The present invention generally relates to data storage systems, and more particularly, to maximizing disk usage by measuring system performance metrics and selecting an appropriate destination device to send data based on the measured metrics.
The term “stream” as used herein refers to a sequence of discrete input/output (IO) commands from a single initiator targeted toward a single virtual destination, with each command carrying a certain amount of data.
When a storage system has multiple independent data streams, it is important to distribute the streams among the various connected storage devices in order to maximize the overall system throughput. The factors which are involved in selecting the “best” individual storage device include the current usage of all of the available devices and the current usage of the paths through which the data travels on its way to each device. The hardware paths include the system memory bus, the system peripheral buses (e.g., PCI bus), the host adapter card, the external peripheral buses (e.g., FC or SCSI bus), and the controllers of the storage devices. The software paths include the application, the device driver, the operating system's “mid-level” (e.g., the portion of the operating system that defines internal interfaces and provides common services between the application and the device drivers), and the host adapter driver. Trying to compute the bandwidth of each of these path components and determining the impact of the data streams on that bandwidth is difficult. The concepts of “input limited” and “output limited” can be used to help assess where a bottleneck exists in the system.
As shown in
Referring to
Previous load balancing logic assumed that the storage devices and paths were always input limited, and assigned new streams to the device and path that had the lowest use in terms of throughput (e.g., megabytes (MB) per second). This caused heavily loaded disks to appear more attractive, since the overall throughput decreases once the device becomes output limited. This approach created a problem in that by looking only for the device having the lowest throughput, streams would be continuously added to the output limited device.
A potential solution includes recording the path information and the bandwidth of each path component to attempt to track the impact of the streams on each path component. This approach has several problems in terms of complexity and accuracy, since the path components through which the data travels have to be determined, and there is no way to determine the amount of the total bandwidth that is in use by others.
The present invention uses measured system metrics as a criterion for selecting among storage devices and paths to a storage device, in order to maximize the overall throughput of the storage system. One embodiment uses the command completion time, because it is simple to determine and an accurate indicator of overall system delay. The present invention utilizes load balancing to assist in maximizing the total throughput of the system. As used herein, the term “load balancing” does not necessarily equate to a fair distribution of a work load between available devices, but rather relates to the concept of maximizing the throughput of the system.
A method for stream allocation in a data storage system begins by determining whether a stream needs storage space. Storage space for the stream is requested, and a device on which to allocate the storage space is selected. The storage space on the selected device is allocated to the stream.
A method for selecting a device to use in a data storage system begins by determining if there is an unused device in the system. If an unused device exists in the system, then the unused device is selected. If there are no unused devices in the system, then a determination is made whether there is an input limited device in the system. If an input limited device exists in the system, then the input limited device having a lowest amount of traffic is selected. If there are no input limited devices in the system, then the device having a lowest command completion time is selected.
A system for determining the length of time for command execution in a data storage system includes a command queue, a command processor, and a timer. The command queue provides commands to be processed. The command processor is connected to the command queue, processes each command, and sends a command reply to the command queue. The timer is connected to the command queue, and marks a first time, when a command is sent from the command queue to the command processor, and a second time, when the command reply is received at the command queue. The length of time for command execution is determined by subtracting the first time from the second time.
A method for switching streams between devices in a data storage system begins by determining a size of a new stream and classifying the new stream based on its size. A determination is made if any unused devices exist in the system and if there are any unused devices, the new stream is assigned to an unused device if the new stream is larger than average. If there are no unused devices in the system, the new stream is assigned to an input limited device if the new stream is smaller than average.
A system for performing load balancing in a data storage system having a plurality of storage devices includes a command queue, a device driver, a statistics device, and a device allocator. The command queue is configured to process commands and the device driver is configured to send commands to the plurality of storage devices. The statistics device is configured to gather statistics from the device driver regarding command completion times. The device allocator is configured to allocate space on one of the plurality of storage devices based on the gathered statistics, whereby the data storage system is load balanced.
A more detailed understanding of the invention may be had from the following description, given by way of example, and to be understood in conjunction with the accompanying drawings, wherein:
The description of the present invention generally discloses a disk-based storage system. However, the principles of the present invention are equally applicable to any type of storage media, and for purposes of description, the terms “device” and “disk” are used interchangeably herein.
