially closing the first and second valves 1430 and 1435, the ram 1211 begins to lower, while the rams 1102A and 1104A continue to lower. After the rams 1102A and 1104A reach their lowermost position, the ram 1211 continues to lower until the fork carriage apparatus reaches its lowermost position.
First and second encoder units 600 and 602, respectfully, also forming part of the “control structure,” are provided and may comprise conventional friction wheel encoder assemblies or conventional wire/cable encoder assemblies, see
Also in the illustrated embodiment, the second encoder unit 602 comprises a second friction wheel assembly mounted to the fork carriage apparatus such that a second friction wheel engages and moves along the third mast stage weldment 1006. Hence, as the fork carriage apparatus moves relative to the third stage weldment 1006, the second friction wheel encoder generates pulses to the controller 1500 indicative of the fork carriage apparatus movement relative to the third stage weldment 1006.
As noted above, the first and second encoder units 600 and 602 generate corresponding pulses to the controller 1500. The pulses generated by the first encoder unit 600 are used by the controller 1500 to determine the position of the third stage weldment 1006 relative to the second stage weldment 1004 as well as the speed of movement of the third stage weldment 1006 relative to the second stage weldment 1004. Using this information, the controller 1500 determines the speed and position of the third stage weldment 1006 relative to the fixed first stage weldment 1002. The pulses generated by the second encoder unit 602 are used by the controller 1500 to determine the position of the fork carriage apparatus relative to the third mast stage weldment 1006 as well as the speed of movement of the fork carriage apparatus relative to the third mast stage weldment 1006. By knowing the speed and position of the third stage weldment 1006 relative to the first stage weldment 1002 and the speed and position of the fork carriage apparatus relative to the third stage weldment 1006, the controller 1500 can easily determine the speed and position of the fork carriage apparatus relative to the first stage weldment 1002.
In accordance with the present invention, during a lowering command, the controller 1500 compares a determined or sensed speed of the fork carriage apparatus relative to the first stage weldment 230 to first and second threshold speeds. This involves the controller 1500 determining a first speed comprising a determined or sensed speed of the third stage weldment 1006 relative to the first stage weldment 1002, determining a second speed comprising a determined or sensed speed of the fork carriage apparatus relative to the third stage weldment 1006 and adding the first and second determined speeds together to calculate a third determined speed. The third determined speed is equal to the determined or sensed speed of the fork carriage apparatus relative to the first stage weldment 1002.
As noted above, for every one unit of vertical movement of the second stage weldment 1004 relative to the first stage weldment 1002, the third stage weldment 1006 moves vertically two units relative to the first stage weldment 1002. In order to determine the first speed, the controller 1500 determines the speed of third stage weldment 1006 relative to the second stage weldment 1004 using the pulses from the first encoder unit 600, as noted above, and multiplies the determined speed of movement of the third stage weldment 1006 relative to the second stage weldment 1004 by “2”. Hence, this provides the first speed, i.e., the speed of the third stage weldment 1006 relative to the first stage weldment 1002.
The second speed is equal to the determined speed of movement of the fork carriage apparatus relative to the third mast stage weldment and is found using the pulses generated by the second encoder unit 602 as noted above.
During a lowering command, the controller 1500 may compare the third determined speed, i.e., the determined speed of the fork carriage apparatus relative to the first stage weldment 1002, to the first and second threshold speeds. In the illustrated embodiment, the comparison of the third determined speed to the first and second threshold speeds may be made by the controller 1500 once every predefined time period, e.g., every 5 milliseconds. The comparison of the third determined speed to the first and second threshold speeds is referred to herein as a “comparison event.” If the third determined speed is greater than the first threshold speed during a predefined number of sequential comparison events, e.g., between 1-50 comparison events, or greater than the second threshold speed during a single comparison event, then the electronic controller 1500 implements a response routine, wherein the controller 1500 de-energizes the first, second and third electronic normally closed proportional solenoid-operated valves 1430, 1435 and 1440 so as to prevent further downward movement of the rams 1102A, 1104A and 1211. The controller 1500 may cause the first, second and third valves 1430, 1435 and 1440 to move from their powered open positions to their closed positions immediately or over an extended time period, such as from about 0.3 second to about 1.0 second. Further, as discussed above, the valves 1430, 1435 and 1440 could only be partially closed so as to allow the fork carriage apparatus and the second and third stage weldments 1004, 1006 to lower slowly to the ground. It is presumed that when the third determined speed is greater than one of the first and second threshold speeds, the fork carriage apparatus is moving too quickly relative to the first stage weldment 1002, i.e., at an unintended descent speed, which condition may occur when there is a loss of hydraulic pressure in the fluid being metered from one or more of the cylinders 1102B, 1104B and 1212. Loss of hydraulic pressure may be caused by a breakage in one of the fluid lines 411A-411D.
