This application claims Priority from German Application No. DE 10 2004 056 913.4 filed on 25, Nov. 2004
1. Field of the Invention
The present invention relates to a means for manufacturing a fire protection element according to the preamble of claim 1.
2. Description of the Prior Art
Generic means as well as fire protection elements made therefrom are known from EP 0 400 402 B1. These fire protection elements on the basis of polyurethane foam each contain, beside expandable graphite and usual additives, 2 to 30 wt.-% of borate, melamine and/or ethylene diamine salts as well as phosphorus-containing polyols, the last three components mentioned amounting together to not more than 50 wt.-%.
Such type fire protection elements in the form of moulded parts made from flexible foam serve mainly for sealing passageways for flammable and non-flammable pipes through ceilings and walls. These fire protection elements serve to obstruct the gaps between the pipe and the wall or ceiling. Furthermore, modules or blanks for the flame-retarding sealing of cable through-penetrations may be utilized in shipbuilding. At need, the material may be readily cut to size using a simple knife. Usually however, the appropriate moulded parts are already produced during manufacturing by having the raw materials foamed in an appropriate mould. In the event of a fire, these parts expand and form very strong carbon foam that obstructs the opening, prevents the fire from passing through the passageway and also resists the pressure of the water used for fire fighting (hose stream test).
The integration of these fire protection elements replaces the hitherto usual method for obstructing the gaps of pipe passageways according to which the remaining openings were first filled with mineral wool and have then additionally to be sealed, in most cases on either side, with a fire resistant sealing compound. Since these fire protection elements can be installed from one side of the pipe passageway in only one work step, significant savings in work time are achieved. Dust-free mounting makes processing easier and more convenient, complicated cleaning work is eliminated.
The known fire protection elements usually contain however a borate-containing mineral such as colemanite. This makes the raw materials more expensive.
It is therefore the object of the present invention to provide a fire protection element, a means as well as a method of manufacturing same that are even lower in cost while providing for good fire protection.
The solution consists of a means for manufacturing a fire protection element having the features of claim 1. According to the invention, there is provided that the polyol component and the diisocyanate component do not contain any borates.
It has been found, surprisingly, that borates, borate-containing minerals in particular, can be dispensed with. Also, the maximum quantity of phosphorus-containing polyol and melamine or ethylene diamine salts of 50 wt.-% needs not be observed, it may be exceeded.
Another subject matter of the invention is a method of manufacturing the new fire protection element according to the claim as well as the resulting fire protection element itself. In the manufacturing method, all the constituent parts are added to the polyol component and mixed together. Then, the diisocyanate component is added and the fire protection element is foamed, at need after the mixture has been filled into a mould.
Advantageous embodiments will become apparent from the dependent claims.
In total, the polyol component should contain 30 to 95 wt.-%, preferably 35 to 75 wt.-%, of at least one binder on the basis of polyol. This binder can be selected from the group comprising polyether polyols, phosphorus-containing polyols and polyethylene glycols. It is preferred that all of these components be contained. Further, up to 50 wt.-% of Bayfomox® PA Component 1 may be contained.
At least one of these polyols may preferably have a relative molar mass of 300-600 and/or the hydroxyl number of 250-270.
The binder preferably contains at least one phosphonic acid ester, preferably N,N-dihydroxyethylene-methylaminophosphonic acid diethyl ester.
The binder may e.g. contain 5-25 wt.-% of polyether polyol (diol) with the hydroxyl number of 250-270 and/or polyether polyol (triol) with the hydroxyl number of 250, 15-40 wt.-% of polyethylene glycols and 10-30 wt.-% of phosphorus-containing polyols, preferably N,N-dihydroxyethylene-methylaminophosphonic acid diethyl ester.
It has been found advantageous if Bayfomox® PA Component 1 was contained as at least one polyol component. Bayfomox® is a trade mark of the Lanxess Deutschland GmbH (formerly Bayer AG) and serves, within the scope of the patent application, to describe one of the components of the means according to the invention for manufacturing a fire protection element. Bayfomox® PA Component 1 is a nitrogen and phosphate containing polyol preparation of the Lanxess Deutschland GmbH that serves as a flame retardant means and has been hitherto sold exclusively with a matched diisocyanate component, Bayfomox® Component 2 L70 in the form of a Bayfomox® raw material system. It has now been found that it is not compulsory to process Bayfomox® PA Component 1 together with the Bayfomox® Component 2 L70 mentioned. The polyol component may but needs not contain 10 to 50 wt.-%, preferably 15 to 45 wt.-%, of Bayfomox® PA Component 1.
An advantage is obtained if at least one filler, which forms an insulation layer, is contained in an amount ranging from 5 to 55 wt.-%, preferably from 9 to 20 wt.-%. This filler may be selected from the group comprising melamine, melamine salts, preferably melamine phosphate, ammonium salts, preferably ammonium polyphosphate, ethylene diamine salts, preferably ethylene diaminophosphate and pentaerythrite. The total fraction of phosphorus-containing polyols and of fillers forming an insulation layer in the subsequent overall mixture of polyol component and diisocyanate component may amount to more than 50 wt.-%.
The polyol component may further contain flame retarding fillers and/or pigments.
Exemplary embodiments of the present invention will be explained in closer detail herein after. The raw material of the fire protection elements consists of two liquid components that are mixed manually or with an automatic dosing and mixing equipment and that are filled into a mould. There, the two components mixed together react to form a flexible foam material and can be removed from the mould after about 15 minutes. This basic manufacturing method corresponds to the known methods of manufacturing polyurethane foams and may also be inferred from the document EP 0 400 402 B1. This manufacturing method may be automated in a well-known manner so that continuous production is made possible.
The component 1 (the resin) of the exemplary embodiment has the following composition:
The sum of these components amounts to 100 wt.-%. If Bayfomox Pa Comp 1 is contained, the sum of Bayfomox Pa Comp 1 and binder should not be less than 55 wt.-%.
As an option, but not an obligation, blowing agents and/or expanding agents may be added. 0-30 wt.-% of expandable graphite, e.g., Nordmin NM 248 may for example be utilized as the blowing agent. These optional components may individually be optimized for the specifically desired utilization in fire protection. 0-0.8 wt.-% of water may be added as the expanding agent, depending on the desired density of the resulting foam. All the quantities mentioned are based on 100 wt.-% of Component 1.
25-65 wt.-% of 4,4′-methylene-di(phenylisocyanate) (herein after referred to as MDI), e.g., Desmodur 44 V 70 L serves as the Component 2 or as the curing agent, depending on the desired hardness of the foam material. This quantity is also based on 100 wt.-% of Component 1.
A mixture of:
A mixture of:
A mixture of:
A mixture of:
A mixture of:
A mixture of:
A mixture of:
Number | Date | Country | Kind |
---|---|---|---|
10 2004 056 913.4 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/02138 | 11/25/2005 | WO | 5/21/2007 |