Referring to
Initial Device Selection
The present invention includes two aspects: initial device selection and switching streams between devices. With respect to initial device selection, the command completion time is related to the amount of data associated with the command. The length of time that it would take the data to be transferred on a bus to the disk (which can be determined by dividing the size of the data associated with the command by the bus data transfer speed) is subtracted from the calculation. The desired statistic is the length of time from the time a command is originated until the time that the originating device learns of the command's completion. This statistic will show any delays along the path from the originating device to the destination device. By subtracting out the data transfer time, the difference in execution time between a small command and a large command (as determined by the amount of data associated with the command) can be eliminated.
The load balancing logic in accordance with the present invention determines the path with the lowest latency and, within the set of devices that are available for use, sets the following preferences to assign a stream to a device:
1)Devices that are not currently being used by other streams.
2) Input limited devices with the smallest aggregate usage.
3) Output limited devices, starting with the smallest average command completion time and sequentially assigning an output limited device with the next smallest average command completion time.
A flowchart of a method 400 for averaging command completion time statistics for a device is performed by the load balancing logic and is shown in
The method 400 applies a low pass filter-like approach to averaging the data set. The new sample is added to the data set and the average sample is removed “from the other end”. In one embodiment, three samples are maintained in the data set. This approach to calculating the average minimizes any radical movement of the average, because an average sample is removed from the data set rather than the lowest or highest sample.
The decision of which device to select is based on a history of the devices, including a balancing of short term considerations versus long term considerations. In the short term (over a small number of samples), it is desirable to have the most recent statistics for purposes of routing streams. In the long term, it is desirable to know the drift in command completion time per device over time. These two considerations are somewhat conflicting, in that it is desirable to smooth out the samples to attempt to eliminate noise, but at the same time it is also desirable to be able to quickly respond to actual changes as evidenced by the samples.
A device is classified as input limited or output limited based on the average command completion time, with a special case of input limited being where a device is not in use. This classification uses Equation 1:
Amount of time command takes×Measured data transfer rate=X Equation (1)
A device is input limited if X≦1, and a device is output limited if X>1.
In the event that the value for the measured data rate is not known when Equation 1 is evaluated, it is assumed that a new stream will have a transfer rate equal to the average transfer rate of all of the active streams on a device. This assumption is made in order to complete the calculation.
A method 500 for selecting a device is performed by the load balancing logic and is shown in
Exemplary Hardware Implementation
Each path passes through elements of the system 600 that may be shared with other paths. These elements can include, for example, PCI Bus A 622 and PCI Bus B 624; host adapters 626, 628, 630; an enclosure 640 for multiple disks 608; and disk controllers 642, 644. Each of the elements along a path has a rate at which it can pass data, referred to as the “bandwidth” of the element. The bandwidth of an element is shared by all of the paths passing through that element and provides an aggregate limit on all of the paths passing through that element.
Rather than attempting to determine the bandwidth of each element and the portion of that bandwidth already in use, as is performed by existing systems, the present invention measures the time each command takes on each of the active paths. That time, or latency, increases as more data streams are added and the available bandwidth of each element has to be shared. When multiple streams exist, statistics are taken across all streams currently assigned to different devices. The location for adding a new stream is based on what the other streams are doing at the time the new stream is added. The description of the present invention is in terms of command execution time, but additional criteria for expressing the latency, such as the queue depth, may also be used.
Since a stream consists of multiple commands, the amount of time that the system needs to complete execution of a command can be used as a measure of the delay of a stream. Statistics regarding system operation are collected, including the length of time each command takes to complete, the amount of data transferred per command, and the number of commands processed. These statistics are used to calculate the average completion time for each device/path.
Each command is time-stamped by a central processing unit's (CPU's) time-stamp counter (i.e., the number of CPU “clicks”) when the command is sent out for execution. When the command is completed, the current time is checked, and the departure time for the command is subtracted, to obtain the length of time that it took to complete the command. The command completion time is added to a running average for each device.
A command from a host adapter driver (not shown) is input to the TMDQ 902 via the front end device 920 and is passed to a VT 922. The VT 922 checks whether it has a handler for the command. If the VT 922 does not have a handler for the command, the VT 922 sends a message to the VTD 930 requesting how the command should be handled. The VTD 930 is capable of handling all command types, and it instantiates an appropriate handler 924 for the VT 922.
