1. Field of the Invention
The invention relates to systems and assemblies for bedding structures including mattress arrangement and bed frame structures in which to encase said mattresses.
2. The Prior Art
Key determinants for the function of a mattress include comfort, aesthetics, and stability. Furthermore these determinants are measured not on an initial basis, but over an extended period of years of use.
Traditional forms of mattresses, including sleeping mats filled with natural materials, were subsequently replaced by more comfortable resilient materials used, such as polyurethane foam, foam latex, air and even water, in order to provide a homogeneous material which will provide long time stability and comfort to the user.
The difficulty with these homogeneous materials is the lack of resilient behavior, with these materials tending to absorb the load and so sacrificing comfort for long term stability. In any event, the polymer materials, such as latex and polyurethane, still lack long term effectiveness as the material is eventually broken down, to deform into set shapes, such as the user's body shape, or flattening down and otherwise diminishing in comfort.
Whilst involving a higher degree of assembly, alternative construction using springs represents the higher end of the mattress market. This premium is due to the cumulative benefits of distributing load to the individual spring units, which provides greater resilience and prevents deformed shapes. The springs, therefore, provide a mattress with longer term comfort and stability.
The drawback of a spring mattress, however, is its load carrying capacity. Because the springs are of metal construction, if a user is too heavy, the springs in the preferred sleeping position will eventually fatigue and deform. Alternatively, if a bed having stiffer springs is used and the user is underweight, the mattress will lack comfort through being too hard. Thus, conventional spring construction requires a balance between the stiffness of the springs and the weight of the user.
A mattress having multiple foam layers instead of springs is shown in U.S. Pat. No. 6,701,556. The patent places above foam base 10, 50, one or more indented fiber layers or other such three dimensional engineered material layers having a plurality of resilient members 76 over the base 10, 50. Such engineered materials may include three dimensioned fiber layer networks made from textile fibers that have projections and optional depressions, or other such structures, for example, spring or spring-like protrusions may be used. Typically, two to four such layers 60 are provided as illustrated in
Further, encapsulating the mattress will typically be some form of structure to retain the mattress in place. The function of such a structure will vary widely and include aesthetics, the ability to retain the mattress in a single location, a support for bedroom furniture and other such uses.
A mattress having an air/foam mattress matrix assembly is described in U.S. Pat. No. 5,836,027. The mattress includes an air mattress with a plurality of compressible and expandable members extending upwardly from the base. The expandable members have a cylindrical shape with a flat top that can be adjusted vertically by increasing the pressure therein. The expandable members are contained within a foam restraining member. However, the mattress does not include a bed frame to contain the mattress.
The side walls used to construct the bed frame structure are typically wooden and sometimes coated in a polyurethane foam. Given the desired longevity of the mattress, the structure encapsulating the mattress is expected to maintain its structural and aesthetic function for at least as long.
However, typical construction of the bed frame structure will exhibit damage through wear and tear. Further, it is susceptible to damage from insect infestation, such as termites and borers, not to mention warping of the side walls, particularly in humid conditions. Thus, the longevity of the bed frame structure is often diminished functionally and frequently diminished aesthetically.
It is therefore an object of the present invention to provide air springs with increased comfort.
It is another object to create a cavity within the air springs to hold an insert of various types to enhance the sleeping experience.
It is a further object to provide a frame which supports the air mattress and is easily manufactured from a polymer material.
It is yet another object to provide a vibration free support for a compressor that is suspended from the frame platform.
Therefore, in a first aspect of the present invention, the use of air springs achieves the benefit of conventional metal springs through providing an array of support to the user. However, unlike metal springs, the use of air as the supporting material does not suffer fatigue or defamation and so the long term benefit is enhanced. Further, the addition of a cavity in the spring provides further resilient behavior under load from the individual spring and may further provide advantage in adding extrinsic material to the spring, such as perfume, magnets, anti-bacterial material, etc., without affecting performance.
In one embodiment, the cavity may be used to support a soft material such as foam, rubber, or polyurethane foam to add further comfort to the user.
By providing this cavity, the mattress construction is not limited on the quantity or size of the materials placed in the cavity, as would be the case were the cavity not present.
The mattress may include an airbag in communication with the underside of the air spring in order to selectively apply pressure to one or more groups of air springs via a compressor. Accordingly, a system according to the present embodiment may provide better stability and reduce shock impulses arising from a change of position of the user during sleep.
With regard to the second aspect, reinforcing the side wall members of the bed frame structure may allow extra materials to be used purely for aesthetic purposes, with the metal reinforcement acting as the major structural component of the bed frame structure. In one embodiment, the side walls of the bed frame structure may include an outer polymer layer. In a further embodiment, the polymer layer may be a relatively soft and resilient material, for instance, polyurethane, foam latex.
In a further embodiment, the inter connector located between adjacent side walls may be connectable to the metal reinforcement within each side wall.
In a further aspect, the bed frame structure may be constructed according to the method of preparing supporting frame work for the side walls; arranging the supporting framework using a bracket; installing the connector to each adjacent side wall at said corner; arranging the frame work at 90 degrees at each corner; and bolting the inter connector so as to fix the side walls in place.
