This application is directed to mattresses, and more particularly to stretchable flame barrier constructions adapted for at least partially covering a mattress core of foam or other resilient material.
It is known to provide mattresses with stretchable flame barrier fabric positioned between a resilient mattress core and a decorative textile covering. In one approach, prior flame barrier panels have been formed from non-woven materials of fleece construction incorporating inherently flame-retardant fiber constituents either alone or blended with other fibrous constituents. By way of example only, and not limitation, such prior flame barrier materials have been formed from flame resistant (i.e. “FR”) materials such as: (i) flame retardant rayon alone; (ii) flame retardant rayon blended with para-aramid fibers; (iii) flame retardant rayon blended with para-aramid fibers and polyester; and (iv) other fibers or blends having flame retardant properties including modacrylic, wool, meta-aramid and the like.
While the prior known flame barrier materials provide good flame blocking and insulation character, they typically have limited capacity to stretch and recover. This limitation may be particularly problematic with respect to mattresses which incorporate core materials such as latex foam, polyurethane foam and the like that undergo substantial localized deformation during use.
One approach used to address the lack of stretch and recovery in flame barrier panel materials has been to encapsulate the mattress foam core in a knit sock structure formed from flame retardant yarns (“FR Socks”). FR Socks are typically circular knitted tubular fabrics formed from materials such as covered fiberglass yarn, bare fiberglass, modacrylic, FR rayon or other kinds of fire-resistant yarns. During the mattress assembly process, the FR Sock is installed by pulling the tubular fabric over the entire mattress core. The open ends of the FR Sock tube are then closed with a sewing machine using a fire-resistant sewing thread such as Kevlar thread or an equivalent. After the FR Sock is in place around the core, the outer cover of the mattress is then installed over the “socked” mattress core. The outer cover is usually made up of a decorative ticking fabric on the top surface and edge borders of the mattress. In a typical exemplary construction, a filler cloth is used on the bottom side of the sewn cover assembly with a zipper fastener sewn into the filler cloth to conveniently close the cover over the socked mattress core. Of course, other cover arrangements may likewise be used.
One advantage of FR socks is that unlike most other FR solutions, they have excellent stretch and adequate recovery properties such that they do not impede the cushioning and comfort properties supplied by the mattress core. This lack of cushioning impediment may be particularly important at the top surface of a mattress where foam panels may be present to enhance user comfort.
Although FR socks may provide satisfactory performance when correctly installed, they are also very easy to overstretch and distort during installation and can sometimes cause tight areas on the mattress thereby restricting local foam deformation. Another significant disadvantage of FR Socks is that they are cumbersome and time consuming to install during mattress assembly, so incurring unnecessary high labor costs to the mattress assembler. In addition, the use of fiberglass yarns creates a potential for skin irritation for factory workers who handle the FR socks and potentially for users who sleep on the mattresses.
FR caps have been used as an alternative to FR socks. Prior FR caps are typically formed from tubular FR sock material that is slit open to create an open width fabric. A “cap” or “fitted sheet” is then made from this material using a fire-resistant sewing thread. A deficiency of current FR caps is that the slit circular knit material is extremely difficult to handle during cutting and sewing. Specifically, such material tends to distort and curl very easily. A further disadvantage of FR caps formed from slit FR socks is that an elasticated tape or equivalent must be sewn to the bottom open side of the cap or fitted sheet to secure the cap onto the mattress core. The complexity and cost of converting FR sock material into FR caps has greatly limited the use of FR caps in the mattress industry. In addition, although the attached elastic band on these prior caps allows the gathering of the FR sock fabric around the mattress core, the resulting cap does not truly conform to the mattress core and, thus, it is not truly “form fitting”. This form fitting can be improved with the undersizing of the pattern of said caps for the mattresses, but this serves to overstretch and distort areas in the cap, especially at the corners and edges of the mattress so leading to aforementioned stretch restriction and compromised FR protection.
Due to the deficiencies in the known art, there is a continuing need for an improved FR covering for a resilient mattress core that will conform better to the mattress core and not impede the cushioning and comfort properties supplied by the mattress core.
In accordance with one exemplary aspect, the present disclosure provides advantages and alternatives over the prior art by providing a true form fitting stretchable flame-retardant textile cap incorporating a top panel with operatively connected stitch-bonded skirting with machine direction stretch and recovery properties for disposition between a resilient mattress core and outer cover. An FR textile cap consistent with the present disclosure offers the benefits of prior FR socks and FR caps but with significantly enhanced ease of use and without the need to use fiberglass in large quantities.