The handler 924 is pointed to the VTV 932. A link between the VTV 932 and the VTD 930 is established when a tape or other storage medium is loaded into a drive. The handler 924 gathers data in a buffer to write to the back end device 928 (the remainder of the description of
The VTV 932 passes the request for disk space to the data map 934. If the data map 934 has no space to allocate, it requests the DGA 936 for additional disk space. The DGA 936 requests statistics from the IO statistics device 938, which continuously pulls statistics from the nodes 926, wherein each node represents a path to a device. In one embodiment, a node is a segment of server code that periodically collects information from the device driver pertaining to command completion times, the number of IOs that have been performed, the amount of data that has been transferred (e.g., the number of bytes read or written), and other similar statistics. In one embodiment, the statistics are pulled from the IO statistics device 938 on a periodic basis, for example once every five seconds.
Upon retrieving the statistics, the DGA 936 determines the best disk on which to allocate space. After determining the best disk, the DGA 936 passes the device identifier, an offset onto the disk 910 where the write command is to begin, and a length of the allocated space to the data map 934. The data map 934 passes this information to the handler 924, which in turn passes the information to the back end 928 where the write command is sent out for execution to the SCSI mid-level 904 and via the HBA driver 906 to a disk 910.
The process is repeated each time the TMDQ 902 requests additional storage space.
Switching Streams Between Devices
After a device has been selected according to the method 500, data is sent to the selected device. The method 500 allocates disk space in 1 GB segments, which is a sufficiently large allocation to lower the number of messages exchanged in the system. It is noted that the 1 GB value is an arbitrary value, and one skilled in the art could implement the present invention by using any allocation size.
When the 1 GB segment is exhausted and the stream contains commands to be processed, additional disk space must be allocated to satisfy the remaining commands in the stream. Each time a new allocation is triggered (by exhausting the 1 GB segment), the load balancing determines the location of the best device and the new stream is assigned to the best location. This may result in switching the newly allocated portion of the stream to a different device. In these terms, the concept can be viewed as putting a stream in different (i.e., non-contiguous) locations on a disk by the load balancing logic.
To avoid excessive switching between disks, the following four numbered rules may be employed to limit movement of data streams between disks. It is noted that while four preferred rules are provided below, any type and/or number of rules may be utilized when implementing the present invention. These rules are applied when the stream needs additional disk space for storage, using information gathered by a continuously running process that queries the driver on a periodic basis. For example, as described in connection with
The particular location of a bottleneck in the throughput of the system is not critical; it is sufficient to know the specific portion of the path that is output limited. The decision where to place a stream (i.e., where to fill disk space) may be a weighted decision, and is not necessarily load balancing. There are instances where the weighting will be adjusted towards keeping multiple streams together on a single disk, instead of spreading the streams across multiple disks. Keeping the streams in a single disk can help in disaster recovery scenarios by limiting the number of missing volumes in the event of a disk failure.
1) If a device becomes unused (i.e., completely empty), the largest stream from any output limited device is assigned to the unused device. If it is not possible to determine the largest stream, a larger than average stream from the current output limited device is assigned to the unused device. A large stream will not be moved from an output limited device to an input limited device. The reason for this is that when a data stream is on an output limited device, that stream may not be processing data at its full capacity, and moving that stream could increase the throughput for the stream. If this occurs, an input limited device could become an output limited device just by adding the one stream. This would create an effect of toggling between two different output limited devices, and would not result in an overall system throughput gain, which is the goal of switching the streams.
Because the decision to move a stream is made on a stream by stream basis, it may not be feasible to locate the largest stream to move. It is possible to know any level of detail about the entire system, but this requires a place to store that knowledge so it is available when the decision to move a stream is made. In order to avoid that complexity, the present invention makes decisions based on the current stream and the average streams. “Larger than average” and “smaller than average” refer to the transfer rate for the current stream and the average transfer rate for all of the streams using that device. The number of streams using a device is tracked to determine that average, which is calculated according to Equation 2.
2) Assign the smallest stream from an output limited device to an input limited device. If it is not possible to determine the smallest stream, move a smaller than average stream from the output limited device.
