This invention is related in general to games. This invention relates more particularly to a game that involves learning mathematical equations, to thereby enable a child to learn mathematics in a fun and enjoyable manner.
It is well known that children in the U.S. trail other countries when it comes to learning various topics, especially in the field of mathematics. For example, many children cannot fathom mathematical problems that include several functions, such as adding, subtracting, division and multiplication.
There is a desire, as determined by the inventors of this application, to come up with a fun and entertaining way for children to learn about mathematics, by creating a game that utilizes various aspects of mathematics in playing of the game. This game can be used by math teachers as a teaching aid to provide a fun and enjoyable way to teach various mathematical expressions to children.
The present invention relates to a method and apparatus for a game.
In accordance with one aspect of the invention, there is provided a method of playing a mathematics game by a plurality of players. The method includes:
a) rolling, by each of a plurality of players, n of a first type of dice having a first predetermined number of faces with predetermined number values provided thereon, and entering number values corresponding to a top-face of each of the n of the first type of dice on a score card, n being an integer value greater than or equal to two;
b) rolling, by each of the plurality of players, n of a second type of dice having the first predetermined number of faces with either “+” or “−” symbols provided thereon (representing positive or negative), and entering “+” and/or “−” symbols corresponding to a top-face of each of the n of the second type dice on the score card;
c) rolling, by each of the plurality of players, n−1 of a third type of dice having the first predetermined number of faces with different mathematical function symbols provided thereon, and entering mathematical function symbols corresponding to a top-face of each of the n−1 of the third type dice on the score card;
d) entering an equation created by the respective player on the score card, the equation utilizing information obtained from steps a), b) and c) and correctly solving the equation;
e) entering a cumulative total on the score card from the equation entered in step d) and any previous equations entered for the player on the score card; and
f) if n is less than m, incrementing n by one and returning back to step a), wherein m is an integer value greater than or equal to three; and
g) if n is equal to m, determining which one of the players has a corresponding cumulative total that is closest to zero, and determining a winner of the game accordingly.
In accordance with another aspect of the invention, there is provided a mathematics game to be played by a plurality of players. The game includes a plurality of different types of dice. One of the different types of dice corresponds to a first set of dice having a first predetermined number of faces with predetermined number values provided thereon. Another of the different types of dice corresponds to a second set of dice having the first predetermined number of faces with either “+” or “−” symbols provided on each of the faces. Yet another of the different types of dice corresponds to a third set of dice having the first predetermined number of faces with different mathematical function symbols provided on the respective faces. The game further includes a score card provided for each of the plurality of players, in which the score card includes a first region for entering number values corresponding to a throw of the first type of dice, a second region for entering “+”/“−” values corresponding to a throw of the second type of dice, a third region for entering mathematical functions corresponding to a throw of the third type of dice, a fourth region for entering a mathematical equation based on information in the first, second and third regions, and a fifth region for entering a cumulative score of the respective player.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. An effort has been made to use the same reference numbers throughout the drawings to refer to the same or like parts.
Unless explicitly stated otherwise, “and” can mean “or,” and “or” can mean “and.” For example, if a feature is described as having A, B, or C, the feature can have A, B, and C, or any combination of A, B, and C. Similarly, if a feature is described as having A, B, and C, the feature can have only one or two of A, B, or C.
Unless explicitly stated otherwise, “a” and “an” can mean “one or more than one.” For example, if a device is described as having a feature X, the device may have one or more of feature X.
A mathematics learning game called ‘Zero Quest’ according to an embodiment of the invention is described in detail below. The purpose of the game is to enable people, especially children, to correctly write mathematical equations, and ideally to win the game that is played against at least one other person. The object of the game is to come closest to zero “0” at the end of the game using the numbers and mathematical functions shown on dice that are rolled by each player.
To play the game, each player rolls the number and type of dice shown on a score card. Using the numbers and functions of the rolled dice, each player comes up with an equation, and then the player has to solve the equation. The result of the first equation solved, equation one, is put in a cumulative total line of the score card. When the player's turn to play comes up next, the player rolls the dice, and the result of the second equation solved, equation two, is added to the cumulative total line of the score card and put in its section of the score card. The cumulative total continues until five (5) separate equations (based on five separate turns of a player) have been solved and added together. Each player gets five turns, and the player with the closest cumulative total to zero wins the game.
