The invention pertains to an improved meal dryer/cooler.
Oleagineous materials such as soybeans, rapeseed, sunflower seed, cottonseed, corn germ, etc. are prepared by thermal and mechanical means and then introduced into a solvent extractor wherein they are washed with hexane-based solvents to separate the liquid oil fraction from the solid meal fraction. The solid meal fraction discharges the extractor apparatus with approximately thirty percent by weight of residual solvent. The solid meal fraction is then introduced into a meal desolventizer toaster for the purpose of using steam, applied both indirectly and directly to the meal, to thermally remove the solvent. In the process of desolventizing the solid meal fraction, the temperature typically increases to 108° C. and the moisture increases to 18-20 percent by weight.
After the solvent-laden material is desolventized, it is conveyed to the meal dryer cooler, commonly referred to as the DC. The primary purposes of the DC are to reduce the moisture in the meal to within trading rule limits, and to lower the meal temperature prior to storage. DCs are vertical, cylindrical vessels with a multitude of horizontal trays. The desolventized material enters at the top and is supported by the tray. The material is mixed above each tray, and conveyed downward from tray to tray by agitating sweeps anchored to a central rotating shaft. The DC has two different types of trays; air drying trays, and air cooling trays.
The air drying trays of the DC are designed with an upper plate, lower plate, and structural members between designed to hold low pressure air. The air drying trays are designed with a plurality of small round apertures, approximately 3 to 4 mm diameter, across their entire upper surface to evenly introduce air into the meal. The quantity of apertures is calculated to provide sufficient back pressure to prevent meal from sifting into the air tray. The combined area of the many small apertures represents approximately 0.8% of the tray surface. The air supplied to each air dryer tray is first filtered to remove dust, and then pressurized using a spark-proof centrifugal blower. The air for the dryer trays is passed through a steam-heated coil between the blower and the entrance to the dryer trays. After the air enters the trays, it flows upward through the meal at a nominal velocity of 14 to 21 m/min., partially fluidizing the meal. The meal evaporatively cools and the released moisture is transferred to the ascending air. The warm, damp air exits the top of the meal layer and then exits the sidewall of the DC to a cyclone collector to remove dust prior to discharge to atmosphere. The major source of heat for evaporating the moisture in the meal is the high temperature of the meal exiting the meal desolventizer toaster. When the meal drops in temperature from 108 to 38° C., the heat provided is adequate to reduce the meal moisture by 6.5%. For soybean meal, the trading rule moisture limit is 12.5%; therefore, if the incoming moisture from the DT does not exceed 19.0%, the DC will typically require no additional evaporative heat source to dry the meal. If additional heat is required for evaporating moisture from the meal, the air entering the meal dryer trays can be heated to temperatures up to 150° C. prior to entering the air drying trays. The heat source can be recovered flash steam, hot glycol-water solution, or fresh steam. The air must have adequate capacity to carry out the moisture released from the meal without becoming saturated. Cold air can hold less moisture than warm air, so winter conditions may limit the moisture-carrying capacity of the air. If additional heat is required for increasing the dew point of the incoming air, the air entering the air dryer trays can be heated to temperatures up to 150° C. The energy required to heat the incoming drying air is largely dictated by the incoming meal moisture to the DC.
The air cooling trays of the DC are designed with an upper plate, lower plate, and structural members between designed to hold low pressure air. The air cooling trays are designed with a plurality of small round apertures, approximately 3 to 4 mm diameter, across their entire upper surface to evenly introduce air into the meal. The quantity of apertures is calculated to provide sufficient back pressure to prevent meal from sifting into the air tray. The combined area of the many small apertures represents approximately 0.8% of the tray surface. The air supplied to each air cooler tray is first filtered to remove dust, and then pressurized using a spark-proof centrifugal blower. After the cool air enters the trays, it flows upward through the meal at a nominal velocity of 14 to 21 m/min., partially fluidizing the meal. The meal continues to evaporatively cool and also convectively cools. The cool, damp air exits the top of the meal layer and then exits the sidewall of the DC to a cyclone collector to remove dust prior to discharge to atmosphere. Ambient air is heated approximately 5° C. in temperature by the energy of the blower, before it blows into the air cooler trays of the DC. The meal cools down to within approximately 5° C. of the air temperature passing through the meal. Therefore, the temperature of the meal exiting the DC is typically cooled down to within 10° C. of ambient air. The dry cool meal is conveyed from the DC to outside the solvent extraction plant for size reduction and then on to meal storage. It is important to properly dry and cool the meal to prevent continued evaporative cooling in storage or transport, which will cause reduced flow-ability, solidification and bridging of the meal inside storage and transport vessels.
Since the DC utilizes the heat of the meal as its major source of energy for reducing the meal moisture, it uses a minimum of steam and therefore has been seen as very thermally efficient. On the contrary, the fans required to push the air through the DC require a high electrical power demand. The basis of this invention was to modify the traditional DC in such a way as to maintain the thermal efficiency while simultaneously reducing the electrical power consumption of the fans.