The first threshold speed may be determined by the electronic controller 1500 as follows. First, the controller 1500 may estimate a combined speed of the rams 1102A, 1104A of the mast weldment lift structure 1100 and the ram 1211 of the fork carriage apparatus lift structure 1200 from a speed of the lift motor 301. As discussed above, with respect to a lowering operation with the fork carriage apparatus and the second and third stage weldments 1004 and 1006 fully extended, the rams 1102A and 1104A begin to lower first, then the rams 1102A, 1104A and 1211 lower simultaneously during a staging part of the lowering operation until the rams 1102A and 1104A reach their lowermost position. Thereafter, the ram 1211 continues its downward movement until it reaches its lowermost position.
First, the controller 1500 converts the lift motor speed into a lift pump fluid flow rate using the following equation:
pump fluid flow rate (gallons/minute)=[(lift motor speed (RPM))*(lift pump displacement (cc/revolution))*(lift motor volumetric efficiency)]/(3786 cc/gal)
The controller 1500 may then determine an estimated linear speed of the fork carriage apparatus relative to the first stage weldment 1002 using the following equation, which equation is believed to be applicable during all phases of a lowering operation, including staging when the rams 1102A and 1104A and ram 1211 are being lowered simultaneously:
estimated linear speed of the fork carriage apparatus relative to the first weldment 1002 (inches/second)=[(pump fluid flow rate (gallons/minute))*(231 in3/gallon)*(speed ratio)]/[(cylinder inside area (in2))*(60 seconds/minute)]
wherein,
“cylinder inside area”=summation of the cross sectional areas of cylinders 1102B and 1104B=the cross sectional area of cylinder 1212 (only the summation of the cross sectional areas of cylinders 1102B and 1104B or only the cross sectional area of cylinder 1212 is used in the equation);
“speed ratio”=(the third weldment speed/first weldment speed)=(fork carriage apparatus speed/third weldment speed)=2/1 in the illustrated embodiment.
In the illustrated embodiment, the first threshold speed is equal to the estimated speed of the fork carriage apparatus relative to the first weldment 1002 times either a first tolerance factor, e.g., 1.6, or a second tolerance factor, e.g., 1.2. As noted above with regards to the embodiment illustrated in
As noted above, the controller 1500 may use the determined downward speed of the fork carriage apparatus relative to the first stage weldment, the estimated fork carriage apparatus downward speed relative to the first weldment and the current pump volumetric efficiency to generate an updated pump volumetric efficiency, which updated pump volumetric efficiency may be used by the controller 1500 the next time it converts lift motor speed into a lift pump fluid flow rate. Or, as noted above, the controller 1500 may use the initial pump volumetric efficiency, i.e., a predefined stored initial pump volumetric efficiency or an appropriate volumetric efficiency point that corresponds to one or more vehicle conditions, e.g., speed, hydraulic fluid pressure, temperature, and/or viscosity, direction of rotation of the hydraulic lift pump 302, etc., stored in a data or look up table, the next time it converts lift motor speed into a lift pump fluid flow rate.
The second threshold speed may comprise a fixed speed, such as 300 feet/minute.
The process 700 set out in
At step 711, the controller 1500 determines if the “concern-count” is greater than the “concern-max” count or whether the third determined speed is greater than the second threshold speed. If the answer to one or both queries is YES, then the controller 1500 implements a response routine, wherein the controller 1500 de-energizes the first, second and third electronic normally closed proportional solenoid-operated valves 1430, 1435 and 1440.