In accordance with one exemplary aspect, the present disclosure provides a fabric construction for use in forming the skirting of an FR cap incorporating a nonwoven fleece containing FR fibers stitched with substantially parallel rows of elastomeric yarns such as covered spandex or the like running in the fabric length dimension to impart machine direction (MD) stretch and recovery. The fleece may be formed from materials such as FR silica rayon, FR treated rayon, para-aramid, modacrylic, wool, and the like including blends of such materials with one another and/or with fibers such as polyester, cotton or the like.
The resulting FR fabric construction does not exhibit curl and becomes dimensionally stable in the machine direction upon substantially full extension of the elastomeric stitching in the fabric. Thus, the fabric extended in the MD can be easily handled on a sewing machine without concern for curling or distortion as is common with other stretchy FR fabrics. These properties permit lengths of stitch-bonded FR fabrics consistent with the present disclosure to be applied as a stretchable skirting around the perimeter of a top panel overlying the top of the mattress core. Furthermore, it is not necessary to sew an elasticated tape or the like into the open perimeter edge of the stretchable skirting material since the elastomeric yarns in the fabric construction perform this function.
As will be appreciated, although the FR fabrics forming the cap skirting have strength and dimensional stability in the cross-machine direction (CD), they can nonetheless stretch with the attached top panel as necessary due to the elastomeric stitching yarns in the MD. That is, the MD of the skirting runs substantially parallel to the entire perimeter of the top panel. As a result, the present disclosure provides a greatly simplified FR mattress cap and related method of manufacture with lower complexity and lower cost of handing and sewing.
Furthermore, the ability to apply juxtaposed patterning of elastomeric yarns within the skirting fabric, whether through the use of different yarn deniers, concentration of yarns and spacing between elastomeric yarns within the fabric, all running substantially parallel to the perimeter of the top panel, may be used to create a stretch and recovery “power gradient” within the skirt. In this manner, using a greater concentration of elastomeric yarns within the skirt, where the skirt folds under the mattress core allows for better conformability and form fitting of the cap to the mattress core, without causing deformation of such.
In accordance with one exemplary aspect, the skirting fabric may include a gripping power zone extending inboard from a distal free edge of the skirting fabric adapted to grip the underside of a mattress being covered. The gripping power zone may incorporate a plurality of stitch lines with multiple ends of elastomeric yarn per needle in a stitching pattern with long float lengths skipping one or more perforations between stitches. The skirting fabric may also include an attachment zone disposed along a proximal edge of the skirting fabric incorporating one or more stitch lines with multiple ends of elastomeric yarn per needle in a stitching pattern with long float lengths skipping one or more perforations between stitches.
Other exemplary aspects of the disclosure will become apparent upon review of the following detailed description of preferred embodiments and practices.
The accompanying drawings, which are incorporated in, and which constitute a part of this specification, illustrate exemplary constructions and procedures in accordance with the present disclosure and, together with the general description of the disclosure given above and the detailed description set forth below, serve to explain the principles of the disclosure wherein:
While constructions consistent with the present disclosure have been illustrated and generally described above and will hereinafter be described in connection with certain potentially preferred embodiments and practices, it is to be understood that in no event is the disclosure limited to such illustrated and described embodiments and practices. On the contrary, it is intended that the present disclosure shall extend to all alternatives and modifications as may embrace the general principles of this disclosure within the full and true spirit and scope thereof. Also, it is to be understood that the phraseology and terminology used herein are for purposes of description only and should not be regarded as limiting. The use herein of terms such as “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof.
Reference will now be made to the drawings, wherein to the extent possible like reference numerals are utilized to designate corresponding components throughout the various views. In
In the illustrated arrangement, the core 16 is at least partially covered with an overlay structure 20 including a stretchable cap 22 disposed in form-fitting relation around the core 16 to cover at least the top and sides of the core 16. As will be described further hereinafter, a portion of the stretchable cap 22 may also be disposed across a portion of the underside of core 16 (
In the illustrated exemplary construction, the stretchable cap 22 is preferably free from any physical connection to covering layer 24 if one is used. However, the stretchable cap 22 and any outer covering 24 may be connected if desired. Such connection may be at intermediate discreet positions or may be along a substantially continuous interface. By way of example only, such connection may be made by quilting, adhesive bonding or other techniques as may be known to those of skill in the art.
