This application is related to the following concurrently filed patent application: U.S. Patent Application Ser. No. _____, which is entitled “DYNAMIC RESOURCE MANAGEMENT FOR LOAD BALANCING IN NETWORK PACKET COMMUNICATION SYSTEMS,” which is hereby incorporated by reference in its entirety.
This invention relates to network packet communication systems and, more particularly, to load balancing within such communication systems.
Network packet communication systems include a variety of network-connected systems that facilitate, manage, or control network packet traffic within the communication system. These network-connected systems can include gateways, routers, switches, interfaces, and/or other network-connected devices or processing systems that operate at various processing levels within the communication system. With respect to these various processing levels, different packet communication protocols are often used that are not compatible with each other such that processing systems at one processing level within a packet network communication system may use protocols that are not understood by processing systems operating at other processing levels within the packet network communication system.
Network communications also include sessions and related packet flows associated with applications running on a wide variety of network-connected user devices. For example, within a network packet communication system, applications running on personal computers, mobile devices, and/or other processing platforms may form one or more communication sessions with a variety of network-connected systems, and each of these sessions can include multiple packet flows. Network management systems are often used to control various parameters associated with packet sessions and flows for applications running within a monitored network communication system. These parameters can include, for example, packet priority, bandwidth usage, and/or other session/flow parameters for the network communication system. As these application-based packet sessions/flows are often dynamic in nature, they are often formed and removed as user devices operate within the network packet communication system.
Network packet communication systems also often include network monitoring tools. These monitoring tools are used to monitor network traffic associated with the network packets being communicated within the network communication system on an ongoing basis. To meet these monitoring needs, copies of network packets can be forwarded to network packet analysis tools. Network packet analysis tools include a wide variety of devices that analyze packet traffic, including traffic monitoring devices, packet sniffers, data recorders, voice-over-IP monitors, intrusion detection systems, network security systems, application monitors and/or other network management or security devices or systems. Packets can be forwarded to these network analysis tools using network hubs, test access ports (TAPs), switched port analyzer (SPAN) ports available on network switches, and/or other techniques.
Network packet communication systems, therefore, include a wide variety of processing devices and systems that perform various functions within the network infrastructure. And these processing systems operate at different processing levels within the network packet communication system to provide a variety of operational functions for the network packet communication system. The packet protocols and packet related parameters used at these various processing levels are often significantly different and dependent upon the particular operational functions being implemented at these processing levels.
Load balancers are often used within a network communication system to balance workloads among a group of similar devices, systems, or components that perform the same or similar function. For example, a load balancer can be used to balance workloads among a group of gateway controllers; a separate load balancer can be used to balance workloads among a group of routers; and a further load balancer can be used to balance workloads among a group of network analysis tools. However, such existing load balancers have little, if any, visibility into overall network system functionality and performance. Rather, these existing load balancers are focused on balancing loads for the particular function being performed by the group of processing systems with respect to which the load balancers are balancing workloads.
Processing systems or components within a packet network communication system can also operate within virtual processing environments, such as virtual machine (VM) platforms hosted by one or more processing systems. For example, one or more of the eNodeB, MME, SGW, and/or PGW processing systems within embodiment 100 of
The VM host hardware system 300 also includes a hypervisor 352 that executes on top of the VM host operating system (OS) 354. This hypervisor 352 provides a virtualization layer including a plurality of VM platforms 356A, 356B, 356C . . . that emulate processing systems and provide related processing resources. As shown with respect to VM platform 356A, each of the VM platforms 356A, 356B, and 356C are configured to have one or more virtual hardware resources associated with it, such as a virtualized network interface card (NIC) 358A, a virtualized CPU 360A, a virtualized memory 362A, and/or other virtualized hardware resources. The VM host hardware system 300 hosts each of the VM platforms 356A, 356B, 356C . . . and makes their processing resources and results available to the external network 318 through the VM host operating system 354 and the hypervisor 352. As such, the hypervisor 352 provides a management and control virtualization interface layer for the VM platforms 356A-C. It is further noted that the VM host operating system 354, the hypervisor 352, the VM platforms 356A-C, and the virtualized hardware resources 358A/360A/362A can be implemented, for example, using computer-readable instructions stored in a non-transitory data storage medium that are accessed and executed by one or more processing devices, such as the CPU 302, to perform the functions for the VM host hardware system 300.
