NONE
1. Field of the Invention
The present invention relates generally to Matrix Transduction System and music circuits, and in particular, to receiving and fabricating methods for providing improved bandwidth performance and power handling capability of frequency power devices and circuits. My invention relates to Power frequency/power devices wireless telegraphy, music key note layout and more particularly to a piezoelectric oscillation-tube resonator which, in addition to performing the usual functions of such detectors, may be used as a tuning device, Amplifying resonator and as a receiver transistor, and which has a variety of other uses.
2. Description of Related Art
The “Fleming valve” was an evacuated glass envelope in which a light-bulb-style metallic filament, fed by low voltage and sucking high current, incandescent at 2000° F. This creates an electrical activity (or, in quantum parlance, “electron flow”) that conducts unidirectional through vacuum to another nearby element, a metallic plate charged to a high positive potential. Thus was a rectifier, and hence also a frequency detector. Lee DeForest discovered that electrical activities within a tube can be leveraged at will by applying small fluctuations to a metallic grid interposed between filament and plate. Jimi Hendrix music expanded range, feedback and amplification.
In music, an octave (Latin octavus: eighth) or perfect octave is the interval between one musical pitch and another with half or double its frequency. The octave relationship is a natural phenomenon that has been referred to as the “basic miracle of music”, the use of which is “common in most musical systems”. It may be derived from the harmonic series as the interval between the first and second harmonics. The octave has occasionally been referred to as a diapason. For example, if one note has a frequency of 440 Hz, the note an octave above it is at 880 Hz, and the note an octave below is at 220 Hz. The ratio of frequencies of two notes an octave apart is therefore 2:1. Further octaves of a note occur at 2n times the frequency of that note (where n is an integer), such as 2, 4, 8, 16, etc. and the reciprocal of that series. For example, 55 Hz and 440 Hz are one and two octaves away from 110 Hz because they are 0.5 (or 2-1) and 4 (or 22) times the frequency, respectively.
A resonator guitar or resophonic guitar is an acoustic guitar whose sound is produced by one or more spun metal cones (resonators) instead of the wooden sound board (guitar top/face). Resonator guitars were originally designed to be louder than regular acoustic guitars, which were overwhelmed by horns and percussion instruments in dance orchestras. They became prized for their distinctive sound, however, and found life with several musical styles (most notably bluegrass and the blues) well after electric amplification solved the issue of inadequate guitar sound levels.
Bioelectricity: Bioelectromagnetism (sometimes equated with bioelectricity) refers to the electrical, or electromagnetic fields produced by living cells, tissues or organisms. Examples include the cell membrane potential and the electric currents that flow in nerves and muscles, as a result of action potentials. ‘Bioelectromagnetism’ is somewhat similar to bioelectromagnetics, which deals with the effect on life from external electromagnetism; yet such an effect also falls under the definition of ‘bioelectromagnetism’. Human body has capacity 25,000 BTU equal to 125 volt battery.
A kilowatt is a unit of power. This means that it is an instantaneous measure of consumption rate. To be specific, a kilowatt is a thousand watts. A watt is a joule per second. And a joule is a unit of energy. So, kilowatts are a measure of energy used per time. To use a familiar simile, kilowatts are like miles per hour in your car. Kilowatts tell you how fast you are using energy.
Energy in electronic elements: Electric potential energy, or electrostatic potential energy, is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. The term “electric potential energy” is used to describe the potential energy in systems with time-variant electric fields, while the term “electrostatic potential energy” is used to describe the potential energy in systems with time-invariant electric fields.
Capacitance is the ability of a body to store an electrical charge. Any body or structure that is capable of being charged, either with static electricity or by an electric current, exhibits capacitance. A common form of energy storage device is a parallel-plate capacitor. In a parallel plate capacitor, capacitance is directly proportional to the surface area of the conductor plates and inversely proportional to the separation distance between the plates. If the charges on the plates are +q and −q, and V gives the voltage between the plates, then the capacitance C is given by
C=Q/V.
