Not applicable.
Not applicable.
Not applicable.
Not applicable.
The invention pertains to a mattress whose underside is equipped with a recess to accommodate an adjustable power bed layer or adjustable bed lift mechanism. Such an adjustable power bed layer or an adjustable bed lift mechanism is a bedframe equipped with a head frame that can raise a head of a mattress and equipped with a foot frame that can raise a foot of the mattress. The adjustable power bed layer and the adjustable bed lift mechanism need not have any legs and may be placed directly on any flat surface, box spring, or stationary non-articulating bed frame (e.g., a platform bed).
Adjustable bed frames, also called power adjustable bases or power beds, have become a commonplace convenience in bedrooms. The ability to raise and lower the head and legs elevations in beds have many proven benefits and comfort qualities. Typical power adjustable bed frames can lift anywhere from 450 to 800 pounds of evenly distributed weight in a bed.
The construction and design of these adjustable bed frames is nearly universally the same, consisting of a free-standing bed frame structure (typically steel tube) with 4 or 6 legs. The bed frame structure contains articulating head and feet platform sections mounted on pivots to the main frame. These articulating head and foot sections are motion controlled via linear actuators that connect from the main stationary frame and push or pull to create the platform movement. The adjustable bed frames commonly have mattress retainer bars at the foot of the bed, which typically are visible to the consumer when a fitted sheet is placed on the mattress. These retainer bars may make placement of the fitted sheet on the mattress more time consuming and cumbersome.
A broad range of furniture style ornamental bedframes exist that consumers find desirable for their bedrooms. Current adjustable bed frame types are stand-alone mattress frames, with their own legs and mattress support structures. Because of this, many adjustable bed frames are not compatible with existing furniture style bedframes—requiring consumers to forgo a chosen furniture style of bedframe in favor of the limited styles available in current power adjustable bed frames.
Current adjustable bed frames with legs universally have a visible platform on which the mattress rests, and visible retainer bars on that hold the mattress in place. These adjustable bedframes with legs may come upholstered with fabric to improve their cosmetic appearance, but also come non-upholstered, but regardless, the adjustable bed frame is always visible as part of bedroom mattress setup to the consumer. Some consumers may find the visible adjustable bed elements unattractive and undesirable, or non-matching to the decor of their overall bedframe and mattress. Thus, there is a need for some consumers to gain the benefits of adjustable bed technology where the adjustable bed frame itself is completely invisible to the consumer when flat.
A nested bedframe assembly is one in which an articulating portion of the frame is nested within the same plane as the fixed support structure of the frame (i.e., the section with the legs). Many conventional designs don't nest at all—the articulating portion rests on top of the fixed support structure of the frame with the legs. They don't care about dimensional height issues because their designs are complete, free standing, bed platforms with legs. These free standing adjustable bed designs typically will have actuator assemblies or other moving parts projecting below their frames, making it impossible to operate them on flat surfaces without legs.
An example of a nested frame is in United States Patent Application Publication No. 2014/0366267, which discloses a motorized foldable bed frame assembly configured to fold from an open co-planar assembly to a closed parallel assembly. Such may be a dual-actuating adjustable bed frame, which is collapsible and foldable for ease of shipping. It may be configured for use by extending pivoting frame sections and engaging collapsible support legs and may include a head adjustable frame, or a head and foot adjustable frame. It nests the articulating portion within the inner area of the fixed support structure with the legs.
Some adjustable bed frames claim to fit inside furniture style bed frames. However, in most of these cases consumers must modify or remove support structures or cut holes in the pre-existing furniture style bedframe using tools in order to make the adjustable bed frame legs and platform fit. Platform beds with storage drawers underneath the mattress are impossible to modify for use with any adjustable bed frame with legs.
The present inventor devised the adjustable power bed layer product set forth in U.S. Pat. No. 10,463,163 B1, whose contents are incorporated herein by reference. It has a bed frame that folds from a flattened state to a folded state and from a flattened state to an adjusted state. The bed frame has an inner and outer frame that nest with each other in the flattened state. Head side and foot side actuators drive sliding members back and forth along respective tracks to pivot respective articulating frames between the flattened and adjusted states. The articulating frames are part of one of the inner and outer frames and the tracks are connected to the other of the inner and outer frames. In the folded state, the bed frame is positioned to that one of head side and foot side actuators becomes accessible for maintenance and servicing from above depending upon which way the bed frame is folded about its folding pivot. A key element is that no components of the adjustable power bed layer product protrude above the upper plane or lower plane of the adjust power bed layers frame structure, allowing it to be placed on any flat surface without legs.
