The present invention relates to a technology for, in an MEA member constituted by a polymer electrolyte membrane-electrode assembly (MEA) and a frame and in a polymer electrolyte fuel cell including the MEA member, separating the MEA and the frame from each other and recovering the MEA and the frame to recycle electrode materials and the like.
Known as one example of a fuel cell which has been attracting attentions as a clean energy source in recent years is a polymer electrolyte fuel cell (hereinafter referred to as “PEFC (Polymer Electrolyte Fuel Cell)”). In the PEFC, a solid polymer membrane having ionic conductivity is used as a polymer electrolyte. Used as the polymer electrolyte membrane is, for example, a polystyrene-based positive ion-exchange membrane containing a sulfonic acid group, an electrolyte membrane formed by a mixture of a fluorocarbon sulfonic acid and polyvinylidene fluoride, or a perfluoro carbon sulfonic acid membrane.
In the PEFC, when a hydrogen-containing fuel is supplied through the fuel gas channel to the anode, and an oxygen-containing oxidizing agent is supplied through the oxidizing gas channel to the cathode, the fuel and the oxidizing agent react with each other in the anode and the cathode to generate electricity and heat.
In the above PEFC, the MEA 5 is in the form of a thin film. When assembling the cell stack 99, each MEA 5 is difficult to handle. Here, as described in PTL 1 for example, an “MEA member 7” including a frame 6 surrounding the MEA 5 is formed so as to be able to be handled as a single unit, and the handleability of the MEA 5 is improved. A gasket is disposed on the frame to seal between the frame and the anode separator and between the frame and the cathode separator to prevent the fuel gas, the oxidizing gas, and the cooling water from leaking.
PTL 1: Japanese Laid-Open Patent Application Publication No. 2006-310288
A precious metal, such as platinum, is used for the electrode of the MEA. Therefore, the precious metal contained in the electrode should be recovered and recycled when discarding the MEA. As described in PTL 1, in the MEA member, since a peripheral portion of the MEA is sandwiched by the frame, the MEA is held inside the frame. Here, since the MEA is sandwiched by the frames at appropriate pressure, it is difficult to detach only the MEA from the frame. If the MEA is forcedly detached, the MEA may tear. Therefore, in order to separate the MEA from the frame, a tool for breaking down the frame without damaging the MEA becomes necessary.
The present invention was made to solve the above problems, and an object of the present invention is to provide the structure of the MEA member configured such that the MEA and the frame can be easily separated from each other without using any special tool or damaging the MEA.
An MEA member of the present invention includes: an MEA including a polymer electrolyte membrane and a pair of electrodes respectively disposed on both main surfaces of the polymer electrolyte membrane; a plate-shaped resin frame configured to sandwich and hold a peripheral portion of main surfaces of the MEA from both sides of the MEA such that the MEA is located inside the frame; and a separating portion configured to separate the MEA from the frame, wherein the separating portion is a broken-line cutoff line formed on the frame to divide the frame into two or more parts or is a partial sandwiching portion located at an inner peripheral portion of the frame to partially sandwich the peripheral portion of the MEA.
Moreover, a polymer electrolyte fuel cell of the present invention includes the MEA member and a pair of separators respectively stacked on both surfaces of the MEA member so as to sandwich the MEA member, a reaction gas channel being formed on a region of each of the separators which region contacts the electrode.
In the MEA member and the polymer electrolyte fuel cell configured as above, in a case where the separating portion is the cutoff line, a part of the frame can be cut off or broken down along the cutoff line by holding and pulling the part of the frame. In contrast, in a case where the separating portion is the partial sandwiching portion, the area of a sandwiched portion of the MEA decreases as compared to before. With this, a power applied from the frame to the MEA to sandwich the MEA decreases. On this account, the MEA is easily taken out from the frame. Thus, the MEA and the frame can be easily separated from each other without using any special tool or damaging the MEA.