The capacitance is a function only of the physical dimensions (geometry) of the conductors and the permittivity of the dielectric. It is independent of the potential difference between the conductors and the total charge on them.
Piezoelectricity is the combined effect of the electrical behavior of the material:
D=∈E
where D is the electric charge density displacement (electric displacement), ∈ is permittivity and E is electric field strength, and
S=sT Hooke's Law
where S is strain, s is compliance and T is stress.
In the case of a closed path in the presence of a varying magnetic field, the integral of the electric field around a closed loop may be nonzero; one common application of the concept of emf, known as “induced emf” is the voltage induced in a such a loop. The “induced emf” around a stationary closed path C is:
∈=
cE·dl,
where now E is the entire electric field, conservative and non-conservative, and the integral is around an arbitrary but stationary closed curve C through which there is a varying magnetic field. Note that the electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (that is, the work done against the field around a closed path is zero).
Copolymers: Copolymers of PVDF are also used in piezoelectric and electrostrictive applications. One of the most commonly-used copolymers is P(VDF-trifluoroethylene), usually available in ratios of about 50:50 wt % and 65:35 wt % (equivalent to about 56:44 mol % and 70:30 mol %). Another one is P(VDF-tetrafluoroethylene). They improve the piezoelectric response by improving the crystallinity of the material.
A novel electrospun TPU/PVdF porous fibrous polymer electrolyte for lithium ion batteries. Novel blend-based gel polymer electrolyte (GPE) films of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) (denoted as TPU/PVdF) have been prepared by electrospinning. The electrospun thermoplastic polyurethane-co-poly (vinylidene fluoride) membranes were activated with a 1M solution of LiClO4 in EC/PC and showed a high ionic conductivity about 1.6 mS cm-1 at room temperature. The electrochemical stability is at 5.0 V versus Li+/Li, making them suitable for practical applications in lithium cells. Cycling tests of Li/GPE/LiFePO4 cells showed the suitability of the electrospun membranes made of TPU/PVdF (80/20, w/w) for applications in lithium rechargeable batteries.
A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries. Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt % polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2×10-3 S cm-1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g-l when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25° C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries. Selenium, notable use is in power DC surge protection
The present invention antenna vessel sensor circuitry has been accomplished under the circumstances in view. According to one aspect of the present invention, the multipurpose MTS receiver is optionally equipped with a LED lamp and a rechargeable battery for illumination. According to another aspect of the present invention, the resonator receiver comprises a power control unit, which uses a piezoelectric component to amplify frequency for charging the rechargeable battery when battery power is low and when electric service supply is not available.
Electronic keyboards have switches under each key. Depressing a key connects a circuit, which triggers tone generation. Most keyboards use a keyboard matrix circuit, in which eight rows and eight columns of wires cross—thus, 16 wires can provide (8×8=) 64 crossings, which the keyboard controller scans to determine which key was pressed. The problem with this system, is that it provides only a crude binary on/off signal for each key. Better electronic keyboards employ two sets of switches for each key that are slightly offset. By determining the timing between the activation of the first and second switches, the velocity of a key press can be determined—greatly improving the performance dynamic of a keyboard. The best electronic keyboards have dedicated circuits for each key providing polyphonic aftertouch.
According to still another aspect of the present invention MTS system, the resonator frequency receiver comprises a circuit unit for receiving resonator broadcasting signals, and a function mode touch display unit, which uses a speaker for voice output, a screen for data display, controller, processor and a selector key for frequency selection. Ultrasonic sensors (also known as transceivers when they both send and receive) work on a principle similar to radar or sonar which evaluate attributes of a target by interpreting the echoes from radio or sound waves respectively. Ultrasonic sensors generate high frequency sound waves and evaluate the echo which is received back by the sensor. Sensors calculate the time interval between sending the signal and receiving the echo to determine the distance to an object. An ultrasonic transducer is a device that converts energy into ultrasound, or sound waves above the normal range of human hearing. While technically a dog whistle is an ultrasonic transducer that converts mechanical energy in the form of air pressure into ultrasonic sound waves, the term is more apt to be used to refer to piezoelectric transducers that convert electrical energy into sound. Piezoelectric crystals have the property of changing size when a voltage is applied, thus applying an alternating current (AC) across them causes them to oscillate at very high frequencies, thus producing very high frequency sound waves. The location at which a transducer focuses the sound can be determined by the active transducer area and shape, the ultrasound frequency, and the sound velocity of the propagation medium.
