This application claims the benefit of Chinese Application No. 201510111209.X, filed on Mar. 13, 2015, the content of which is hereby incorporated by reference in its entirety.
Field of the Invention
The present invention relates to transmission line technology, and in particular relates to a maximum power output circuit for an EHC and a design method thereof.
Background Information
For real time monitoring of grid assets and effective reduction of grid faults, online grid monitoring systems are extensively developed at home and abroad.
Up to now, of mature harvesting solutions there are mostly solar energy, wind power, capacitive divider, laser supply, induction harvesting, differential temperature harvesting, and vibration harvesting. By comparison of the above-mentioned harvesting solutions, induction harvesting is believed to be the most suitable for transmission line energy harvesting. USI, OTLM, Hangzhou Thunderbird, and Xi'an Jinyuan have all developed commercial products based on induction harvesting. However, all the above products work on the range in excess of 50 A due to limited power supply, and hence are prevented from operating normally on most applications generally with a working current below 50 A.
For an online monitoring power source for power transmission line, it needs to be capable of adapting to big load swings in addition to posing no risk for the transmission line per se. Thus, an induction harvesting solution shall meet the following requirements for: {circle around (1)} large dynamic range; current over a power transmission line ranges from a peak current over 1000 A to a valley one of 40 A and even as low as 10 A for certain distribution networks; output power of an energy harvesting coil (hereunder abbreviated as EHC) is positively correlated with the current on the transmission line; as is shown on
Foreign and domestic scholars focus their research mostly on two aspects, power output model and protection of the EHC. N. M. Roscoe, M. D. Judd, L. Fraser, “A novel inductive electromagnetic energy harvester for condition monitoring sensors,” in Proc. Int. Conf. Condit. Monitor. Diagnosis, Sep. 2010, pp. 615-618, N. M. Roscoe, M. D. Judd, and J. Fitch, “Development of magnetic induction energy harvesting for condition monitoring,” in Proc. 44th Int. Univ. Power Eng. Conf., September 2009, pp. 1-5, N. M. Roscoe, Judd M. D. Harvesting energy from magnetic fields to power condition monitoring sensors.” IEEE Sensors J., vol. 13, no. 6, pp. 2263-2270, 2013, consider an EHC equivalent to a voltage source or a current source, with output power of the EHC reaching it maximum when load resistance is equal to internal resistance of the power source. In fact, output voltage of the EHC changes as the load current changes, and as the load of the EHC changes, its output voltage and current change simultaneously, and therefore the above assumption does not strictly hold.
The object of the present invention is to overcome the above deficiency of the prior art and to provide a maximum power output circuit for an EHC and a design method thereof. Said circuit enables the EHC to be always working at the maximum output power point, raises the maximum power density of the harvester, and realizes maximum power output of the harvester.
The technical solution of the present invention is as follows:
A maximum power output circuit for an EHC, characterized in that it is comprised of a magnetic core, that is, a primary coil (N1) and a secondary coil (N2), with a load resistor (R) and a capacitor (C) parallel connected at two ends of the secondary coil.
A design method for the above maximum power output circuit for the EHC, characterized in that the method comprises the following steps:
{circle around (1)} setting a power density index λ under a minimum working current;
{circle around (2)} calculating a magnetization current Iμ under the minimum working current according to a maximum output power of the energy harvesting coil with the following formula:
where, IFe=C1Iμk, C1 is a transformation coefficient between the hysteresis loss current IFe and the current Iμ parallel to a magnetic flux, and k is a transformation index between the hysteresis loss current IFe and the current Iμ parallel to the magnetic flux, and I1 is a primary current;
{circle around (3)} selecting a material for the magnetic core, and calculating an outer parameter Do and a thickness h in accordance with a density w and a volume V of the magnetic core by the following formula:
where, V is the fixed volume of the magnetic core, Di is an inner diameter, W is a weight thereof, Pmax is a maximum output power, and f is a working frequency;
{circle around (4)} calculating, in accordance with the following formulas, a load resistance R and a capacitance C:
where, IR is a current on the load resistor, E2 is an induction voltage of a secondary side of the energy harvesting coil, N2 is a number of the secondary coil of the energy harvesting coil, μ is an effective permeability of the magnetic core, Iμ is the magnetization current, I1 is a primary current, f is a frequency of a power source, α is an angle between the primary current I1 and the magnetization current Iμ, α=90 degrees.
The underlying principle of the present invention is:
1. CT Harvesting Model
For analysis of power output characteristics of an EHC, a diagram of a load equivalent model established for the EHC on the basis of the electro-magnetic induction theory is shown on
Let the current flowing through the conductor line being is, the inner diameter of the EHC being Di, its outer diameter being Do, its width being h, its turns being N2, then, the induction voltage E2 on the secondary side of the EHC is:
where, μ being the effective magnetic permeability of the magnetic core, Iμ being the magnetization current.
It follows from the magnetic potential balance equation that:
İ1N1+İ2N2=İmN1 (2)
where, N1 being the number of the primary turns, and is set as 1 here, N2 being the number of the secondary turns, Im being the exciting current.