3) Move the smallest, or a smaller than average, stream from one output limited device to another output limited device only if the difference in command completion times is large. When moving a stream from an output limited device, it is known that the stream will become larger (since it was output limited), but it is not known how much larger the stream will become. A smaller than average stream can be moved if the total amount of the remainder of space on the current device is greater than the total amount of space on the disk the stream will be moved to. Satisfying this criteria guarantees that switching the stream will not cause the destination device to become output limited upon switching the stream.
4) Do not move streams between input limited devices. By definition, an input limited device is consuming data as fast as the stream can provide it, so no additional benefit is found by moving streams from an input limited device.
If there are no unused devices in the system (step 1006), then a determination is made whether the smallest stream can be located (step 1016). If the smallest stream can be located, then the smallest stream is selected and is assigned to an input limited device (step 1018) and the method terminates (step 1012). If the smallest stream cannot be located, then a smaller than average stream is selected and is assigned to an input limited device (step 1020) and the method terminates (step 1012).
It is noted that the method 1000 is an exemplary application of the rules, and that one skilled in the art could implement the rules in a different order to achieve the same result.
As described above, the path load balancing performed by the present invention does not necessarily incorporate path fairness. In path fairness, each device would have the same number of streams; for example, if there are four devices and eight streams, each device would receive two streams. However, path fairness is not related to the capacity of the device. As a further example, if there are three small streams, the streams can all be placed on one input limited device or each stream can be placed on a different input limited device. In both cases, the overall throughput would be the same. While path fairness is not required, it may be implemented for user perception reasons, in that a user may not think the system is “load balanced” if all three streams are on the same disk.
The principles of the present invention may also be applied to performing load-balancing on any input-limited or output-limited resource whose bandwidth may be required by users of that resource. Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone (without the other features and elements of the preferred embodiments) or in various combinations with or without other features and elements of the present invention.
The above discussion details one or more possible embodiments of the invention, although these are merely examples and are not intended to limit the scope of claimed subject matter. As another example, an alternative embodiment may be implemented in hardware, software, firmware, or any combination of hardware, software, and/or firmware. Likewise, although the claimed subject matter is not limited in scope in this respect, one embodiment may comprise one or more articles, such as a storage medium or storage media, such as one or more CD-ROMs and/or disks, that may have stored thereon instructions that when executed by a system, such as a computer system, computing platform, or other system or device, may result in an embodiment of a method in accordance with the claimed subject matter being executed, such