Once the valves 1430, 1435 and 1440 have been closed, the controller 1500 determines, based on pulses generated by the encoder units 600 and 602, the height of the fork carriage apparatus relative to the first stage weldment 1002 and defines that height in non-volatile memory as a first “reference height,” see step 714. The controller 1500 also sets the value in the first lockout memory location to “1,” see step 716, as an unintended descent fault has occurred. As long as the value in the first lockout memory location is set to 1, the controller 1500 will not allow the valves 1430, 1435 and 1440 to be energized such that they are opened to allow descent of the fork carriage apparatus. However, the controller 1500 will allow, in response to an operator-generated lift command, pressurized fluid to be provided to the cylinders 1102B, 1104B and 1212, which fluid passes through the valves 1430, 1435 and 1440.
If, after an unintended descent fault has occurred and in response to an operator-generated command to lift the fork carriage apparatus, one or more of the rams 1102A, 1104A and 1211 are unable to lift the fork carriage apparatus, then the value in the first lockout memory location remains set to 1. On the other hand, if, in response to an operator-generated command to lift the fork carriage apparatus, one or more of the rams 1102A, 1104A and 1211 are capable of lifting the fork carriage apparatus above the first reference height plus a first reset height, as indicated by signals generated by the encoder units 600 and 602, the controller 1500 resets the value in the first lockout memory location to 0, see steps 718 and 720. Thereafter, the controller 1500 returns to step 702 and, hence, will allow the valves 1430, 1435 and 1440 to be energized such that they can be opened to allow controlled descent of the fork carriage apparatus. Movement of the fork carriage apparatus above the first reference height plus a first reset height indicates that the hydraulic system 1300 is functional.
If the controller 1500 determines during step 701 that the value in the first lockout memory location is 1, the controller 1500 continuously monitors the height of the fork carriage apparatus, via signals generated by the encoder units 600 and 602, to see if the fork carriage apparatus moves above the first reference height plus the first reset height, see step 718.
It is further contemplated that the monomast 200 illustrated in
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a continuation of U.S. patent application Ser. No. 14/333,944, filed Jul. 17, 2014 and entitled MATERIALS HANDLING VEHICLE MEASURING ELECTRIC CURRENT FLOW INTO/OUT OF A HYDRAULIC SYSTEM MOTOR, and U.S. patent application Ser. No. 14/333,980, filed Jul. 17, 2014 and entitled MATERIALS HANDLING VEHICLE MONITORING A PRESSURE OF A HYDRAULIC FLUID WITHIN A HYDRAULIC STRUTURE, which are divisionals of U.S. patent application Ser. No. 13/371,789, filed Feb. 13, 2012 and entitled “MATERIALS HANDLING VEHICLE ESTIMATING A SPEED OF A MOVABLE ASSEMBLY FROM A LIFT MOTOR SPEED,” now U.S. Pat. No. 8,935,058, the entire disclosures of which are hereby incorporated by reference herein. This application and U.S. patent application Ser. Nos. 13/371,789, 14/333,944 and 14/333,980 claim the benefit of U.S. Provisional Patent Application Ser. Nos. 61/443,302, filed Feb. 16, 2011, entitled “MATERIALS HANDLING VEHICLE ESTIMATING A SPEED OF A MOVABLE ASSEMBLY FROM A LIFT MOTOR SPEED” and U.S. Provisional Patent Application Ser. No. 61/560,480, filed Nov. 16, 2011, entitled “MATERIALS HANDLING VEHICLE ESTIMATING A SPEED OF A MOVABLE ASSEMBLY FROM A LIFT MOTOR SPEED,” which are both hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2958384 | Hull | Nov 1960 | A |