Referring to
The top panel 30 preferably has some degree of recoverable stretch capacity (as defined herein) in at least one direction although such recoverable stretch capacity is not necessarily essential. The top panel 30 preferably has a recoverable stretch capacity in at least one direction in the range of at least 5% or greater and more preferably about 10% to 80% or higher. In accordance with one potentially preferred construction, the top panel 30 may be is characterized by substantially omnidirectional stretch and recovery properties with recoverably stretch capacity of at least 5% or greater in all directions and more preferably about 10% to 80% or higher in all directions. By way of example only, and not limitation, the top panel 30 may be a knitted fabric such as a circular knit, warp knit, flatbed knit or the like incorporating FR yarns. By way of example only, the fabrics used in current FR socks may be used to form the top panel 30 if desired. The top panel 30 may also be a stitch-bonded flame barrier panel incorporating flame barrier fibers and having omnidirectional stretch and recovery as illustrated and described in U.S. Pat. No. 10,617,255 (incorporated by reference). However, any other flame barrier material with suitable omnidirectional stretch and recovery character may likewise be utilized.
In stretchable cap 22, the skirting 31 is preferably a stitch-bonded FR fabric incorporating a fleece stitching substrate containing FR fibers. By way of example only, one exemplary stitching substrate for skirting 31 may be a substantially 100% flame retardant silica rayon fiber fleece. However, other materials may be used if desired. By way of example only, such other materials may include rayon fibers treated with FR (“flame retardant”) chemicals, para-aramid, meta-aramid, modacrylic, wool and other fibers with FR properties. Materials such as FR treated or coated polyester or cotton and blends of any of the foregoing may also be used if desired. All such materials are flame retardant fibers. One contemplated blend which may be particularly desirable is flame retardant silica rayon fiber blended with some percentage of para-aramid and/or meta-aramid fiber. One exemplary blended fibrous substrate material may be a blend of about 95% flame retardant silica rayon fiber and about 5% Para-aramid fiber. Higher percentages of Para-aramid fiber up to about 25% or more may be used if desired. It is also contemplated that in some applications a fibrous base of a blend of FR fibers with non-FR fibers including polyester, polyamide or bicomponents thereof or a fibrous base of substantially all polyester fiber may be used either with or without FR treatment if desired.
During formation of the skirting 31, the fleece stitching substrate is stitched with elastomeric stitching yarns such as covered spandex or the like to impart machine direction (MD) stretch and recovery. The term elastomeric stitching yarns will be understood to mean stitching yarns with the ability to stretch at least 50%, and more preferably at least 100% prior to breakage and which will return to within 10% of their initial length within one hour following 50% stretching under standard atmospheric conditions. That is, the length after stretching to 50%, holding the stretched condition for not more than 5 seconds, and release will be not more than 110% of the length before stretching when measured after 1 hour at ambient conditions and will more preferably be in the range of 100% to 105% of the length before stretching.
In accordance with one exemplary practice, the fibers in the fleece stitching substrate used to form the skirting 31 may be oriented predominantly in the cross-machine direction (“CD”). That is, the direction across the machine and substantially perpendicular to the travel direction during stitching. In this regard, the fleece stitching substrate used to form the skirting 31 is preferably formed from a plurality of staple length fibers having an average length in the range of about 1 to 5 inches. These staple fibers may be carded and cross-lapped with an optional subsequent needling step to form a fleece structure wherein the majority of the fibers are oriented substantially in the CD. In such a carded and cross-lapped fleece structure the fibers predominantly form an angle within plus or minus 30 degrees of a line parallel to the CD. That is, the majority of the fibers will be substantially aligned within 30 degrees to the CD. Since a fiber in a nonwoven construction does not typically extend in a straight line, the orientation of a fiber relative to a reference line may be defined by reference to a line connecting the fiber ends as described in U.S. Pat. No. 9,090,801 to Siebert et al. which is hereby incorporated by reference in its entirety.
Maintaining fiber orientation predominately in the CD reduces the recoverable stretch capacity in the CD after stitching. In this regard, the term “recoverable stretch capacity” will be understood to be the percent elongation of a sample under tension which is followed by recovery to within 3% of the starting length after 1 minute under ambient conditions In testing for recoverable stretch capacity, a modified version of test method ASTM-D3107 (incorporated by reference) may be used. This modified test procedure measures recovery following predefined stretch in the following manner:
The skirting 31 in the stretchable cap may be characterized by substantial recoverable stretch capacity in the MD of at least 25% such that a sample stretched in the MD by 25% (or less) in accordance with the above procedure will return to within 3% of its initial length within 1 minute after tension is removed. More preferably, the skirting 31 may be characterized by recoverable stretch capacity in the MD of at least 50% such that a sample stretched in the MD by 50% (or less) in accordance with the above procedure will return to within 3% of its initial length within 1 minute after tension is removed. Most preferably, the skirting 31 in the stretchable cap may be characterized by recoverable stretch capacity in the MD of at least 90% such that a sample stretched in the MD by 90% (or less) in accordance with the above procedure will return to within 3% of its initial length within 1 minute after tension is removed.