In a crystal oscillator circuit the filter is a piezoelectric crystal (commonly a quartz crystal). The crystal mechanically vibrates as a resonator, and its frequency of vibration determines the oscillation frequency. Crystals have very high Q-factor and also better temperature stability than tuned circuits, so crystal oscillators have much better frequency stability than LC or RC oscillators. They are used to stabilize the frequency of most radio transmitters, and to generate the clock signal in computers and quartz clocks. Crystal oscillators often use the same circuits as LC oscillators, with the crystal replacing the tuned circuit; the Pierce oscillator circuit is commonly used. Quartz crystals are generally limited to frequencies of 30 MHz or below.
Surface acoustic wave (SAW) devices are another kind of piezoelectric resonator used in crystal oscillators, which can achieve much higher frequencies. They are used in specialized applications which require a high frequency reference, for example, in cellular telephones. Since piezoelectric crystals generate a voltage when force is applied to them, the same crystal can be used as an ultrasonic detector. Some systems use separate transmitter and receiver components while others combine both in a single piezoelectric transceiver. Systems typically use a transducer which generates sound waves in the ultrasonic range, above 18,000 hertz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed.
The present invention provides an organic music experience as if plugged individually by audience participation and incorporating frequency components contributing to frequency band.
Some electric guitar and electric bass guitar models feature piezoelectric pickups, which function as transducers to provide a sound closer to that of an acoustic guitar with the flip of a switch or knob, rather than switching guitars. Those that combine piezoelectric pickups and magnetic pickups are sometimes known as hybrid guitars.
Piezoelectric, or piezo, pickups represent another class of pickup. These employ piezoelectricity to generate the musical signal and are popular in hybrid electro-acoustic guitars. A crystal is located under each string, usually in the saddle. When the string vibrates, the shape of the crystal is distorted, and the stresses associated with this change produce tiny voltages across the crystal that can be amplified and manipulated. Some piezo-equipped guitars use what is known as a hexaphonic pickup. “Hex” is a prefix meaning six. In a hexaphonic pickup separate outputs are obtained from discrete piezoelectric pickups for each of the six strings.
Piezoelectric transducer tube bulb (silica, pvdf) with antenna embedded or atopic of a piezoelectric ceramic sensor oscillator resonator, pickups and strings. The “Pizoe” alternately contains filaments (halogen, mercury, tungsten), Low pressure inert gas (argon, nitrogen, krypton, xenon) and stand alone functionality comprising touch screen, transceiver, controller, processor, and button. A small amount of sound energy is reflected by objects in front of the device and returned to the detector, another piezoelectric transducer. The receiver amplifier sends these reflected signals (echoes) to a micro-controller which times them to determine how far away the objects are, by using the speed of sound in air.
The source of radio frequencies convertible to direct current by the circuit shown may include sources of high frequency, low frequency (LF), very low frequency (VLF) and extremely low frequency (ELF) radio waves as well as seismic vibration of the earth's magnetic fields.
Start on A and you get the natural minor 70 pattern, A, B, C, D, E, F, G. But suppose you want to play something using that same pattern of steps but starting higher or lower? If that's what you want, you'll need to add some in-between notes, which are represented by the black keys 6&7. To play the major pattern starting on F, for example, you'll need to add a Bb, a lower form of B, between the A and the B. To play it starting on G you'll need to use a higher F, F#. This is the origin of the
Between B and C and between E and F there is just a half step—no room there for a black key. But there is a reason to have a “B#” 6 and an “E#7.” For just one example, if you have written a G# in your music and want to make it the root of a major harmony you'll need a major third above it. A third brings you to the third letter, B, but to be major (4 half steps wide) it has to be a raised B: B#. You can't write C as a substitute because that wouldn't be a major harmony; it would confuse the band. C would be a diminished fourth above G# and would have different musical implications.