3256940 | Ashfield | Jun 1966 | A |
3263574 | Tennis | Aug 1966 | A |
3709331 | Smith, Jr. | Jan 1973 | A |
3843003 | Frank | Oct 1974 | A |
3947744 | Grace et al. | Mar 1976 | A |
4130183 | Tjornemark | Dec 1978 | A |
4144946 | Melocik | Mar 1979 | A |
4194867 | Bragg | Mar 1980 | A |
4204460 | Andersen et al. | May 1980 | A |
4354568 | Griesenbrock | Oct 1982 | A |
4426683 | Kissell | Jan 1984 | A |
4461015 | Kulhavy | Jul 1984 | A |
4467894 | Sinclair | Aug 1984 | A |
4485623 | Chichester | Dec 1984 | A |
4499541 | Yuki et al. | Feb 1985 | A |
4509127 | Yuki et al. | Apr 1985 | A |
4511974 | Nakane et al. | Apr 1985 | A |
4517645 | Yuki et al. | May 1985 | A |
4548296 | Hasegawa | Oct 1985 | A |
4552250 | Luebrecht | Nov 1985 | A |
4558593 | Watanabe et al. | Dec 1985 | A |
4592449 | Sakata et al. | Jun 1986 | A |
4665698 | Trusock | May 1987 | A |
4716990 | Takeuchi | Jan 1988 | A |
4742468 | Ohashi et al. | May 1988 | A |
4781066 | Pope et al. | Nov 1988 | A |
4817760 | Yamamura | Apr 1989 | A |
4826474 | Holmes | May 1989 | A |
4869635 | Krahn | Sep 1989 | A |
4938054 | Dye et al. | Jul 1990 | A |
4942529 | Avitan et al. | Jul 1990 | A |
4943756 | Conley, III et al. | Jul 1990 | A |
5011363 | Conley, III et al. | Apr 1991 | A |
5022496 | Klopfleisch et al. | Jun 1991 | A |
5044472 | Dammeyer et al. | Sep 1991 | A |
5238086 | Aoki et al. | Aug 1993 | A |
5266115 | Taccon et al. | Nov 1993 | A |
5341695 | Avitan | Aug 1994 | A |
5462136 | Schoenmaker et al. | Oct 1995 | A |
5526673 | Avitan | Jun 1996 | A |
5647457 | Wegdam et al. | Jul 1997 | A |
5649422 | Baginski | Jul 1997 | A |
5652486 | Mueller et al. | Jul 1997 | A |
5657834 | Plaugher et al. | Aug 1997 | A |
5666295 | Bruns | Sep 1997 | A |
5678469 | Lech | Oct 1997 | A |
5680762 | Reid | Oct 1997 | A |
5687081 | Wellman et al. | Nov 1997 | A |
5712618 | McKenna | Jan 1998 | A |
5717588 | Yamane et al. | Feb 1998 | A |
5733095 | Palmer et al. | Mar 1998 | A |
5748077 | Brandt | May 1998 | A |
5794723 | Caneer, Jr. et al. | Aug 1998 | A |
5816366 | Briday et al. | Oct 1998 | A |
5890563 | Avitan et al. | Apr 1999 | A |
5906648 | Zoratti et al. | May 1999 | A |
5969302 | Nishizawa et al. | Oct 1999 | A |
5994650 | Eriksson | Nov 1999 | A |
5995001 | Wellman et al. | Nov 1999 | A |
6009357 | Wellman et al. | Dec 1999 | A |
6135694 | Trego et al. | Oct 2000 | A |
6164415 | Takeuchi et al. | Dec 2000 | A |
6269641 | Dean | Aug 2001 | B1 |
6269913 | Kollmannsberger et al. | Aug 2001 | B1 |
6284129 | Giordano et al. | Sep 2001 | B1 |
6286629 | Saunders | Sep 2001 | B1 |
6293099 | Kamiya | Sep 2001 | B1 |
6439102 | Matsuzaki et al. | Aug 2002 | B1 |
6520008 | Stragier | Feb 2003 | B1 |
6533076 | Haverfield et al. | Mar 2003 | B1 |
6557586 | Lockyer et al. | May 2003 | B1 |
6611746 | Nagai | Aug 2003 | B1 |
6785597 | Farber et al. | Aug 2004 | B1 |
6789458 | Schumacher et al. | Sep 2004 | B2 |
6817252 | Wiklund et al. | Nov 2004 | B2 |
6850828 | Chen | Feb 2005 | B2 |
7028470 | Achten | Apr 2006 | B1 |
7344000 | Dammeyer et al. | Mar 2008 | B2 |
8924103 | Dammeyer et al. | Dec 2014 | B2 |
8935058 | Dammeyer et al. | Jan 2015 | B2 |
20030159576 | Schoonmaker | Aug 2003 | A1 |
20030167114 | Chen | Sep 2003 | A1 |
20040079076 | Lazaro | Apr 2004 | A1 |
20040139806 | Christmas | Jul 2004 | A1 |
20060060409 | Dammeyer | Mar 2006 | A1 |
20070205056 | Rekow et al. | Sep 2007 | A1 |
20090101447 | Durham et al. | Apr 2009 | A1 |
20090114485 | Eggert | May 2009 | A1 |
20090198371 | Emanuel et al. | Aug 2009 | A1 |
20090260923 | Baldini | Oct 2009 | A1 |
20090319134 | Haemmerl et al. | Dec 2009 | A1 |
20100065377 | Billger et al. | Mar 2010 | A1 |
20100068023 | Kuck et al. | Mar 2010 | A1 |