As indicated above, with respect to an LTE network, VM platforms within a virtualization layer can implement one or more processing systems to provide virtual functionality for a network packet communication system, such as an LTE network.
Similar to the load balancers described above with respect to
Systems and methods are disclosed for matrix load balancing within network packet communication systems. The disclosed embodiments in part identify multiple sets of different load balancing parameters, select one or more parameters within each set of load balancing parameters to form a matrix of load balancing parameters, generate load balancing rules (e.g., unique keys and/or signatures) based upon the matrix of load balancing parameters, apply the load balancing rules to one or more load balancers within a network packet communication system, and use the one or more load balancers to determine how packets are distributed within the network packet communication system. Different features and variations can be implemented, as desired, and related systems and methods can be utilized, as well.
For one embodiment, a method to load balance packets within a network packet communication system is disclosed that includes identifying a plurality of sets of load balancing parameters where each set of load balancing parameters being different from the other sets of load balancing parameters, selecting one or more parameters within each set of load balancing parameters to form a matrix of load balancing parameters, generating load balancing rules based upon the matrix of load balancing parameters, applying the load balancing rules to one or more load balancers within a network packet communication system, and using the one or more load balancers to determine how packets are distributed within the network packet communication system.
In further embodiments, the plurality of sets of load balancing parameters includes at least on set of load balancing parameters associated with a packet protocol and at least one set of load balancing parameters associated with a network session for a user device within the network packet communication system. In still further embodiments, the plurality of sets of load balancing parameters includes at least one set of load balancing parameters associated with an application running within the network packet communication system. In other embodiments, the method also includes providing a graphical user interface and allowing selection of the one or more parameters within each set of load balancing parameters through the graphical user interface.
In additional embodiments, the method also includes receiving information from a plurality of load balancers within the network communication system concerning operation of the plurality of load balancers. In further embodiments, the method can include adjusting the plurality of sets of load balancing parameters based upon the received information. In still further embodiments, the method can include adjusting the plurality of sets of load balancing rules based upon the received information. In other embodiments, the method can include using the received information to track changes to selected parameters within the matrix of selected load balancing parameters.
In still further embodiments, the identifying, selecting, generating, applying, and using steps occur within a virtual machine environment. In addition, the method can include operating at least one processing devices to provide the virtual machine environment. Further, the method can include operating a plurality of processing devices to provide the virtual machine environment.
For another embodiment, a load balancing system for network packet communications is disclosed that includes one or more load balancers within a network packet communication system and a load balancer controller. The one or more load balancers are each configured to distribute packets within the network packet communication system based upon load balancing rules where each set of load balancing parameters is different from the other sets of load balancing parameters. The load balancer controller is configured to identify a plurality of sets of load balancing parameters, to select one or more parameters within each set of load balancing parameters to form a matrix of load balancing parameters, to generate load balancing rules based upon the matrix of load balancing parameters, and to apply the load balancing rules to the load balancers within a network packet communication system.
In further embodiments, the plurality of sets of load balancing parameters includes at least on set of load balancing parameters associated with a packet protocol and at least one set of load balancing parameters associated with a network session for a user device within the network packet communication system. In still further embodiments, the plurality of sets of load balancing parameters includes at least one set of load balancing parameters associated with an application running within the network packet communication system. In other embodiments, the load balancing system also includes a graphical user interface configured to allow selection of the one or more parameters within each set of load balancing parameters.
In additional embodiments, the load balancing system also includes a plurality of load balancers, and each of the load balancers is configured to provide information concerning its operation to the load balancer controller. In further embodiments, the load balancer controller is further configured to adjust the plurality of sets of load balancing parameters using the information. In still further embodiments, the load balancer controller is further configured to adjust the plurality of sets of load balancing rules based upon the information. In other embodiments, the load balancer controller is further configured track changes to selected parameters within the matrix of selected load balancing parameters based upon the information.
In still further embodiments, the one or more load balancers and the load balancer controller are configured to operate within a virtualization machine environment. In addition, at least one processing device can be configured to provide the virtual machine environment. Further, a plurality of processing devices can be configured to provide the virtual machine environment.
Different and/or additional features, variations, and embodiments can also be implemented, as desired, and related systems and methods can be utilized, as well.