It is preferable that in a case where the separating portion is the cutoff line, the frame include a manifold hole penetrating therethrough in a thickness direction of the polymer electrolyte membrane, a manifold hole gasket disposed on the frame to surround the manifold hole, and an electrode gasket disposed on the frame to surround the electrode, and when viewed from the thickness direction of the polymer electrolyte membrane, the cutoff line be formed on a portion of the frame at which portion the electrode gasket is formed or on an outer peripheral side of this portion, and at the same time, is formed on a portion of the frame at which portion the manifold hole gasket is formed or on an inner peripheral side of this portion.
With this, in a case where a part of the frame is cut off or broken down by utilizing the cutoff line, the power of sandwiching the MEA efficiently decreases, and the MEA can be taken out more easily.
Moreover, it is preferable that when viewed from the thickness direction of the polymer electrolyte membrane, the cutoff line be constituted by a plurality of slits which are formed at a portion of the frame at which portion the frame and the peripheral portion of the MEA overlap each other and each of which reaches the peripheral portion of the MEA.
With this, since a portion of the frame which portion sandwiches the MEA can be cut off or broken down by utilizing the cutoff line, the power of sandwiching the MEA efficiently decreases, and the MEA can be taken out more easily.
In the MEA member, at least a part of the plurality of slits may be filled up with the electrode gasket or the manifold hole gasket.
With this, a part of the gasket gets in the slits forming the cutoff line, so that the adherence between the frame and the gasket improves. Moreover, the cutoff line can be utilized as grooves for disposing the gasket on the frame.
In the MEA member, the plurality of slits may be alternately and consecutively formed on a first main surface and a second main surface of the frame. Or, the plurality of slits may be formed on one of a first main surface and a second main surface of the frame. Or, the plurality of slits may be formed on both a first main surface and a second main surface of the frame such that the slit on the first main surface and the slit on the second main surface are opposed to each other with the peripheral portion of the MEA interposed therebetween.
Moreover, in the MEA member, the polymer electrolyte membrane may be exposed at the peripheral portion of the MEA, and the frame and the polymer electrolyte membrane may contact each other the peripheral portion of the MEA. Or, a membrane reinforcing member may be disposed at a peripheral portion of the polymer electrolyte membrane, and the frame and the membrane reinforcing member may contact each other at the peripheral portion of the MEA.
Moreover, in the MEA member, in a case where the separating portion is the partial sandwiching portion, the partial sandwiching portion may include first projections each partially projecting inwardly from the inner peripheral portion of the frame and second projections each partially projecting inwardly from the inner peripheral portion of the frame, and the peripheral portion of the MEA may be sandwiched between the first projections and the second projections.
Moreover, in the MEA member, a plurality of the first projections may be continuously formed at predetermined intervals, a plurality of the second projections may be continuously formed at predetermined intervals, and the first projections and the second projections may be alternately provided in a circumferential direction of the frame.
With this, the peripheral portion of the MEA is equally sandwiched while decreasing the area of the sandwiched portion of the MEA.
Moreover, an entire inner peripheral portion of at least one of main surfaces of the frame may be covered with a thin film. Since the thin film can be easily detached, the MEA is strongly sandwiched while in use, and the MEA and the frame can be easily separated from each other.
The present invention has the following effects.
In accordance with the present invention, in a case where the separating portion is the cutoff line, a part of the frame can be cut off or broken down along the cutoff line by holding and pulling the part of the frame. In a case where the part of the frame is broken down, the power applied from the frame to the MEA to sandwich the MEA decreases, and the MEA can be easily taken out from the frame. Moreover, in a case where the separating portion is the partial sandwiching portion, the area of the sandwiched portion of the MEA can be decreased. Therefore, the power of sandwiching the MEA decreases, and the MEA can be easily taken out from the frame. Therefore, the MEA and the frame can be easily separated from each other without using any special tool or damaging the MEA.