In one possible implementation of the first embodiment, there are provided nine “numbers” dice, whereby four of the “numbers” dice have the numbers 1, 2, 3, 4, 5 and 6 on the six respective faces of those four dice, whereby two of the “numbers” dice have 2, 4, 6, 8 and 10 on the six respective faces of those two dice, whereby two of the “numbers” dice have 1, 3, 6, 9, 12 and 15 on the six respective faces of those two dice, and whereby the last one of the “numbers” dice has 1, 3, 5, 7, 9 and 11 on the six respective faces of that dice. The player “blindly” picks the “numbers” dice for each turn, such as by reaching into a box that contains the nine “numbers” dice and picking the appropriate number of dice for that turn.
In the example score card shown in
−1÷+2=−0.5.
From this equation, the player enters −0.5 in first roll “Cumulative Total” on the score card for the player.
In the example score card shown in
−1−5÷+5=−1/5=−0.2
From this equation, the player enters −0.7 (e.g., −0.5+−0.2) in second roll “Cumulative Total” on the score card for the player.
In the example score card shown in
+7/+11−+6−−1=−44/11=−4.37
From this equation, the player enters −5.07 (e.g., −0.5+−0.2+−4.37) in the third roll “Cumulative Total” on the score card for the player.
In the example score card shown in
+12−1×(−9−−9)++5=+1/12×0++5=+5
From this equation, the player enters −0.07 (e.g., −0.5+−0.2+−4.37+5) in the third roll “Cumulative Total” on the score card for the player.
In the example score card shown in
(+3/+11+−6−−6)+(+10÷+3)=3/11÷10/3=3/11×3/10=9/110=0.08
From this equation, the player enters +0.01 (e.g., −0.5+−0.2+−4.37+0.08) in the fifth roll “Cumulative Total” on the score card for the player.
At the end of the fifth turn for each player, the player having the closest cumulative total to zero wins. In this example, if the game was played with three total players and if the other two players had cumulative totals after the fifth round of −0.2 and +0.15, respectively, then the player having the cumulative total of +0.01 wins the game. To makes things a bit easier for the players, and to speed up the pace of the game, calculators are allowed, and parentheses can be used in the equations generated after each roll by the players. Also, when entering in the cumulative total for a round, the decimal results are rounded to the nearest 1/100th. PEMDAS is a mathematical rule that can be used in this game to determine the order of solving equations, whereby PEMDAS stands for Parenthesis, Exponents, Multiplication, Division, Addition, and Subtraction.
According to one possible implementation of the first embodiment, at any turn, if a player incorrectly enters an equation that does not utilize all of various mathematics numbers, +/− and functions information provided by way of a roll of the dice by the player for that particular turn, then the player's score for that particular turn is not counted towards the player's cumulative total score (in effect, the player loses a turn). According to another possible implementation of the first embodiment, the player who incorrectly enters an equation for his/her turn does not lose that turn, but rather is helped by the other players to create a proper equation that does utilize all of the various mathematics numbers, +/− and functions information provided by way of a roll of the dice by the player for that particular turn.
While the first embodiment has been described above with reference to playing with six-sided dice (the standard number of sides of dice), in alternative implementations of the first embodiment, other types of dice having more or less than six sides may be utilized for one or more of the “numbers”, the “+/−” dice, and the “functions” dice. For example,
The embodiments described above have been set forth herein for the purpose of illustration. This description, however, should not be deemed to be a limitation on the scope of the invention. Various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the claimed inventive concept. For example, the information for each roll of the dice made by each player may be entered on a hand-held computer device having displays that allow such entries, whereby in that implementation a physical (e.g., paper) score card is not utilized, but rather the hand-held computer accumulates the information entered by each player. The hand-held device may be programmed by a computer program stored in computer readable media, such as a compact disc, to enable players to play the game using the hand-held device. In a still further implementation, players at different locations can play against each other, by using the Internet and logging into a particular web site (e.g., www.zeroquest.com) that allows such interactive playing by players at different locations. The spirit and scope of the invention are indicated by the following claims.
This application is based upon and claims the benefit of priority from prior U.S. Provisional Patent Application 61/142,448, filed Jan. 5, 2009, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61142448 | Jan 2009 | US |