The present inventor devised the adjustable bed lift mechanism set forth in U.S. Pat. No. 10,376,074 B2, whose contents are incorporated herein by reference. It has linkages and has an actuator connected structure that is movable from a non-actuated position to two or three actuated positions. One set of the linkages lifts the bed frame with the actuator connected structure moved into an associated one of the actuated positions and then push another set of linkages as the actuator connected structure is moved into another of the actuated positions. In the case where there are three actuator positions, further ones of the linkages move down a bed frame slotted bracket to initially lift the bed frame and, as they reach and end of the slotted bracket as the actuator connected structure is moved to a different actuator position, the one set of linkages pull together to lift the bed frame vertically.
U.S. Pat. No. D593349 S1 depicts a mattress whose underside has recessed portions extending inwardly from opposite sides. The recesses are visible, therefore, from the sides as opposed to being hidden from view.
It is desired to provide a mattress with head and foot powered motion adjustability that can hide from view the adjustable power bed layer product or adjustable bed lift mechanism in its flattened condition. It is also desired to provide such a mattress and adjustable power bed layer combination with no visible mattress retainer bars.
One aspect of the invention relates to a mattress having an underside with a recessed cavity bounded by a peripheral flange and into which is fitted with one of the power bed layer of U.S. Pat. No. 10,463,163 B1 or the adjustable bed lift mechanism of U.S. Pat. No. 10,376,074 B2 in their completed folded condition so that the power bed layer or the adjustable bed lift mechanism is completely hidden when viewed from the side of the mattress.
For a better understanding of the present invention, reference is made to the following description and accompanying drawings, while the scope of the invention is set forth in the appended claims.
Turning to the drawings,
The mattress 50 is covered by fitted sheet 52, but whose corner region is shown removed to reveal the mattress 50 underneath. Retainer bars 42 are positioned against the mattress 50. While
The adjustable power bed layer/base 10 of
If desired, the adjustable power bed layer/base 10 may be substituted for the adjustable power bed lift mechanism. If so, then the mechanism includes a frame having a fixed portion and having an articulating portion pivotally connected to the fixed portion so that as the articulating portion pivots relative to the fixed portion, an angle of inclination changes between the articulating portion and the fixed portion. Also, there are a plurality of lift mechanisms that actuate successively to exert a respective lifting force on the articulating portion to widen the angle of inclination in succession. An actuator connected structure is provided that moves relative to the fixed portion of the bed frame from a non-actuated position to successive actuated positions where the actuator connected structure triggers successive ones of the lift mechanisms to impart the respective lifting force on the articulating portion accordingly.
The lift mechanisms include a first-stage lift mechanism, which has first-stage linkages, and a second-stage lift mechanism, which has second-stage linkages. The actuator connected structure is configured to move from a non-actuated position to a first-stage actuated position and then to a second-stage actuated position in succession. As the actuator connected structure moves from the non-actuated position to the first-stage actuated position, the first-stage linkages pivot about a first-stage lift pivot, which contacts the articulating portion to exert a lifting force on the articulating portion of the bed frame that widens an angle of inclination between the articulating portion and the fixed portion from lifting of the articulating portion as a consequence of the first-stage linkages pivoting. As the actuator connected structure moves from the first-stage actuated position to the second-stage actuated position, the second-stage linkages pivot about a second-stage lift pivot, which contacts the articulating portion to exert a further lifting force on the articulating portion of the bed frame that further widens the angle of inclination between the articulating portion and the fixed portion from further lifting the articulating portion as a consequence of the second-stage linkages pivoting in a manner in which the second-stage lift pivot exerts the further lifting force. The first-stage lift pivot is completely out of contact with the articulating portion as the second-stage lift pivot contacts the articulating portion in a manner that further lifts the articulating portion.
There may also be a third-stage lift mechanism that has at least one third stage linkage. The actuator connected structure is arranged to move also from the second-stage actuated position to a third-stage actuated position. As the actuator connected structure moves from the second-stage actuated position to the third-stage actuated position, the third-stage linkages pivot about a third-stage lift pivot, which exerts an additional lifting force on the articulating portion of the bed frame that additionally widens the angle of inclination between the articulating portion and the fixed portion from additionally lifting the articulated portion as a consequence of the third-stage linkages pivoting in a manner in which the third-stage lift pivot exerts the additional lifting force. The second-stage lift pivot is completely out of contact with the articulating portion as the third-stage lift pivot contacts the articulating portion in a manner that additionally lifts the articulating portion.