Hereinafter, preferred embodiments of the present invention will be explained in reference to the drawings. In the drawings, the same reference signs are used for the same or corresponding components, and a repetition of the same explanation is avoided.
A framed membrane-electrode assembly and a polymer electrolyte fuel cell according to Embodiment 1 of the present invention will be explained. Hereinafter, the membrane-electrode assembly is referred to as “MEA”, the framed membrane-electrode assembly is referred to as “MEA member”, and a polymer electrolyte fuel cell is referred to as “PEFC”.
Configuration of PEFC
First, the configuration of the PEFC will be explained.
As shown in
Single Cell 10
Here, the structure of the single cell 10 that is the basic unit of the cell stack 99 will be explained. The single cell 10 includes an MEA member 7 and a pair of separators. The pair of separators are the anode separator 9 and the cathode separator 8 which are respectively stacked on both main surfaces of the MEA member 7 so as to sandwich the MEA member 7.
Bolt holes 17, 27, and 37, fuel gas supplying manifold holes 11, 21, and 31, fuel gas discharging manifold holes 12, 22, and 32, oxidizing gas supplying manifold holes 13, 23, and 33, oxidizing gas discharging manifold holes 14, 24, and 34, cooling water supplying manifold holes 15, 25, and 35, and cooling water discharging manifold holes 16, 26, and 36 are formed on the frame 6 of the MEA member 7, the anode separator 9, and the cathode separator 8 so as to penetrate main surfaces of the frame 6 of the MEA member 7, the anode separator 9, and the cathode separator 8. The fuel gas supplying manifold holes 11, 21, and 31 are connected to one another in the cell stack 99 to form a fuel gas supplying manifold 91. The fuel gas discharging manifold holes 12, 22, and 32 are connected to one another in the cell stack 99 to form a fuel gas discharging manifold 92. The oxidizing gas supplying manifold holes 13, 23, and 33 are connected to one another in the cell stack 99 to form an oxidizing gas supplying manifold 93. The oxidizing gas discharging manifold holes 14, 24, and 34 are connected to one another in the cell stack 99 to form an oxidizing gas discharging manifold 94. The cooling water supplying manifold holes 15, 25, and 35 are connected to one another in the cell stack 99 to form a cooling water supplying manifold 95. The cooling water discharging manifold holes 16, 26, and 36 are connected to one another in the cell stack 99 to form a cooling water discharging manifold 96.
A fuel gas channel groove 28 extending to connect the fuel gas supplying manifold hole 21 and the fuel gas discharging manifold hole 12 is formed on a surface of the anode separator 9 which surface contacts the gas diffusion layer 3b of the anode 3 of the MEA 5. The fuel gas channel groove 28 is formed to have a serpentine shape on a substantially entire surface of the anode separator 9 which surface contacts the MEA 5. The fuel gas channel groove 28 forms a fuel gas channel 98 between the MEA member 7 and the anode separator 9 which are stacked on each other in the single cell 10. The fuel gas channel 98 connects the fuel gas supplying manifold hole 21 and the fuel gas discharging manifold hole 22.
An oxidizing gas channel groove 38 extending to connect the oxidizing gas supplying manifold hole 33 and the oxidizing gas discharging manifold hole 34 is formed on a surface of the cathode separator 8 which surface contacts the gas diffusion layer 4b of the cathode 4 of the MEA 5. The oxidizing gas channel groove 38 is formed to have a serpentine shape on a substantially entire surface of the cathode separator 8 which surface contacts the MEA 5. The oxidizing gas channel groove 38 forms an oxidizing gas channel 97 between the MEA member 7 and the cathode separator 8 which are stacked in the single cell 10. The oxidizing gas channel 97 connects the oxidizing gas supplying manifold hole 33 and the oxidizing gas discharging manifold hole 34.
As shown in
Each of the separators 8 and 9 may be made of a gas-impermeable electrically-conductive material. For example, a resin-impregnated carbon material having a predetermined shape or a product formed by a mixture of carbon powder and a resin material is generally used as each of the separators 8 and 9.