Take into account of hysteresis loss, the exciting current İm can be decomposed into a current İμ parallel to the magnetic flux and a hysteresis loss current İFe perpendicular to the magnetic flux, satisfying
İμ+İFe=İm (3)
By ignoring the primary and secondary magnetic flux leakage and the internal resistance of the coil, the vector diagram of the load model for the EHC is shown on
Referring to
The core loss can be calculated according to the empirical Steinmetz formula:
Pv=CmfαBβ (7)
The core loss per volume Pv is an exponential function of alternating magnetizing frequency f and the peak flux density B. Cm, α, and β are empirical parameters, and the two exponents α and β are in the ranges of 1<a<3 and 2<β<3, where the work frequency f is fixed. Thus the core loss per volume is dependent only on the peak flux density B, and by regarding the core hysteresis resistance approximately as Rm, then
Pv=RmIFe2 (8)
Comparing expression (1) and (3), the hysteresis loss current IFe can be expressed as:
IFe=C1Iμk (9)
where, C1 is a transformation coefficient between the hysteresis loss current IFe and the current Iμ parallel to the magnetic flux, and k is a transformation index between the hysteresis loss current IFe and the current Iμ parallel to the magnetic flux. By substituting expression (9) in expression (6), the output power model of the EHC is:
It follows from expression (10) that α is an independent variable, the output power reaching its maximum when α=90 degrees, with İμ and İ1 differing by 90 degrees at that point; it follows at the mean time that the load of the EHC is capacitive.
Thus the maximal condition for the output power is:
From expression (11) the condition for maximum power output of the EHC is obtained as
with the maximum power output being:
Solve for Iμ from C1(k+1)Iμk=I1, substitute it in expressions (4) and (5) to obtain the maximum power and the resistance and capacitance values at the maximum power point:
with the annular magnetic core having a volume of:
V=π(Do2−Di2)h/4 (15)
By defining the unit output power density A. as the ratio of the output power over the volume, it follows that:
It can be seen that by selecting the magnetic core material, fixing its volume, the is permeability, and the primary current, the power density is proportional to
In comparison with prior art, the present invention is effective in that:
The present invention, by demonstrating both theoretically and experimentally the effects of the magnetic core shape and the number of secondary turns on the output power of the EHC, by establishes an output power model for the EHC based on the capacitance-resistance model, by more than doubling its unit power density, by further establishing power output characteristics for the harvester comprising the EHC and the power management module, and by enabling the EHC to be always working at the maximum power output point, realizes maximum power output for the EHC.
The invention description below refers to the accompanying drawings, of which:
Referring to
The design method for an embodiment of the maximum power output circuit of the EHC of the present invention comprises the following steps:
1) setting the power density λ of the magnetic core as 1.38 mW/g@10 A, that is, requiring the 1 kg magnetic core be capable of outputting 1380 mW power with a 10 A primary current;
2) selecting silicon steel as the material for the magnetic core of the embodiment, with a density of 7.35 g/cm3, C1 being 0.22, k being 0.95, the effective permeability being 0.01, I1=10 A, and obtaining Iμ as 27.5 A according to
substituting Iμ in
to obtain the maximum power output as
with the power density for the magnetic core being:
3) setting the inner diameter of the magnetic core Di as 55 mm, its weight as 450 g, with λ>1.2 mW/g, an calculation would show that Do<75 mm
The shape of the magnetic core shall be as D0=75 mm, Di=55 mm, h=30 mm,
4)
Calculations with expressions (13) and (14) will obtain C=17.1 uF, and R=1050 ohm.
The experiment model is shown on
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0111209 | Mar 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5770982 | Moore | Jun 1998 | A |
9678114 | Shamir | Jun 2017 | B2 |
20110158806 | Arms | Jun 2011 | A1 |
20120032522 | Schatz | Feb 2012 | A1 |
20120098509 | de Rochemont | Apr 2012 | A1 |
20120235647 | Chung | Sep 2012 | A1 |
20130099587 | Lou | Apr 2013 | A1 |
20150084440 | Erdmann | Mar 2015 | A1 |
20150094168 | Unger, Sr. | Apr 2015 | A1 |
20160231361 | Shamir | Aug 2016 | A1 |
20160268812 | Liu | Sep 2016 | A1 |
Entry |
---|
Roscoe et al “Development of Magnetic Induction Energy Harvesting for Condition Monitoring” Proc. 44th Int. Univ. Power Eng. Conf., pp. 1-5. 2009. |
Roscoe et al “A Novel Inductive Electromagnetic Energy Harvester for Condition Monitoring Sensors” Proc. Int. Conf. Condit. Monitor. Diagnosis, pp. 615-616. 2010. |
Roscoe et al “Harvesting Energy from Magnetic Fields to Power Condition Monitoring Sensors” IEEE Sensors J. vol. 13, pp. 2263-2270, 2013. |
Number | Date | Country | |
---|---|---|---|
20160268812 A1 | Sep 2016 | US |