as one of the embodiments previously described. Furthermore, a processor may be implemented as a general-purpose, multi-purpose, or dedicated microprocessor, controller, application-specific integrated circuit (ASIC), or other equivalent device or devices, and a memory may be implemented as one or more memories, such as static random access memory, dynamic random access memory, flash memory, and/or a hard drive, although, again, the claimed subject matter is not limited in scope to this example. It will, of course, be understood that although particular embodiments have been described, the claimed subject matter is not limited in scope to a particular embodiment or implementation.
Number | Name | Date | Kind |
---|---|---|---|
4635145 | Horie et al. | Jan 1987 | A |
4727512 | Birkner et al. | Feb 1988 | A |
4775969 | Osterlund | Oct 1988 | A |
5235695 | Pence | Aug 1993 | A |
5297124 | Plotkin et al. | Mar 1994 | A |
5438674 | Keele et al. | Aug 1995 | A |
5455926 | Keele et al. | Oct 1995 | A |
5485321 | Leonhardt et al. | Jan 1996 | A |
5666538 | DeNicola | Sep 1997 | A |
5673382 | Cannon et al. | Sep 1997 | A |
5774292 | Georgiou et al. | Jun 1998 | A |
5774643 | Lubbers et al. | Jun 1998 | A |
5774715 | Madany et al. | Jun 1998 | A |
5805864 | Carlson et al. | Sep 1998 | A |
5809511 | Peake | Sep 1998 | A |
5809543 | Byers et al. | Sep 1998 | A |
5854720 | Shrinkle et al. | Dec 1998 | A |
5864346 | Yokoi et al. | Jan 1999 | A |
5872669 | Morehouse et al. | Feb 1999 | A |
5875479 | Blount et al. | Feb 1999 | A |
5911779 | Stallmo et al. | Jun 1999 | A |
5949970 | Sipple et al. | Sep 1999 | A |
5961613 | DeNicola | Oct 1999 | A |
5963971 | Fosler et al. | Oct 1999 | A |
5974424 | Schmuck et al. | Oct 1999 | A |
6021408 | Ledain et al. | Feb 2000 | A |
6023709 | Anglin et al. | Feb 2000 | A |
6029179 | Kishi | Feb 2000 | A |
6041329 | Kishi | Mar 2000 | A |
6044442 | Jesionowski | Mar 2000 | A |
6049848 | Yates et al. | Apr 2000 | A |
6061309 | Gallo et al. | May 2000 | A |
6067587 | Miller et al. | May 2000 | A |
6070224 | LeCrone et al. | May 2000 | A |
6098148 | Carlson | Aug 2000 | A |
6128698 | Georgis | Oct 2000 | A |
6131142 | Kamo et al. | Oct 2000 | A |
6131148 | West et al. | Oct 2000 | A |
6163856 | Dion et al. | Dec 2000 | A |
6173359 | Carlson et al. | Jan 2001 | B1 |
6195730 | West | Feb 2001 | B1 |
6225709 | Nakajima | May 2001 | B1 |
6247096 | Fisher et al. | Jun 2001 | B1 |
6260110 | LeCrone et al. | Jul 2001 | B1 |
6266784 | Hsiao et al. | Jul 2001 | B1 |
6269423 | Kishi | Jul 2001 | B1 |
6269431 | Dunham | Jul 2001 | B1 |
6282609 | Carlson | Aug 2001 | B1 |
6289425 | Blendermann et al. | Sep 2001 | B1 |
6292889 | Fitzgerald et al. | Sep 2001 | B1 |
6301677 | Squibb | Oct 2001 | B1 |
6304880 | Kishi | Oct 2001 | B1 |
6317814 | Blendermann et al. | Nov 2001 | B1 |
6324497 | Yates et al. | Nov 2001 | B1 |
6327418 | Barton | Dec 2001 | B1 |
6336163 | Brewer et al. | Jan 2002 | B1 |
6336173 | Day et al. | Jan 2002 | B1 |
6339778 | Kishi | Jan 2002 | B1 |
6341329 | LeCrone et al. | Jan 2002 | B1 |
6343342 | Carlson | Jan 2002 | B1 |
6353837 | Blumenau | Mar 2002 | B1 |
6360232 | Brewer et al. | Mar 2002 | B1 |
6389503 | Georgis et al. | May 2002 | B1 |
6408359 | Ito et al. | Jun 2002 | B1 |
6487561 | Ofek et al. | Nov 2002 | B1 |
6496791 | Yates et al. | Dec 2002 | B1 |
6499026 | Rivette et al. | Dec 2002 | B1 |
6557073 | Fujiwara | Apr 2003 | B1 |
6557089 | Reed et al. | Apr 2003 | B1 |
6578120 | Crockett et al. | Jun 2003 | B1 |
6615365 | Jenevein et al. | Sep 2003 | B1 |
6625704 | Winokur | Sep 2003 | B2 |
6654912 | Viswanathan et al. | Nov 2003 | B1 |