20100176922 | Schwab et al. | Jul 2010 | A1 |
20130013159 | Moriki | Jan 2013 | A1 |
20130183127 | Dammeyer | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2005286765 | Mar 2006 | AU |
1171337 | Jan 1998 | CN |
1245888 | Mar 2000 | CN |
3414793 | Oct 1984 | DE |
4017947 | Dec 1991 | DE |
4306680 | Sep 1994 | DE |
19508346 | Jun 1996 | DE |
19511591 | Oct 1996 | DE |
19933559 | Jan 2001 | DE |
10010670 | Sep 2001 | DE |
10030059 | Dec 2001 | DE |
10110700 | Sep 2002 | DE |
0439436 | Jul 1991 | EP |
0798260 | Oct 1997 | EP |
1193211 | Sep 2001 | EP |
1828045 | Dec 2008 | EP |
1294249 | Oct 1972 | GB |
2094481 | Sep 1982 | GB |
2196447 | Apr 1988 | GB |
2360757 | Oct 2001 | GB |
01168550 | Jul 1989 | JP |
3003897 | Jan 1991 | JP |
03098997 | Apr 1991 | JP |
05131299 | May 1993 | JP |
07237856 | Sep 1995 | JP |
08156674 | Jun 1996 | JP |
2004051300 | Feb 2004 | JP |
2010083672 | Apr 2010 | JP |
2006034375 | Mar 2006 | WO |
Entry |
---|
Office Action; Chinese Patent Application No. 201280009143.8; Apr. 1, 2016; State Intellectual Property Office of the People's Republic of China; Beijing, China. |
Khatib, Rami; Notice of Allowance and Fees Due; U.S. Appl. No. 14/333,980; Mar. 23, 2016; United States Patent and Trademark Office; Alexandria, Virginia. |
Renato Serodio; Communication; EPO Patent Application No. 15154181.0-1705; Mar. 30, 2016; European Patent Office; Netherlands. |
Yakutskij Ni I Pi Almazodobyva; Second Office Action; Russian Application No. RU2068786, including a translation of the text portion of the Office Action; dated Nov. 10, 1996; Russian Patent Office. |
Office Action; Mexican Patent Application No. MX/a/2015/015527; Jul. 6, 2016; Mexican Institute of Industrial Property (IMPI). |
Office Action; Mexican Patent Application No. MX/a/2013/009523; Aug. 17, 2015; Mexican Institute of Industrial Property (IMPI). |
Second Office Action; Chinese Patent Application No. 201280009143.8; Nov. 3, 2015; State Intellectual Property Office of the People's Republic of China. |
Australian Application No. 2012217996; dated Dec. 5, 2015; Australian Government, IP Australia. |
Russian Federation Application No. 2013137976/11; dated Dec. 25, 2015; Patent Office of Russian Federation. |
Khatib, Rami; Final Office Action; U.S. Appl. No. 14/333,980; dated Dec. 18, 2015 United States Patent and Trademark Office; Alexandria, VA. |
Khatib, Rami; First Office Action; U.S. Appl. No. 13/371,789; Jan. 3, 2014; United States Patent and Trademark Office; Alexandria, VA. |
Khatib, Rami; Final Office Action; U.S. Appl. No. 13/371,789; Jun. 24, 2014; United States Patent and Trademark Office, Alexandria, VA. |
Notice of Allowance; U.S. Appl. No. 14/333,895; Oct. 29, 2014; United States Patent and Trademark Office, Alexandria, VA. |
Khatib, Rami; First Office Action; U.S. Appl. No. 14/333,944; Aug. 6, 2015; United States Patent and Trademark Office, Alexandria, VA. |
Khatib, Rami; First Office Action; U.S. Appl. No. 14/333,980; Aug. 6, 2015; United States Patent and Trademark Office, Alexandria, VA. |
Communication pursuant to Rule 69 EPC; European Patent Application No. 14198581.2; May 26, 2015; European Patent Office; Munich, Germany. |
Communication pursuant to Rule 69 EPC; European Patent Application No. 15153731.1; Jul. 20, 2015; European Patent Office; Munich, Germany. |
Communication pursuant to Rule 69 EPC; European Patent Application No. 1515 4181.0; Jul. 20, 2015; European Patent Office; Munich, Germany. |
Notice of Opposition to European Patent 1828045; filed by BT Products AB; Sep. 23, 2009. |