It is noted that the appended drawings illustrate only exemplary embodiments of the invention and are, therefore, not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Systems and methods are disclosed for matrix load balancing within network packet communication systems. The disclosed embodiments in part identify multiple sets of different load balancing parameters, select one or more parameters within each set of load balancing parameters to form a matrix of load balancing parameters, generate load balancing rules (e.g., unique keys and/or signatures) based upon the matrix of load balancing parameters, apply the load balancing rules to one or more load balancers within a network packet communication system, and use the one or more load balancers to determine how packets are distributed within the network packet communication system. Different features and variations can be implemented, as desired, and related systems and methods can be utilized, as well.
The matrix load balancing embodiments described herein provides significant flexibility in selecting and applying parameters for the load balancers operating within a network packet communication system. Instead of relying solely upon port numbers or IP (Internet Protocol) addresses within a packet, the matrix load balancer controller allows fields from multiple different sets of parameters associated with packet protocols, communication sessions/flows, applications running within the network, and/or other sets of parameters to be selected and used for load balancing. These selected parameters are used to generate a matrix of selected parameters, and this matrix of selected parameters is then used to generate load balancing rules, such as unique keys or signatures, that are applied to load balancers within the network packet communication system and used to identify and forward packets to desired network destinations. Rather than generate these unique matrix-based keys or signatures based upon one set of similar parameters (e.g., one packet protocol or one session/flow), the matrix load balancing described herein leverage a matrix of selectable parameters among a variety of sets of parameters (e.g., multiple protocols and/or sessions/flows) to allow different types of packet protocols, sessions/flows, applications, and/or other disparate packet-based parameters of the network to be forwarded to common or desired destinations based upon these unique matrix-based keys or signatures that can be generated, for example, using user selection of parameters among different sets of parameters.
The matrix load balancing embodiments will now be described in more detail with respect to the drawings.
Looking first to
For the example embodiment 500 depicted, input network packets 501 are received by a first load balancer 502. The load balancer 502 provides load balancing at a first level of processing among a first group of processing systems 504A, 504B, 504C . . . that operate to provide similar functions for this first level of processing. A second load balancer 506 receives packets from the processing system 504A, and the second load balancer 506 provides load balancing at a second level of processing among a second group of processing systems 508A, 508B, 508C . . . that operate to provide similar functions for this second level of processing. A third load balancer 510 receives packets from the processing system 508A, and the third load balancer 510 provides load balancing at a third level of processing among a third group of processing systems 512A, 512B, 512C . . . that operate to provide similar functions for this third level of processing. Although not shown, it is noted that each of the other first level processing systems 504B, 504C . . . can output packets to a separate load balancer and additional processing systems and that each of the other second level processing systems 508B, 508C . . . can output packets to a separate load balancer and additional processing systems. Other variations can also be implemented.
The matrix load balancer controller 520 communicates with each of the load balancers 502, 506, 510 . . . to provide control messages (CTRL) 524 that include load balancing rules that are applied to the load balancers 502, 506, 510 . . . to determine at least in part how the load balancers 502, 506, 510 . . . operate to distribute packets among the processing systems to which they are connected. These control messages 524 are based in part upon matrix load balancer (MX-LB) parameter selection inputs 522 that select and form a matrix of load balancing parameters that is used determine how the load balancers 502, 506, 510 . . . will work together to balance loads across the different processing levels of the embodiment 500. Further, the selected parameters can be linked by one or more Boolean operations (e.g., AND, OR, etc.) to provide greater flexibility in the control of the matrix load balancer controller 520. In addition, the matrix load balancer controller 520 also receives load balancer (LB) information 526 from each of the load balancers 502, 506, 510 . . . that can include operational information about the load balancers including the load balancing parameters used by the load balancers 502, 506, 510 . . . to determine how packets are distributed among the processing systems to which they are connected. The LB information 526 can be used by the matrix load balancer controller 520, for example, to determine sets of load balancing parameters from which parameters can be selected to form the matrix of load balancing parameters that is used to provide load balancing rules to the load balancers 502, 506, 510 . . . to control how packets are distributed, as described in more detail below. Although three groups of processing systems and three load balancers are depicted for embodiment 500, it is noted that other numbers of processing system groups and related load balancers can also be provided while still taking advantage of the matrix load balancing techniques described herein.