Since there's no black key between B and C you'll be playing that B# on the same piano key used for C, but that's part of the compromise that makes the piano workable. There was a time when musicians tried making keyboards with separate keys for B# and C, Fb and E, F# and Gb, and all the others, each tuned slightly different—but such keyboards were expensive to make and difficult to use—some had 53 keys to the octave 75. Musicians compromised by tuning just 12 keys in such a way that C could pass for B#, and so on. To sum up: B#6 and E#7 can indeed be part of a scale, depending on the tonic (starting note) of the scale. In music theory, an enharmonic scale is “an [imaginary] gradual progression by quarter tones” or any “[musical] scale proceeding by quarter tones”. The enharmonic 61 scale uses dieses (divisions) nonexistent on most keyboards, since modern standard keyboards have only half-tone dieses.
Keyboard Matrix Circuit Our electronic
Pressing a key on the piano's keyboard 99 causes a felt padded hammer to strike steel strings. The hammers rebound, and the strings to continue to vibrate at their resonant frequency. These vibrations 61 are transmitted through a bridge 69 to a sounding board that more efficiently couples the acoustic energy to the air. The sound would otherwise be no louder than that directly produced by the strings. When the key 85 is released, a damper stops the string's vibration sound.
The physical principle of the
Our electric guitars can have solid, semi-hollow, or hollow bodies, and produce little sound without amplification. Piezoelectric soundboard 20 sensors convert the vibration of the piezoelectric strings 21 into signals, which are fed to an amplifier resonator through a cable or radio transmitter. The sound is frequently modified by other electronic devices or the natural distortion of valves (vacuum tubes) in the amplifier resonator 15,33.
Referring to
The
Further, the LED lamp 5 and the power lighting circuit 4 are electrically connected in series to a selector switch S1, which can be switched between a first mode where the LED lamp 5 is automatically turned on, and a second mode where the LED lamp 5 is turned on constantly so that the multipurpose Receiver 32 is used as a light source. Thus, the circuit unit Resonator 15 is adapted to receive converted DC 27 from power broadcasting signals 28, etc. The function mode display (LED) unit 17 has a speaker 16 for voice output, a screen 18 for data display, and selector key 19 for frequency selection.
The oscillating 45 circuits 300-1100 receiver 32 a signal 28 at a frequency 101 of, for instance, 75 kHz as resonant frequency 101 of the piezoelectric 11 transducer 10 anode 51 (determined by the length direction dimension) or the neighborhood (±5 kHz) of the resonant frequency 101.
According to another aspect of the
Without a matrix 300 circuit 88, a 61-key keyboard would require 62 wires 21 to connect (one for each note, and a ground)—an awkwardly thick bundle of wiring. With a matrix 300 circuit 88, any of 61 notes can be determined with only 16 wires. This is drawn schematically as a matrix of 8 columns and 8 rows of wires, with a switch at every intersection. The
There are at least two limitations with this system. The first is that it provides only a crude binary on/off signal for each key. Better electronic keyboards employ two sets of switches for each key that are slightly offset. By determining the timing between the activation of the first and second switches, the velocity of a key press can be determined—greatly improving the performance dynamic of a keyboard. The second is that instruments with a matrix circuit can only play in a monophonic fashion without the addition of a diode for each key crossing. The diode is a one-way valve which prevents unwanted notes (“phantom keys”) from being triggered, or intended notes from being masked (“phantom key blocking”).
Monophonic instruments and most low-cost computer keyboards reduce costs by leaving out most or all of those diodes. To avoid “phantom keys”, the keyboard controller in modern low-cost computer keyboards will ignore further key presses once two keys (other than modifier keys) have been pressed, which is known as jamming.
These additionally can consist of passive components such as potentiometers and capacitors, but may also include specialized integrated Media player 65 circuits or other active components requiring batteries for power, for pre-amplification and signal processing, or even for assistance in tuning.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.