H. Ragde, M.D., et al., Use of Transrectal Ultrasound in Transperineal Iodine Seeding for Prostate Cancer: Methodology, Journal of Endourology, vol. 3, No. 2, 1989, pp. 209-218. |
J. L. Friedland, M.D., et al., Problems with Rigid Seed Strand Lodging During Prostate Implantation: A Proposed Mechanism and Solution, Medical Dosimetry, vol. 22, No. 1, 1997, pp. 17-21. |
Tyler M. Lembcke, Trans-Rectal Ultrasound-Guided Trans-Perineal Implants of the Prostate Using I-125 and Pd-103, Chapter 21, Equipment and Supplies, (physics@execpc.com; “http://www.execpc.com/physics/prostate”; available on the internet on Oct. 6, 1997. |
M. Palken, M.D., Comparison of Ultrasound and Digital Rectal Findings with Surgical Specimens: Implications for Staging and Treatment. |
Massachusetts Institute of Technology Researchers, 11/21 #02 MIT Researchers Develop a Smart Needle to Help Diagnose Cancerous Tumors, (“http://hightech.cplaza.ne.jp/1996/1996 1 1 1 8/1996 1 121/02/emain.htm”); available on the internet in Aug. 1996. |
Gardnfry, Microsensors: Principles and Applications, Wiley, NY, 1994, pp. 78-194. |
Dr. Robert Mah (NASA Responsible Official), Robotic Neurosurgery Objectives, Smart Systems Home Page,, (“http://ssg.arc.nasa.gov/projects/neurosurgery/objective.html”); available on the internet in Nov. 1998. |
C. C. Ling, PhD., et al., Dose Inhomogeneity in Interstitial Implants Using I-125 Seeds, Radiation Oncology Biol. Phys., vol. 5, 1979, pp. 419-425. |
Hiemenz, et al., Development of the Force-Feedback Model for an Epidural Needle Insertion Simulator, Medicine Meets Virtual Reality, IOS Press and Ohmaha, 1998, pp. 272-277. |
Brett, et al., Simulation of Resistance Forces Acting on Surgical Needles, Proc Inst Mech Engrs vol. 211 Part H, H02696 copyright IMechE 199, pp. 335-348. |