Operations of PEFC During Electric Power Generation
Here, the operations of the above PEFC during the electric power generation will be explained. As shown in
The heat generated in the PEFC is recovered by the cooling water circulating through a cooling water tank 85, the cooling water supplying manifold 95 of the cell stack 99, the cooling water channel formed between the single cells 10, and the cooling water discharging manifold 96 in this order. A heat exchanger 86 is disposed on a cooling water circulating passage. The heat recovered by the cooling water is transferred to the water circulating through the heat exchanger 86 and the hot water tank 87 and is stored in the hot water tank 87 as the hot water. The electricity generated in the PEFC is taken out by an output controller 88 from the electric output terminal 81a of the current collector 81 to be supplied to an electric power load.
MEA Member 7
Here, the configuration of the MEA member 7 will be explained in detail.
First, the configuration of the MEA 5 that is a core of the MEA member 7 will be explained. As shown in
The polymer electrolyte membrane 2 is an ion-exchange membrane which is believed to selectively cause hydrogen ions to penetrate therethrough. It is preferable that the polymer electrolyte membrane 2 be a perfluoro carbon sulfonic acid membrane, such as NAFION (NAFION is a trademark of E. I. du Pont de Nemours and Company).
The anode 3 includes the catalyst layer 3a and the gas diffusion layer 3b which are stacked on each other. The catalyst layer 3a contains, as a major component, carbon powder supporting a platinum-ruthenium alloy catalyst. The gas diffusion layer 3b has gas permeability and electron conductivity. The cathode 4 includes the catalyst layer 4a and the gas diffusion layer 3b which are stacked on each other. The catalyst layer 4a contains, as a major component, carbon powder supporting a platinum catalyst. The gas diffusion layer 3b has gas permeability and electron conductivity. The MEA 5 configured as above is generally manufactured by sequentially forming the catalyst layers 3a and 4a and the gas diffusion layers 3b and 4b on the polymer electrolyte membrane 2 by application, transfer, or the like.
As shown in
Next, the structure of the frame 6 will be explained. The frame 6 serves as both a gasket seal disposed between the separators 8 and 9 to seal the MEA 5 and a holding member configured to improve the handleability of the MEA 5.
The frame 6 is a thin plate-like substantially rectangular frame having a substantially rectangular opening 60 at a substantially center portion thereof. The MEA 5 is disposed inside the opening 60 (inside the frame). The frame 6 has a two piece structure in the thickness direction and includes a first surface member 6a contacting the anode separator 9 and a second surface member 6b contacting the cathode separator 8. The first surface member 6a and the second surface member 6b sandwich the peripheral portion of the MEA 5. Thus, the frame 6 holds the MEA 5 with the electrodes 3 and 4 exposed from the opening 60 of the frame 6.
It is desirable that at least a surface of the frame 6 which surface contacts the separator 8 or 9 be formed by an elastic member. In the present embodiment, the frame 6 is formed by a thermoplastic resin. Further, a gasket 73 is disposed on each of both main surfaces of the frame 6. When the MEA member 7 is pressed between the separators 8 and 9, the frame 6 and the gasket 73 elastically deform and stick to the separators 8 and 9. Thus, the frame 6 serves as the gasket seal configured to seal a gap between the separator 8 and the MEA 5 and between the separator 9 and the MEA 5 to prevent the leakage of the reactant gas and the cooling water to the separator 8, the separator 9, the MEA 5, or to the outside.