The invention encompasses two approaches for the mattress:
1) the perimeter wall or peripheral flange 62 is glued or fastened to the bottom of the mattress 52 during factory production, with the mattress cover modified to extend around to the interior of the perimeter wall or peripheral flange 62, in this case the mattress can only be used with the adjustable power bed layer/base 10, and
2) the mattress 52 is produced in an ordinary way with no built-in perimeter wall or peripheral flange 62 and the manufacturer make is available an optional stand-alone perimeter wall or peripheral flange that has the same mattress cover materials on it that can be fastened to the bottom of the mattress via hook and loop, snaps, straps, etc. by the consumer. In this case, the bottom of mattress cover itself would need some simple fastening features on it so that the perimeter wall or peripheral flange could be secured. Such allows the manufacturer to create a normal mattress that can be used without an adjustable power bed layer/base 10, but that includes only a slightly modified bottom cover surface that accepts fastening of the perimeter wall or peripheral flange 62 as an aftermarket add-on.
Turning to
Due to its extremely low profile approximate 45 mm height of the adjustable power bed layer/base 10, and its ability to have outer dimensions slightly smaller than the mattress 50 of
As can be appreciated from
To assemble, the adjustable power bed layer/base 10 is placed initially on a box spring 100 of
With respect to
In accordance with the invention, one may convert any conventional mattress 50 of
Turning to
In the case of
Further, the adjustable power bed layer/base 10 of
In the case of the present invention, preferably, cut foam blocks or strips (stiff as typical mattress base foam) would form the perimeter “wall” or peripheral flange 62 on the mattress base, glued onto the bottom most layer and then upholstered over with the mattress fabric cover.
There may be a risk that the peripheral flange 62 may not be adequate with all mattresses in keeping the mattress from sliding off the end of the bed when the head side is raised (i.e., performing the function of the typical mattress retainer bar at the foo)t. This is probably a larger concern when no weight is on the mattress. Thus, it is preferred that some form of fastening be provided to deter the mattress from sliding off. This form of fastening can be broad sections of hook-loop (VELCRO type) material glued or sewn to the bottom of the recessed surface at the underside of the mattress that defines the recessed cavity and glued or sewn to the top of the adjustable bed power layer, or even providing for mating snaps, or straps, or clamps to effect the fastening of the underside of the mattress to the adjustable bed power layer.
For the sake of brevity, the drawings do not show the adjustable power bed layer/base 10 in its actuated positions shown in FIGS. 13, 16, 20 and 22 of U.S. Pat. No. 10,463,163 B1 although FIGS. 14, 15 and 19 of U.S. Pat. No. 10,463,163 B1 are reproduced as
The adjustable power bed layer/base 10 in
There are folding hinges 16 between one of the two center frames 12D and the head-side articulating frame 12A. There are folding hinges 18 between the foot-side articulating frame 12B and the other of the two center frames 12C. The foot-side articulating frame 12B has two sections 22, 24 between which are folding hinges 26. Folding hinges 16, 18 and 26 each axially connect the outer frame to the inner frame. There are also links 36 pivotally connected via hinges 38 to the foot-side stationary frame 14B and via hinges 40 to the section 22 of the foot-side stationary frame 12B.
There is also a head-side actuator 28 that includes a head-side motor 28A that imparts a force to drive a head-side sliding member 28B (such as a pull bar) to slide back and forth along a track 30. There is a head-side connected structure 28C that operatively connects pivotally the head-side sliding member 28B and the head-side articulating frame 12A. Thus, the head-side connected structure 28C moves in unison with the head-side driven member 28B to pivot the head-side articulating frame 12A about the folding hinges 16 to travel between its flattened and adjusted states.
There is also a foot-side actuator that includes a foot-side motor 32A that imparts a force to a foot-side sliding member (such as a pull bar) to slide back and forth along a track 34. There is a foot-side connected structure 32C that operatively connects pivotally the foot-side sliding member 32B and the foot-side articulating frame 12B. Thus, the foot-side connected structure 32C moves in unison with the foot-side sliding member 32B to pivot the foot-side articulating frame 12B about the folding hinges 18 to travel between its flattened and adjusted states. Such pivoting action about the folding hinges 18 also result in pivoting action about the hinges 26 because the foot-side articulating frame 12B has the two sections 22, 24 pivotally connected to each other at the hinges 26, with section 22 pivotally connected via the hinges 40 to the links 36, which are pivotally connected via the hinges 38 to the foot-side inner frame 14B.
The outer frame nests about the inner frame. The actuators 28 and 32 remain within a height of the inner frame during an entirety of the sliding movements of the respective head-side and foot-side connected structures in the respective tracks 30, 34. That is, the actuators 28 and 32 remain within confines of a volume defined between upper and lower planes of the articulated bed frame and bounded on the sides and ends by the outer and inner frames 12, 14 of adjustable bed frame 10. During an entirety of a lifting movement of the articulating frame, the associated actuator remains above the lower plane of the adjustable bed frame 10.