In operation, the matrix load balancer controller 520 provides significant flexibility in selecting and applying parameters for the load balancers it controls. Instead of relying solely upon port numbers or IP addresses within a packet, the matrix load balancer controller 520 allows any field in a packet or flow to be selected and used for load balancing. These parameter selections generate a matrix of selected parameters from various packet protocols and/or flows. This matrix of selected parameters is then used to generate a unique matrix-based key that can be used to identify packets to be forwarded to a particular destination by one or more load balancers being controlled by the matrix load balancer controller 520. Rather than generate this unique matrix-based key based upon any one packet protocol or any one flow, the matrix load balancer controller 520 leverages the matrix of selectable parameters among a variety of protocols and/or flows to allow different types of packets and flows to be forwarded to a common destination based upon these unique matrix-based keys that are generated using user selection of parameters.
For example, where load balancers are placed at different processing levels of a network, the different processing levels can employ different packet protocols and include different flows with respect to particular users. Through the matrix load balancer controller 520, as described in more detail below, a user can select parameters within the different packet protocols and packet flows that will be used to determine packets to forward to processing systems connected to the load balancers being controlled by the matrix load balancer controller 520. Further, identifiers generated for users can be dynamically determined and tracked by the matrix load balancer controller 520 through LB information 526 sent to the matrix load balancer controller 520 during operation. As such, the user can be tracked as different identifiers are generated and removed for different sessions and related flows with respect to the user. For example, temporary identifiers (IDs) generated for user equipment (UE) within an LTE network, such as a cell phone, can be tracked as they are generated, and packets having these tracked identifiers can be forwarded to a common destination by the load balancers. These identifiers can include identifiers associated with sessions between the UE and various websites or web applications (e.g., AMAZON session identifier, GOOGLE session identifier, FACEBOOK session identifier, etc.). By allowing selection of fields across various packet protocols and flows/sessions within the network packet communication system, the matrix load balancer controller 520 allows for packets associated with various flows and packet protocols within the network packet communication system to be tracked and forwarded to desired destinations connected to the load balancers being controlled by the matrix load balancer controller within the network.
It is noted that the matrix load balancer controller 520 can be implemented using one or more operational modules, and these operational modules can be operated on one or more separate processing devices or systems. For example, a portion of the operational modules for the matrix load balancer controller 520 could operate on one or more processing systems at a first geographic location, and another portion of the operational modules for the matrix load balancer controller 520 could operate on one or more processing systems at a second geographic location. The processing systems at the two different geographic locations can then communicate with each other to facilitate the overall operation of the matrix load balancer controller 520. As described further below, the matrix load balancer controller 520 can also be implemented as part of one or more virtual environments. Other variations could also be implemented.
As described above, the matrix load balancer controller 520 communicates with each of the load balancers 502, 506, 510 . . . to provide control messages (CTRL) 524 including load balancing rules that are applied to the load balancers 502, 506, 510 . . . to determine at least in part how the load balancers 502, 506, 510 . . . operate to distribute packets among the processing systems to which they are connected. As above, these control messages 524 are based in part upon matrix load balancer (MX-LB) parameter selection inputs 522 that select and form a matrix of load balancing parameters that is used determine how the load balancers 502, 506, 510 . . . will work together to balance loads across the different processing levels of the embodiment 600. Although three groups of processing systems and three load balancers are depicted for the LTE embodiment 600, it is noted that other numbers of processing system groups and related load balancers can also be provided while still taking advantage of the matrix load balancing embodiments techniques described herein.
As described above, the virtual matrix load balancer controller 520 communicates with each of the load balancers 502/506/510 to provide control messages (CTRL) 524 to the load balancers 502/506/510 to determine at least in part how the load balancers 502/506/510 operate to distribute packets among the processing systems to which they are connected. These control messages 524 are based in part upon matrix load balancer (MX-LB) parameter selection inputs 522 that select and form a matrix of load balancing parameters that is used determine how the load balancers 502, 506, 510 . . . will work together to balance loads across the different processing levels of the embodiment 700. Although two groups of processing systems and two load balancers are depicted for the virtual LTE processing embodiment 700, it is noted that other numbers of processing system groups and related load balancers can also be provided while still taking advantage of the matrix load balancing techniques described herein. It is further noted that processing system platforms 410 can be implemented, for example, using computer-readable instructions stored in a non-transitory data storage medium that are accessed and executed by one or more processing devices to perform the functions for the processing system platforms 410. It is also noted that the processing system platforms 410 can be implemented, for example, using one or more processing devices such as processors and/or configurable logic devices. Processors (e.g., microcontrollers, microprocessors, central processing units, etc.) can be programmed and used to control and implement the functionality described herein, and configurable logic devices such as CPLDs (complex programmable logic devices), FPGAs (field programmable gate arrays), and/or other configurable logic devices can also be programmed to perform desired functionality. Other variations could also be implemented.