6658435 | McCall | Dec 2003 | B1 |
6694447 | Leach et al. | Feb 2004 | B1 |
6725331 | Kedem | Apr 2004 | B1 |
6766520 | Rieschl et al. | Jul 2004 | B1 |
6779057 | Masters et al. | Aug 2004 | B2 |
6779058 | Kishi et al. | Aug 2004 | B2 |
6779081 | Arakawa et al. | Aug 2004 | B2 |
6816941 | Carlson et al. | Nov 2004 | B1 |
6816942 | Okada et al. | Nov 2004 | B2 |
6834324 | Wood | Dec 2004 | B1 |
6850964 | Brough et al. | Feb 2005 | B1 |
6877016 | Hart et al. | Apr 2005 | B1 |
6915397 | Lubbers et al. | Jul 2005 | B2 |
6931557 | Togawa | Aug 2005 | B2 |
6950263 | Suzuki et al. | Sep 2005 | B2 |
6973369 | Trimmer et al. | Dec 2005 | B2 |
6973534 | Dawson | Dec 2005 | B2 |
6978325 | Gibble | Dec 2005 | B2 |
7032126 | Zalewski et al. | Apr 2006 | B2 |
7055009 | Factor et al. | May 2006 | B2 |
7072910 | Kahn et al. | Jul 2006 | B2 |
7096331 | Haase et al. | Aug 2006 | B1 |
7100089 | Phelps | Aug 2006 | B1 |
7111136 | Yamagami | Sep 2006 | B2 |
7127388 | Yates et al. | Oct 2006 | B2 |
7152077 | Veitch et al. | Dec 2006 | B2 |
7155586 | Wagner et al. | Dec 2006 | B1 |
7266668 | Hartung et al. | Sep 2007 | B2 |
20010047447 | Katsuda | Nov 2001 | A1 |
20020004835 | Yarbrough | Jan 2002 | A1 |
20020016827 | McCabe et al. | Feb 2002 | A1 |
20020026595 | Saitou et al. | Feb 2002 | A1 |
20020095557 | Constable et al. | Jul 2002 | A1 |
20020144057 | Li et al. | Oct 2002 | A1 |
20020163760 | Lindsey et al. | Nov 2002 | A1 |
20020166079 | Ulrich et al. | Nov 2002 | A1 |
20020199129 | Bohrer et al. | Dec 2002 | A1 |
20030004980 | Kishi et al. | Jan 2003 | A1 |
20030037211 | Winokur | Feb 2003 | A1 |
20030120476 | Yates et al. | Jun 2003 | A1 |
20030120676 | Holavanahalli et al. | Jun 2003 | A1 |
20030126388 | Yamagami | Jul 2003 | A1 |
20030135672 | Yip et al. | Jul 2003 | A1 |
20030149700 | Bolt | Aug 2003 | A1 |
20030182301 | Patterson et al. | Sep 2003 | A1 |
20030182350 | Dewey | Sep 2003 | A1 |
20030188208 | Fung | Oct 2003 | A1 |
20030217077 | Schwartz et al. | Nov 2003 | A1 |
20030225800 | Kavuri | Dec 2003 | A1 |
20040015731 | Chu et al. | Jan 2004 | A1 |
20040044705 | Stager et al. | Mar 2004 | A1 |
20040098244 | Dailey et al. | May 2004 | A1 |
20040181388 | Yip et al. | Sep 2004 | A1 |
20040181707 | Fujibayashi | Sep 2004 | A1 |
20050010529 | Zalewski et al. | Jan 2005 | A1 |
20050044162 | Liang et al. | Feb 2005 | A1 |
20050063374 | Rowan et al. | Mar 2005 | A1 |
20050065962 | Rowan et al. | Mar 2005 | A1 |
20050066118 | Perry et al. | Mar 2005 | A1 |
20050066222 | Rowan et al. | Mar 2005 | A1 |
20050066225 | Rowan et al. | Mar 2005 | A1 |
20050076070 | Mikami | Apr 2005 | A1 |
20050076261 | Rowan et al. | Apr 2005 | A1 |
20050076262 | Rowan et al. | Apr 2005 | A1 |
20050076264 | Rowan et al. | Apr 2005 | A1 |
20050114598 | Hartung et al. | May 2005 | A1 |
20050144407 | Colgrove et al. | Jun 2005 | A1 |
20060047895 | Rowan et al. | Mar 2006 | A1 |
20060047902 | Passerini | Mar 2006 | A1 |
20060047903 | Passerini | Mar 2006 | A1 |
20060047905 | Matze et al. | Mar 2006 | A1 |
20060047925 | Perry | Mar 2006 | A1 |
20060047989 | Delgado et al. | Mar 2006 | A1 |
20060047998 | Darcy | Mar 2006 | A1 |
20060047999 | Passerini et al. | Mar 2006 | A1 |
20060143376 | Matze et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
1333379 | Apr 2006 | EP |
1 671231 | Jun 2006 | EP |
WO9903098 | Jan 1999 | WO |
WO9906912 | Feb 1999 | WO |
WO2005031576 | Apr 2005 | WO |
WO2006023990 | Mar 2006 | WO |
WO2006023991 | Mar 2006 | WO |
WO2006023992 | Mar 2006 | WO |
WO2006023993 | Mar 2006 | WO |
WO2006023994 | Mar 2006 | WO |
WO2006023995 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070083727 A1 | Apr 2007 | US |