The volumetric flow of air through the meal inside the DC must be maintained to insure adequate meal drying and cooling. Therefore, the key to reducing the fan electrical energy is through reducing the collective pressure drop to push the required volume of air through the incoming ductwork, DC air trays, the meal supported above the DC air trays, the outgoing ductwork and the cyclonic dust collectors. In studying the cumulative pressure drop through the entire air flow path, it was observed that approximately fifty percent of the entire pressure drop through the air path was caused by the air passing through the plurality of small round apertures at the top surface of each air tray. Attempts were first made to increase the quantity of small round apertures to reduce the back pressure. While this was effective in reducing pressure drop, the reduced pressure inside the air trays allowed meal supported above to sift through the round apertures and into the air trays. Meal inside the air trays becomes extremely dry and represents a smoldering hazard. Therefore, a different more novel approach was discovered for reducing pressure drop through the air trays.
It was found through experimentation that slotted apertures could replace round apertures in the top surface of the air trays. If the slotted apertures are approximately 0.25 mm in width, they have a sufficiently small enough width to allow the meal above to mechanically bridge the gap without sifting into the air tray. With this discovery, it was found that the total open area for air to pass through the air tray upper surface could be increased from approximately 0.8% up to approximately 2.0% without meal sifting into the tray. When the open area was nearly doubled, the pressure drop to push the air through the air tray was reduced by approximately half, and the total energy of the fan for the DC was reduced by approximately 25%.
The invention will be further described in the following detailed description that should be read in conjunction with the appended drawings.
Turning first to
The assembly is supported by a plurality of supports 10. The vertical shaft 6 comprises a plurality of hub members 20 that carry radially extending stirrer arms 12, 14, 16, 18 which aid in stirring and moving the meal around the surface of the trays. As shown, a cooling zone or chamber 22 is provided between the trays 26 and 28 with a drying chamber 24 being defined between the tray 28 and the top portion of housing 4. Discharge gates 30, 32 are provided through the trays and feed the meal material via gravity discharge therethrough from the drying chamber 24 into the cooling chamber 22. After appropriate cooling, the meal is discharged through discharge gate 32 at the downstream or exit end of the apparatus with the meal then falling thru exit 38 for subsequent collection or further processing.
Doors 40 and 42 are provided in the respective cooling and drying chambers so as to provide for maintenance access. A fan 50 or the like is provided in communication with the cooling chamber 22 so as to push air and moisture through the apparatus.
As shown, a cool air entry line 200 is provided to admit cooling air into the plenum defined by the double bottom tray 26 with moist air exiting from the cooling chamber 22 at moist air exit 202. In similar fashion, dry air entry line 204 is provided to admit drying air into the double bottom tray 28 with very moist air exiting the drying chamber at exit 206.
Turning now to
Turning to
The individual discs 104 are shown in more detail in
It is apparent then that the meal dryer/cooler apparatus of the invention includes a drying zone and cooling zone that are separated by a tray wherein the tray comprises an air plenum having a first surface and an opposing second surface. In accordance with one exemplary embodiment of the invention, the first surface comprises a plurality of bores therethrough with a disc member received in each of the bores. The disc member comprises a plurality of slots therein that allow air in the plenum to communicate with one of the drying and/or cooling zones. The opposing second surface of the air plenum as can be best seen in
In a preferred embodiment of the invention, the first surface of the double walled or double bottom air plenum comprises an open area of greater than about 0.8% of the total first surface area.
Each disc comprises an annulus and rods and wires connected to each other and to the annulus to define slots. In one embodiment, the slots or interstices have a longitudinal dimension of about 75 mm to 300 mm and a width wise dimension or space of about 0.25 mm. The longitudinal dimension is not critical to performance in any way.
With further reference to
Preliminary results have demonstrated improved pressure drop characteristics such that pressure drop through the air dry and meal supported above is between about 200-300 mm of water in accordance with the invention. Further, total pressure drop of the fan is about 550-625 mm of water.
It is to be understood that the invention pertains to an improved meal dryer/cooler (DC) of the type that can be provided as a stand alone DC or as a part of a unit integral with a desolventizer or DT such as that shown in U.S. Pat. No. 4,622,760.
Preferably, the total open area of the surfaces of the trays should be between about 1.6-2.4% and the widths of the slots should preferably be on the order of about 0.2-1.0 mm.
While the form of apparatus herein described constitutes a preferred embodiment of this invention, it is to be understood that the invention is not limited to this precise form of apparatus and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.
This application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 60/906,980 filed Mar. 14, 2007 and of U.S. Provisional Patent Application Ser. No. 60/933,354 filed Jun. 6, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/002670 | 2/28/2008 | WO | 00 | 8/21/2009 |
Number | Date | Country | |
---|---|---|---|
60906980 | Mar 2007 | US | |
60933354 | Jun 2007 | US |