The skirting 31 may be characterized by substantially less recoverable stretch capacity in the CD than in the MD. That is, the recoverable stretch capacity in the skirting is not balanced. In accordance with one exemplary practice, the recoverable stretch capacity of the skirting 31 in the CD is not more than 65% of the recoverable stretch capacity of the skirting in the MD and is more preferably not more than 10% to 55% of the recoverable stretch capacity of the skirting in the MD.
In practice, the skirting 31 may be cut as a one-piece strip in the machine direction immediately after the stitch-bonding process and is then sewn along one of its longitudinal edges in a substantially fully extended state around the entire perimeter of the top panel 30 using FR sewing thread such as Kevlar or the like. In this construction, the top panel 30 provides FR protection to the top surface of the mattress and is sewn in a relaxed, non-extended state to the fully extended skirting 31. As shown in
As will be appreciated, when the stretchable cap 22 is installed on the core 16, the skirting 31 formed from FR fabric with MD stretch will seek to pull back to its original non-extended length and will thereby “self-secure” or grip to the mattress core and provide FR protection for the vertical side surfaces of the mattress. The resulting stretchable cap 22 thus provides FR protection for both the upper surface and the 4 vertical surfaces of the mattress core. Furthermore, the fleece substrate of a stitch-bonded FR fabric with MD stretch used in the skirting 31 will conform to the mattress core and provide substantially continuous fiber coverage across underlying surfaces. That is, the stretched fabric does not form openings to create uncovered areas. Such continuous fiber coverage enhances FR protection to the underlying mattress core.
The resulting stretchable cap 22 also provides partial FR protection for a zone of about 3 inches to 10 inches or greater inboard from the underside perimeter of the mattress core. In this regard, it is contemplated that so called “Filler Cloth” (not shown) used on the outer ticking cover or attached to the free edge of skirting 31 may provide further FR protection to the bottom side of the mattress in inboard zones not covered by the skirting 31.
In construction of the stretchable cap 22, the FR fabric with MD stretch that forms the skirting 31 may be slit in the machine direction on the stitch-bonding machine into multiple usable widths of approximately 16 inches each. However, other fabric widths can be customized for different mattress thicknesses. The fabric may then be wound onto rolls at the stitch-bonding machine under tension to be in an extended condition. These rolls typically require no further finishing and are deemed to be in a usable state for direct use as a skirting material for converting into stretchable caps 20 for mattress fire protection.
By way of example only, and not limitation, in accordance with one exemplary and potentially preferred practice, a stitch-bonded FR fabric with MD stretch that forms the skirting 31 may utilize a stitching substrate of 100% FR Rayon fiber fleece with a mass per unit area of about 120 gsm (grams per square meter). The fabric may be stitched at a needle density of 7 needles per inch and a stitch density in the machine direction of between 5 courses per inch to 18 courses per inch (preferably about 10 courses per inch)
Referring now to
It is also contemplated that the same denier elastomeric stitching yarns may be used throughout the FR fabric forming the skirting 31 but with higher concentrations of those stitching yarns at one or both edges to promote more powerful stretch recovery in those zones. Such a construction eliminates the need to use multiple yarn deniers and thereby permits the skirting to be formed as a single-bar fabric rather than as a two-bar fabric. By way of example only and not limitation, in accordance with one exemplary construction, the 70 denier covered spandex yarn described above may be used throughout the fabric as the sole stitching yarn, but with 5-6 (or more) ends per needle at three or more needles adjacent to one or both edges. Of course, yarns with linear densities other than 70 denier may likewise be used in such a construction. The resulting fabric will exhibit a degree of enhanced stretch recovery at the selected edge zones thereby aiding in form-fitting around the mattress core.