Notice of Opposition—Exhibit D1a—Invoices; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D1b—Invoice; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D1c—Receipt of payment; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D1d—Purchase Order; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D2—Service Manual for Vector; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D2a—pages from Service Manual; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D2b—pages from Service Manual; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D2c—pages from Service Manual; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D2d—pages from Service Manual; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D3—Harmonized Truck Standard; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D4—Changings in MCU-Software; cited in Opposition dated Sep. 17, 2009. |
Notice of Opposition—Exhibit D5—Service Manual BT VR; cited in Opposition dated Sep. 17, 2009. |
Exhibit D12—Service Message; Attached to Letter from Albihns-Zacco dated Oct. 5, 2010. |
Exhibit D13a—Engineering Change Note; Attached to Letter from Albihns-Zacco dated Oct. 5, 2010. |
Observations in Response to the Notice of Opposition; Mar. 18, 2010. |
Communication of Notice of Opposition from EPO; Oct. 22, 2009. |
Letter from Albihns-Zacco; May 10, 2010. |
Summons to Attend Oral Proceedings; May 12, 2011. |
Response to Summons and Written Observations; Aug. 8, 2011. |
Letter from Albihns-Zacco; Sep. 1, 2011. |
ISO/FDIS 3691. |
Interlocutory Decision in Opposition from EPO; Feb. 7, 2012. |
Leasing Agreement D1f; attached to Letter from Albihns-Zacco dated Sep. 1, 2011. |
Ross, Kenneth; Invitation to Pay Additional Fees including Communication Relating to the Results of the Partial International Research; May 11, 2012; International Application No. PCT/US2012/024838. |
Serôdio, Renato; International Search Report and Written Opinion; Application No. PCT/US2012/024838; Jul. 31, 2012; European Patent Office; Munich, Germany. |
First Office Action and Search Report for Chinese Patent Application No. CN201280009143.8; including a translation of the text portion of the Office Action, dated Jan. 12, 2015; Intellectual Property Office of the People's Republic of China. |
Serôdio, Renato; Communication pursuant to Article 94(e) EPC for European Patent Application No. 12710384.4; dated Jun. 27, 2014; European Patent Office; Netherlands. |
Newman, Paul; Patent Examination Report No. 1 for Australian Patent Application No. 2012217996; dated Dec. 5, 2014; Australian Patent Office; Australia. |
European Search Report for European Patent Application No. 14198581.2; dated Apr. 20, 2015; European Patent Office; Germany. |
Serôdio, Renato; Communication pursuant to Article 94(3) EPC for European Patent Application No. 12710384.4; dated Apr. 17, 2015; European Patent Office; Netherlands. |
Related U.S. Appl. No. 14/333,980, filed Jul. 17, 2014; entitled “Materials Handling Vehicle Monitoring a Pressure of Hydraulic Fluid Within a Hydraulic Structure”. |
European Search Report for European Patent Application No. 15153713.1; dated May 13, 2015; European Patent Office; Germany. |
European Search Report for European Patent Application No. 15154181.0; dated May 13, 2015; European Patent Office; Germany. |
Related U.S. Appl. No. 14/333,944, filed Jul. 17, 2014; entitled “Materials Handling Vehicle Measuring Electric Current Flow Into/Out of a Hydraulic System Monitor”. |
Number | Date | Country | |
---|---|---|---|
20150344278 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61443302 | Feb 2011 | US | |
61560480 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13371789 | Feb 2012 | US |
Child | 14333944 | US | |
Parent | 13371789 | Feb 2012 | US |
Child | 14333980 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14333944 | Jul 2014 | US |
Child | 14807051 | US | |
Parent | 14333980 | Jul 2014 | US |
Child | 14333944 | US |