The gasket 73 is disposed on the frame 6 so as to prevent the cooling water and the reactant gases that are the fuel gas and the oxidizing gas from leaking from a predetermined channel. Specifically, the gasket 73 includes a manifold hole gasket 73a and an electrode gasket 73b which are formed on each of the main surfaces of the frame 6. The manifold hole gasket 73a is formed so as to surround respective manifold holes (the fuel gas supplying manifold hole 11, the fuel gas discharging manifold hole 12, the oxidizing gas supplying manifold hole 13, the oxidizing gas discharging manifold hole 14, the cooling water supplying manifold hole 15, and the cooling water discharging manifold hole 16). The electrode gasket 73b is formed so as to surround each of the electrodes 3 and 4 of the MEA 5 at an inner peripheral portion of the frame 6. In the present embodiment, the manifold hole gasket 73a and the electrode gasket 73b are seamlessly and integrally formed. However, the manifold hole gasket 73a and the electrode gasket 73b are separately called depending on the function and position of the gasket.
Further, the frame 6 includes a separating portion for separating the MEA 5 from the frame 6. Herein, the frame 6 includes a broken-line cutoff line 50 for dividing the frame 6 into two or more parts.
As shown in
When viewed from the main surface side of the MEA member 7 (in the thickness direction of the polymer electrolyte membrane 2), the cutoff line 50 is formed at a portion of the frame 6 at which portion the frame 6 and the peripheral portion of the MEA 5 overlap each other. The cutoff line 50 shown in
As shown in
As shown in
Since the cutoff line 50 is formed on the frame 6, the frame 6 is torn along the cutoff line 50 by holding and pulling a part of the frame 6 which part is a portion to be cut off. Therefore, a part of the frame 6 which part sandwiches the peripheral portion of the MEA 5 can be cut off or broken down. When the part of the frame 6 which part sandwiches the peripheral portion of the MEA 5 is broken down, a power applied from the frame 6 to the MEA 5 to sandwich the MEA 5 is partially or completely released. On this account, the MEA 5 is easily taken out from the frame 6. Thus, the MEA 5 and the frame 6 can be easily separated from each other without using any special tool or damaging the MEA 5.
It is desirable that when viewed from the main surface side of the MEA member 7, the cutoff line 50 be formed on a portion of the frame 6 at which portion the electrode gasket 73b is formed or on an outer peripheral side of this portion, and at the same time, be formed on a portion of the frame 6 at which portion the manifold hole gasket 73a is formed or on an inner peripheral side of this portion. In accordance with a case where the cutoff line 50 is formed at such position, by tearing the frame 6 along the cutoff line 50, a portion of the frame 6 which portion sandwiches the MEA 5 breaks down, and this directly reduces the power for holding the MEA 5. Therefore, the MEA 5 can be smoothly taken out from the frame 6.
As shown in
The cutoff line 50 is formed on the frame 6 so as to have a circular shape and surround the electrode 3 or 4 of the MEA 5. However, the cutoff line 50 does not have to have the circular shape.
Method for Forming Frame
Next, a method for forming on the MEA 5 the frame 6 including the cutoff line 50 by injection molding will be explained.
As shown in
The first surface member 6a of the frame 6 is preformed to explain the method for forming the frame 6 using the mold 58 configured as above. The method for forming the first surface member 6a is not limited to the injection molding but may be the other method.
First, as show in
In the above-described mold clamping, the peripheral portion of the MEA 5 held by the cavity is sandwiched between and fixed by a pressing portion 69 formed at the shaped surface 65a of the core plate 65 and the shaped surface 66a of the cavity plate 66. The pressing portions 69 are convex portions provided to form a plurality of slits 75 forming the cutoff line 50. In this state, a high temperature and pressure material resin is injected into the cavity. Since a part of the peripheral portion of the MEA 5 is pressed and fixed by the pressing portion 69 in the cavity, floating and curling are suppressed.
As shown in
Thus, the MEA member 7 configured such that the peripheral portion of the MEA 5 is sandwiched between the first surface member 6a and the second surface member 6b of the frame 6 is formed by the above injection molding step. Here, holes are formed on the second surface member 6b by the pressing portions 69 of the shaped surface 65a so as to penetrate to the surface of the MEA 5. The holes become the slits 75 forming the cutoff line 50.