Referring now to
Referring now to
The zoned construction illustrated in
Referring now to
Referring now to
In the embodiment illustrated in
As illustrated, in the gripping power zone 438B the stitch lines may also incorporate multiple ends per needle of relatively high denier elastomeric yarn 465 in a stitching pattern with extended length floats skipping one or more perforations between stitches along the needle lines. The skirting fabric may also include an attachment zone 438A disposed along a proximal edge of the skirting fabric incorporating one or more stitch lines with multiple ends of relatively high denier elastomeric yarn 465 per needle in a stitching pattern with long float lengths skipping one or more perforations between stitches.
By way of example only and not limitation, the gripping power zone 438B and the attachment zone 438A may utilize spandex high denier elastomeric yarns 465 with a linear density of 140 to 1000 denier (more preferably 140 denier to 420 denier and most preferably 280 denier) threaded with 1 to 10 ends per needle (more preferably 2 to 6 ends per needle and most preferably 4 ends of per needle). The high denier elastomeric yarns 465 may be stitched with a repeating notation of 0,1/0,0/0,0/0,0// such that a stich is formed at every fourth needle perforation. As shown the lightweight yarn 460 is also stitched within the gripping power zone 438B and the attachment zone 438A using a chain stitch notation.
Of course, other stitching notations which provide extended float lengths may likewise be used for the high denier elastomeric yarns 465. In this regard, a float length between stiches in the range of about 0.24 inches to 1 inch and more preferably 0.35 inches to 0.6 inches may be desirable. However, longer or shorter float lengths may be used if desired.
The gripping power zone 438B may incorporate any suitable number of stitch lines incorporating relatively high denier elastomeric yarn 465 in a stitching pattern with long float lengths. By way of example only, a range of about 2 to 15 such stitch lines may be desirable. Likewise, attachment zone 438A may also incorporate any suitable number of such stitch lines incorporating relatively high denier elastomeric yarn 465 in a stitching pattern with long float lengths or may eliminate such stitch lines entirely if desired. By way of example, a range of about 2 to 15 such stitch lines in the attachment zone 438A may be desirable.
As will be noted, in each of the exemplary embodiments illustrated in
Regardless of the stitching pattern utilized, in accordance with one exemplary practice, the entire stretchable cap 22 may undergo steaming and drying at elevated temperature without applied tension after construction has been completed. In this regard, it has been found that the relaxed steaming of the stretchable cap 22 causes the FR rayon fiber content in the skirting to soften while also causing the elastomeric spandex stitching yarns in the skirting to contract dramatically in the machine direction. This combination of softened rayon and contracted spandex results in significantly enhanced MD recoverable stretch capacity in the skirting in the final cap which may exceed 100 percent or more. The contraction is substantially localized within the skirting with only about 0-5% shrinkage in the relatively stable top panel 30 with more balanced fiber orientation. Such heat treatment after formation permits the cap 22 to be adapted to a wider range of mattress sizes.
Incorporating relatively long float lengths in stitching high denier elastomeric yarn may be particularly beneficial in promoting stretch capacity. In this regard, the elastomeric yarn is permitted to shrink much more during steaming. Thus, the stretch capacity is greatly increased. By way of example, the resulting final stretch capacity of the skirting as described in relation to
In accordance with another exemplary practice, a percentage of bicomponent fiber having a lower melting point sheath surrounding a higher melting point core may be blended into the fiber forming the fleece used to produce the FR skirting. The percentage of bicomponent may be in the range of about 1% to 20% and will most preferably be about 10%. Activating the bicomponent fiber in a steaming and drying process may improve the dimensional stability of the skirting in the CD. Such improved dimensional stability may aid in avoiding visual puckers and thin areas after the cap is applied over the mattress core.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure.
Preferred embodiments of this disclosure are described herein, including the best mode known to the inventors for carrying out the disclosure. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the disclosure to be practiced otherwise than as specifically described herein. Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein or otherwise clearly contradicted by context.
This application is a continuation of nonprovisional application Ser. No. 18/092,383 filed Jan. 2, 2023, which is a continuation of nonprovisional application Ser. No. 17/194,244 filed Mar. 6, 2021 (now U.S. Pat. No. 11,540,643). The contents of such prior applications and all documents referenced in this specification are hereby incorporated by reference in their entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
8021735 | Tsiarkezos | Sep 2011 | B2 |
20120102657 | Wildeman | May 2012 | A1 |
20180360227 | Martin | Dec 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20240032706 A1 | Feb 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18092383 | Jan 2023 | US |
Child | 18487761 | US | |
Parent | 17194244 | Mar 2021 | US |
Child | 18092383 | US |