In a further embodiment, the side walls may be integrally formed about the steel reinforcement. For instance, the side walls may be molded so as to encapsulate the steel reinforcement. Said metal reinforcement may include projections or other elements to facilitate bonding with the molded material to form the side wall. Still further, the metal reinforcement may include members projecting from the side wall following the encapsulating process, so as to facilitate connection with the interconnecting members. Thus, the encapsulation may not be a complete encapsulation, but instead sufficient to allow projections at distal ends of said side walls.
It will be noted that through a bolted connection with the inter connector, the bed frame structure may be assembled and disassembled for transport and storage.
In a further embodiment, the bed frame structure may include a platform mounted within the assembled side walls for supporting a mattress to be placed thereon. In a further embodiment, the platform may provide stability for the assembled side walls, so as to maintain shape.
In a further embodiment, the side walls may include projections or recesses, such that placement of the platform fits onto said projections or into said recesses to form an interconnected assembly.
In a further embodiment, the cavity may be arranged to receive an insert of a material softer than the air spring, the cumulative effect of said inserts within the array of air springs increasing the relative softness of the mattress.
The air springs may be connected to an air supply and valve arrangement. If the user wishes more support, more air can be added by opening the valve; and if less support, then air can be vented. This threshold pressure will depend on the design of the mattress, including thickness of the air spring material, number of air springs, etc.
The bed frame structure further includes an array of air springs and an air bladder in communication with said array of air springs for providing varying levels of air pressure to said array of air springs. A foam layer having a plurality of through cut-outs is in registration with said air springs. The array of air springs are disposed within said frame, with said foam layer being placed on top of said array with each air spring occupying a corresponding through cut-out. Each air spring includes an outer cylindrical surface formed with accordion folds, wherein said accordion folds, said foam layer and said side wall members collectively restrict the air springs from outward radial expansion when subject to increased internal pressure.
The mattress assembly further includes a foam bullet disposed within the aperture of the air springs. The foam layer comprises a first fixed density component, with said air spring comprising a variable density component. The foam bullet comprises a second fixed density component completely encircled by said variable density component; wherein the first, second and third density components all reside within the same plane.
The advantages, nature, and various additional features of the invention will appear more fully upon consideration of the illustrative embodiments now to be described in detail in connection with accompanying drawings. In the drawings wherein like reference numerals denote similar components throughout the views:
Referring now in detail to the drawings,
Upper cover 12 may be made from a natural or synthetic fabric. In a practical embodiment, the cover was made from a fabric containing 0.14% intense polyamide, 4% polyamide, 80% polyester and 16% viscose. The fabric had a weight of 340 grams/m2. The fabric contained finishing comprising silver which functions as an antimicrobial treatment. The process involves reducing metallic silver to ultra-fine particles which are attached to the textile fibers. An example of a commercially available product is Silpure®, which is a Registered trademark of Thomson Research Associates of Toronto, Canada.
Layer 15, which is referred to as a “latex” layer for the purposes of identification, may be made from natural latex, heat sensitive foam, memory foam or polyurethane foam. In a practical embodiment, layer 15 and layer 20 were made from a polyurethane foam having a density in the range from about 22 to about 70 kg/m3. Layer 15 could alternatively be made from memory foam, heat sensitive foam or natural latex having a density in the range from about 75 to about 80 kg/m3.
Next is an ethylene-vinyl acetate (EVA) foam layer 25 having a plurality of apertures 25a arranged therein. The EVA foam layer 25 overlies an air bladder 30 having a plurality of air springs 45. The air springs 45 and apertures 25a are disposed in registration with each other so that the air springs will extend up into the apertures 25a when the EVA foam layer 25 is placed onto air bladder 30. The above described components are mounted within a bed frame structure 92 and supported by a platform 100. Platform 100 may be provided with a cushion layer, for example a lower foam layer 47 enclosed within a lower cover 46. Lower foam layer 47 may be the same material as foam layer 20. Lower cover 46 may be the same material as upper cover 12.
The EVA foam layer 25 may have a density in a range of about 40 to about 70 kg/m3. In comparison to layer 15 with the 22-70 kg/m3 density, the density of the EVA 25 to layer 15 may be in a ratio (EVA 25:layer 15) from about 3.2:1 through 1:1.75. In comparison to layer 15 with the 75-80 kg/m3 density, the density of the EVA to layer 15 may be in a ratio (EVA 25:layer 15) from about 1:1 through 1:2. In comparison to layer 20, the density of the EVA to layer 20 may be in a ratio (EVA 25:layer 20) from about 3.2:1 through 1:1.75.
As will be described more fully below, EVA layer 25 functions to contain air springs 45 and to provide support for the spaces in between the air springs. A suitable material for layer 25 will possess the following material properties. A Tensile Strength within a range of about 450 to about 800 kPa, according to ASTM D 412-87, Die A. The Tensile Strength can be nominally 600 kPa. A Tear Strength within a range of about 2.5 to about 4.5 kN/m, according to ASTM D 624-86, Die C. The Tear Strength can be nominally 3.5 kN/m. An Elongation at Break of 200-250% or 250-300%, according to ASTM D 412-87, Die A. A Compressive Strength in the range of about 30 to about 90 kPa, according to ASTM D 3575-91, Suffix D. The Compressive Strength can be nominally 45 kPa.