The inner frame 12 folds in half at the folding hinges 16, without requiring the use of tools to do so. The actuators 28. 32 remain in the same plane as the inner frame 14 in its flattened condition throughout the lifting procedure for the mattress. As an alternative, the actuators 28, 32 each start flat within the same plane as the inner frame 14 and then raise slightly above the plane of the inner frame 14 during the lifting procedure.
Likewise, for the sake of brevity, only some of the drawings of the adjustable bed lift mechanism of U.S. Pat. No. 10,376,074 B2 are reproduced. For the sake of convenience, an adjustable mechanism as set forth herein will collectively refer to the adjustable power bed layer/base of U.S. Pat. No. 10,463,163 B1 as well as to the adjustable bed lift mechanism of U.S. Pat. No. 10,376,074 B2.
The basic principle behind the concept of the power layer of
The lifting mechanism of the power layer includes a first stage and second stage mechanism tied to a single actuator. The first stage mechanism is optimized to lift the bed from flat up to a certain distance and angle. As a result, an angle of inclination between the articulating portion 124 of the bed frame 120 and the fixed portion 122 of the bed frame 120 widens as the actuator connected structure moves from its non-actuated position to its first-stage actuated position.
This first stage is designed to most efficiently transmit maximum force from the actuator to the bed while the bed is nearly flat or only partially lifted. However, the limitation of this optimization is that the first stage cannot complete the full travel lifting of the bed, which typically would be 60 to 70 degrees for the head section.
Once that maximum lifting angle is achieved by the first stage, a second stage mechanism that is optimized to lift the bed past maximum first stage angle takes over that lifts the bed the remainder of its intended travel. The second stage mechanism is optimized for lifting once the bed has already been lifted to the angle of the first stage mechanism. As a result, the angle of inclination between the articulating portion 124 of the bed frame 120 and the fixed portion 122 of the bed frame 120 further widens as the actuator connected structure 140 moves from its first-stage actuated position to its second-stage actuated position. The actuator connected structure pulls a “pull-bar 140”, which connects to the linkages. The pull-bar 140 travels along a channel in the fixed portion of the bed frame and has a smooth and continuous movement, allowing infinite number of bed articulated positions.
There is an eight-bar articulated linkage 130 in the bed frame 120. The bed frame 120 includes a fixed (inner) portion 122 and an articulating (outer) portion 124 that are pivotally attached to each other. There are first- and second-stage lift mechanisms 131, 135 that are actuated respectively by moving the pull bar 140 to the actuator connected structure accordingly from a non-actuated position to a first-stage actuated position that actuates the first-stage lift mechanism 131 and then to a second-stage actuated position that actuates the second-stage lift mechanism 135. The pull bar 140 to actuator connected structure may pulled to move its actuator or alternatively pushed.
The first-stage lift mechanism 131 includes articulated linkages 132, 133, which pivot about a first-stage lift pivot 134 and are pivotally connected to the fixed (inner) portion 122 of the bed frame 120. The second-stage lift mechanism 135 includes the articulated linkages 36, 137, which pivot about a second-stage lift pivot 138 and are pivotally connected to the fixed (inner) portion 122 of the bed frame 120. For instance, the linkage 137 is pivotally connected at one end to the bed frame 120 at pivot 141.
If desired, the adjustable mechanism may be equipped with legs, preferably legs that pivot to fold between an operative position, at which the legs extend down substantially perpendicular to the plane of the adjustable mechanism in its flattened condition, and a stowed position, at which the legs extend substantially parallel to the adjustable mechanism in its flattened condition and fit within confines of the recessed cavity 60 at the underside of the mattress 52.
While the foregoing description and drawings represent the preferred embodiments of the present invention, it will be understood that various changes and modifications may be made without departing from the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
D593349 | Pittman | Jun 2009 | S |
9433546 | Rawls-Meehan | Sep 2016 | B2 |
10376074 | Aramli | Aug 2019 | B2 |
10463153 | Aramli | Nov 2019 | B2 |
10463163 | Aramli | Nov 2019 | B1 |
20050011005 | Borda | Jan 2005 | A1 |
20110247144 | Oh | Oct 2011 | A1 |
20140366267 | Suh | Dec 2014 | A1 |
20150208813 | Heeke | Jul 2015 | A1 |
20180125250 | Dewert | May 2018 | A1 |
20190298074 | Dan-On | Oct 2019 | A1 |
Entry |
---|
U.S. Appl. No. 17/022,036, filed Sep. 15, 2020, Aramli, Mark, Claims. |