As indicated above,
The matrix generator and LB rules engine 802 receives and processes the selected parameters 810A, 810B, 810C . . . to form a matrix of load balancing parameters and to generate control messages 524A, 524B, 524C that when applied to the load balancers will implement the load balancing selections made through the various parameter selection modules. As depicted, control messages 524A are applied to load balancers 502A, 502B, 502C . . . that are operating to perform processing at a first level; control messages 524B are applied to load balancers 506A, 506B, 506C . . . that are operating to perform processing at a second level; and control messages 524C are applied to load balancers 510A, 510B, 5102 . . . that are operating to perform processing at a third level. Different and/or additional control messages and load balancers could also be utilized while still taking advantage of the matrix load balancing techniques described herein.
As described above, it is also noted that the matrix load balancer controller 520 can receive load balancer information 526 from the load balancers 502A-C/506A-C/510A-C that includes operational information about the load balancers including parameters used by the load balancers during operation. Further, it is noted that the matrix load balancer controller 520 can use this load balancer information 526 to determine the parameters to make available for selection within the parameter selection modules 802A-C, 804A-C, and 806A-C. Other variations can also be implemented.
The matrix load balancer controller 520 can also provide a graphical user interface (GUI) 912, for example, as part of the matrix generator and LB rules engine 820. For example, selectable parameters for the selection modules 910 can be displayed to a user through the GUI 912, and the user can provide control inputs 522 that select one or more parameters within the selection modules 910. The selected parameters 810 can then be provided back to the parameter selection processor 902 which can store the selected parameters as one or more sets of matrix data 918A, 918B, 918C . . . within a matrix data storage system 916. As such, this matrix data 918A, 918B, 918C . . . can then be output as a matrix of LB parameters 920 to a rules engine as described below with respect to
The matrix load balancer controller 520, for example within the parameter selection processor 902, can further include a parameter tracking engine 908 that can be configured to track one or more parameters associated with the packet network communication system. For example, as described further below, it may be desirable to track user identification information that is generated and deleted with respect to user sessions and/or related packet flows within the packet network communication system. These parameters can be provided to the parameter tracking engine 908 as part of the LB information 526 communicated by the load balancers to the matrix load balancer controller 520. The parameter tracking engine 908 can further be used to adjust data stored in the matrix data storage system 916, and the matrix data 918A, 918B, 918C . . . stored for parameter selections made through the selection modules 910. In particular, the parameter tracking engine 908 can adjust the data within the matrix data 918A, 918B, 918C . . . , such as user ID information, as it changes dynamically over time within the packet network communication system.
It is noted that the operational and functional blocks described herein can be implemented using hardware, software or a combination of hardware and software, as desired. In addition, integrated circuits, discrete circuits or a combination of discrete and integrated circuits can be used, as desired, that are configured to perform the functionality described. Further, configurable logic devices can be used such as CPLDs (complex programmable logic devices), FPGAs (field programmable gate arrays), ASIC (application specific integrated circuit), and/or other configurable logic devices. In addition, one or more processors running software or firmware could also be used, as desired. For example, computer readable instructions embodied in a tangible medium (e.g., memory storage devices, FLASH memory, random access memory, read only memory, programmable memory devices, reprogrammable storage devices, hard drives, floppy disks, DVDs, CD-ROMs, and/or any other tangible storage medium) could be utilized including instructions that cause computer systems, processors, programmable circuitry (e.g., FPGAs, CPLDs), and/or other processing devices to perform the processes, functions, and capabilities described herein. It is further understood, therefore, that one or more of the tasks, functions, or methodologies described herein may be implemented, for example, as software or firmware and/or other instructions embodied in one or more non-transitory tangible computer readable mediums that are executed by a CPU (central processing unit), controller, microcontroller, processor, microprocessor, FPGA, CPLD, ASIC, or other suitable processing device or combination of such processing devices.
Further modifications and alternative embodiments of this invention will be apparent to those skilled in the art in view of this description. It will be recognized, therefore, that the present invention is not limited by these example arrangements. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. It is to be understood that the forms of the invention herein shown and described are to be taken as the presently preferred embodiments. Various changes may be made in the implementations and architectures. For example, equivalent elements may be substituted for those illustrated and described herein, and certain features of the invention may be utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the invention.