A description of
A single bed 30 typically has 150 or more air springs 45. The firmness of the entire bed is controlled through the air pressure that is delivered to the air bladder which then communicates to the air springs. The user can vary the pressure in the air bladder. The ability to vary the pressure, and consistently change between different pressure settings is a major advantage of the air mattress of the invention over mattresses of the prior art. A compressor 32 is connected to air bladder 31 via hose 32a. Compressor 32 is equipped with a pressure sensor 32b. A controller 34 is operatively connected to compressor 32 by either wired or wireless means. Controller 34 permits the user to operate compressor 32 to increase or decrease the pressure within air bladder 30. A pressure meter 34a may be provided on controller 34 so that the user can read pressure values.
The outer lower edge of cylinder 57 terminates in a skirt 57a which forms a flat ring. The air bladder 30 may be manufactured in a manner similar to conventional air mattresses for sleeping or outdoor recreational applications. The top surface of air bladder 30 has a series of holes cut therein, for example by a cutting die. An air spring 45 is placed over each hole, with skirt 57a ultrasonically welded to the air bladder. The weld line 57b is formed as a complete circle to seal internal void 55 to the interior of air bladder 30. Within the internal void of 55 of the air spring 45, air pressure 65 may be selectively introduced into the air spring, which may bear 70 upon the underside of the bowl 60 and may bear 75 on the external walls of annulus 57.
In a practical embodiment, air bladder 30 has been constructed from polyvinyl chloride (PVC) having an elasticity of 55 phr. Other suitable materials may be used which have an elasticity within a range of about 45 to about 65 phr.
The accordion folds along the side of hollow cylinder 57 may be molded at various angulations representing differing degrees of folding. The angulations will allow air spring 45 to maintain a partially expanded configuration, even at low or no internal pressure. The accordion folds thereby provide a degree of pre-load in relation to the fully-expanded height of annulus 57. The accordion folds are then expanded as a function of pressure within internal void 55. As will be understood by those skilled in the art, the density and thickness of material used will also contribute to the degree of pre-load. In a practical embodiment, air springs 45 have been constructed from polyvinyl chloride (PVC), for example PVC 120A which is 90% transparent. The PVC may be dyed with a coloring agent in an amount of about 0.5% by weight, for example Blue P 6283
As can be seen in more detail in the partial cut-away view of
In a practical embodiment, reinforcing members 130 have been constructed from steel tubes, for example square hollow bars having a width of about 20 mm and a height of 40 mm with a wall thickness of 1.2 mm. Polymer molded member 135 is formed from molded polyurethane foam.
In an alternative embodiment, as shown in
For instance as shown in
A cross-sectional view of the completed mattress assembly is shown in
In planes of foam layer 200 that include the apertures, like plane 204, fixed density components 210 alternate with variable density components in range 310. These alternating sections are labeled across the bottom of
At high pressure the top portion of air spring 300b will begin to form a donut shape, analogous to the air spring shown in
The cavity 500 inside each air spring 300b may be filled with a foam bullet 250 to further adjust the softness or firmness of the mattress at varying pressure levels. The foam bullet 250 provides a further region 260 of fixed density, referred to as a second fixed density component. Foam bullet 250 may be made from the same material as foam layer 200. If using the same material, the density of foam bullet 250 may be greater or less than the density of foam layer 200. Alternatively, foam bullet 250 may be made from a different material than foam layer 200. The second fixed density component 260 (foam bullet 250) is completed encircled by the variable density component 310 (air spring 300a). The variable density component 310 is completely encircled by the first fixed density component 210 (foam layer 200). The first, second and third density components are contained within the same plane 204.
Accordingly, the mattress assembly includes a first fixed density components 210, alternating with variable density components 310 and optional second fixed density component 260, all contained within a fixed frame. The fixed frame comprises a rigid reinforcing bar surrounded by a polymer. The variable density components comprise air springs, which can be selectively inflated to provide a frusto-toroidal contact area which exerts upward pressure on the upper mattress portion. The frusto-toroidal, or donut shaped contact area, allows the upper mattress portion to float above the first fixed density component. The frusto-toroidal contact area provides a more evenly distributed upward force, than a circular contact area that would be present if the air spring was a solid cylinder. In other words, the donut contact area provides an equivalent upward force with reduced contact area, making the mattress feel softer. The variable density components being cup-shaped can further contain a second fixed density component inside.
Having described preferred materials, configurations and methods (which are intended to be illustrative and non-limiting) it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. This specification provides an exemplary listing of materials and mechanical properties that can be utilized to construct a mattress assembly. Other materials having the same mechanical properties may be used in connection with the invention to achieve similar results. It is therefore to be understood that changes may be made in particular embodiments of the invention disclosed which are within the scope and spirit of the invention as defined by the claims. Having thus described the invention with the details and particularity required by the patent laws, what is claimed and desired to be protected by Letters Patent is set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10161834.6 | May 2010 | EP | regional |