Next, the MEA member (framed membrane-electrode assembly) according to Embodiment 2 of the present invention will be explained in reference to
As shown in
As described above, the separating portion is the partial sandwiching portion 55 in Embodiment 2. As shown in
Moreover, the partial sandwiching portion 55 is mainly constituted by first projections 56 shown in
As shown in
As shown in
As shown in
As above, in Embodiment 2, the MEA 5 is partially sandwiched between the first projection 56 and the second projection 57. However, from a broad point of view, the entire peripheral portion of the MEA 5 is sandwiched therebetween. Therefore, the movement of the MEA 5 in the thickness direction is surely limited. Moreover, since the MEA 5 is partially sandwiched therebetween, the area of a sandwiched portion of the MAE 5 becomes smaller than a case where the peripheral portion of the MEA 5 is entirely sandwiched, so that the MEA 5 can be easily pulled out in a direction perpendicular to the thickness direction. Especially, this effect is significant in a case where the first projections 56 and the second projections 57 are alternately provided. Therefore, for example, in the case of bending the entire MEA member 7 to pull out the MEA 5 from the frame 6 (partial sandwiching portion 55), the MEA 5 can be easily taken out from the frame 6.
The foregoing has explained the configuration of the MEA member 7 according to Embodiment 2, especially the configuration of separating portion (partial sandwiching portion 55). In a case where the MEA member 7 according to Embodiment 2 adopts the two piece structure as with the MEA member 7 according to Embodiment 1, it can be manufactured by the injection molding step shown in
As shown in
Moreover, the foregoing has explained a case where each of the first projection 56 and the second projection 57 has the T shape. However, the shape of each of the first projection 56 and the second projection 57 is not limited to this. For example, each of the first projection 56 and the second projection 57 may be formed to have a rectangular shape having a constant width from a base end to a tip end thereof. However, in a case where each of the first projection 56 and the second projection 57 has the T shape, the materials can be reduced as compared to the case where each of the first projection 56 and the second projection 57 has the rectangular shape.
Moreover, the foregoing has explained a case where the first projections 56 and the second projections 57 are alternately provided in the circumferential direction of the frame 6. However, the first projections 56 and the second projections 57 do not have to be alternately provided. The first projection 56 and the second projection 57 may entirely or partially overlap each other when viewed from the main surface side of the MEA member 7.
Moreover, the foregoing has explained a case where the base end of each of the first projection 56 and the second projection 57 coincides with the outer edge of the MEA 5. However, the base end of each of the first projection 56 and the second projection 57 may be located on an inner side of the outer edge of the MEA 5. To be specific, the peripheral portion of the MEA 5 may get in an inner portion of the frame 6 as compared to the case shown in
The foregoing has explained Embodiments 1 and 2 according to the present invention in reference to the drawings. However, specific configurations are not limited to these embodiments, and design modifications and the like within the scope of the present invention are included in the present invention.
The present invention is widely applicable as the MEA member configured such that the MEA can be separated and recovered from the frame, in the MEA member including the polymer electrolyte membrane-electrode assembly (MEA) and the frame and in the polymer electrolyte fuel cell including the MEA member.
2 polymer electrolyte membrane
3 anode
4 cathode
5 MEA (membrane-electrode assembly)
6 frame
7 MEA member
8 cathode separator
9 anode separator
10 single cell
11 fuel gas supplying manifold hole
12 fuel gas discharging manifold hole
13 oxidizing gas supplying manifold hole
14 oxidizing gas discharging manifold hole
15 cooling water supplying manifold hole
16 cooling water discharging manifold hole
17 bolt hole
50 cutoff line
55 partial sandwiching portion
56 first projection
57 second projection
72 thin film
73 gasket
73
a manifold hole gasket
73
b electrode gasket
75 slit
Number | Date | Country | Kind |
---|---|---|---|
2008-142455 | May 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/002356 | 5/28/2009 | WO | 00 | 2/23/2010 |