MEANS AND METHODS FOR TYPING A BREAST CANCER PATIENT AND ASSIGNING THERAPY BASED ON THE TYPING

Information

  • Patent Application
  • 20160319367
  • Publication Number
    20160319367
  • Date Filed
    December 17, 2014
    10 years ago
  • Date Published
    November 03, 2016
    8 years ago
Abstract
The invention relates to a method of predicting whether a breast cancer patient is or becomes resistant to anti-estrogen directed therapy. More specifically, the invention relates to methods and means for typing of breast cancer cells as having a good or a poor outcome to anti-estrogen directed therapy. The invention further relates to methods of assigning therapy to a breast cancer patient.
Description
FIELD OF THE INVENTION

The invention relates to the field of oncology. More specifically, the invention relates to a method for typing breast cancer cells. The invention provides means and methods for classification of breast cancer cells and provides a treatment protocol based on the typing of the cells.


BACKGROUND OF THE INVENTION

About 70% of human breast cancers are ERα positive and depend on this hormone receptor for their proliferation (Harvey et al., 1999. J Clin Oncol 17: 1474-81), rendering ERα an ideal target for endocrine treatment. Tamoxifen is one of the most commonly used drugs in the management of ERα positive breast cancer. In early breast cancer, 5 years of adjuvant treatment with tamoxifen almost halves the rate of disease recurrence and reduces the annual breast cancer death rate by one-third (EBCTCG, 2005. Lancet 365: 1687-717). Despite this adjuvant treatment with tamoxifen, one-third of women still develop recurrent disease in the next 15 years (EBCTCG, 2005. Lancet 365: 1687-717), illustrating that endocrine resistance is a major problem in the management of breast cancer.


Several mechanisms may contribute to tamoxifen resistance. At presentation, not all ERα positive tumours are sensitive to tamoxifen. This intrinsic endocrine resistance can be the result of ERα phosphorylation (Musgrove and Sutherland, 2009. Nat Rev Cancer 9: 631-43; Michalides et al., 2004. Cancer Cell 5: 597-605; Campbell et al., 2001. J Biol Chem 276: 9817-24). In addition, intrinsic tamoxifen resistance is found to correlate with increased levels or activity of ERα co-activators (AIB1), growth factor receptors (EGFR, HER2, IGF1R), kinases (AKT and ERK1/2) or adaptor proteins (BCAR1, c-SRC and PAK1) (Musgrove and Sutherland, 2009. Nat Rev Cancer 9: 631-43; Beelen et al., 2012. Nature reviews Clinical oncology 9: 529-41). Loss of CDK10 expression (Iorns et al., 2008. Cancer Cell 13: 91-104) and loss of insulin-like growth factor binding protein 5 (IGFBP5) expression (Ahn et al., 2010. Cancer Res 70: 3013-3019) can also lead to tamoxifen resistance. Furthermore, high levels of lemur tyrosine kinase-3 (LMTK3) or CUEDC2 protein are associated with tamoxifen resistance (Giamas et al., 2011. Nat Med 17: 715-719; Pan et al., Nat Med 17: 708-149). Acquired endocrine resistance develops in a certain proportion of metastasized ERα-positive breast cancer that was initially sensitive to tamoxifen palliative treatment. One possible mechanism of this resistance is upregulation of the PI3K-mTOR pathway, leading to ligand independent phosphorylation of ERα at serine 167 by S6K1 (Yamnik et al., 2009. J Biol Chem 284: 6361-9; Yue et al., 2007. J Steroid Biochem Mol Biol 106: 102-10; Miller et al., 2010. J Clin Invest 120: 2406-13). It is nevertheless likely that additional mechanisms of unresponsiveness to endocrine treatment play a role, that remain to be identified.


SUMMARY OF THE INVENTION

To elucidate novel mechanisms of tamoxifen resistance in breast cancer, a shRNA screen was performed in the hormone-dependent human luminal breast cancer cell line ZR-75-1 to identify genes whose suppression can induce tamoxifen resistance. The present inventors surprisingly found that loss of USP9X enhances ERα/chromatin interactions in the presence of tamoxifen, leading to tamoxifen-stimulated gene expression of ERα target genes and cell proliferation.


The present inventors have developed a gene expression profile that is indicative of the activity of USP9X in a breast cancer cell in the presence of tamoxifen. Methods of typing a sample from a breast cancer patient to determine the presence or absence of activity of USP9X, comprise determining the level of expression of genes from the gene profile.


The invention provides a method of typing a sample from a breast cancer patient that is treated with tamoxifen, the method comprising determining a level of expression for USP9X and/or for at least two genes that are selected from Table 1 in a relevant sample from the breast cancer patient, whereby the sample comprises expression products from a cancer cell of the patient; comparing said determined level of expression of USP9X or of the at least two genes to the level of expression of USP9X or the at least two genes in a reference; and typing said sample as being responsive to treatment with tamoxifen or not, based on the comparison of the determined levels of expression.


In a preferred method according to the invention, the sample is typed by determining a level of RNA expression for at least two genes that are selected from Table 1 and comparing said determined RNA level of expression to the level of RNA expression of the at least two genes in a reference. Said reference is preferably a measure of the average level of said at least two genes in at least 10 independent individuals.


A further preferred method according to the invention comprises determining a level of expression of at least five genes from Table 1, more preferred 10 genes from Table 1, more preferred 20 genes from Table 1, more preferred 50 genes from Table 1, more preferred 100 genes from Table 1, more preferred all genes from Table 1.


The invention further provides a method of assigning anti-estrogen receptor-directed therapy (antiER) comprising tamoxifen to a breast cancer patient, comprising typing a sample from the breast cancer patient with a method according to the invention; and assigning anti-estrogen receptor-directed therapy comprising tamoxifen to a patient of which the sample is typed as being responsive to treatment with tamoxifen.


The invention further provides a method of assigning further antiER directed therapy or chemotherapy to a breast cancer patient, comprising typing a sample from the breast cancer patient with a method according to the invention; and assigning chemotherapy to a patient of which the sample is typed as being non-responsive to treatment with tamoxifen.


Said further antiER directed therapy comprises the administration of a selective estrogen receptor modulator not being tamoxifen, an aromatase inhibitor, preferably anastrozole, and/or GnRH or a GnRH-analogue.


Said chemotherapy preferably comprises administration of a platinum agent, preferably cisplatin, and/or a PARP inhibitor, preferably ABT-888.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1. shRNA screen identifies USP9X involvement in tamoxifen resistance


(A) Set up of the screen. ZR-75-1 cells stably expressing the murine ecotropic receptor were infected with retroviral supernatants containing a selection of the NM pRS-shRNA library divided in 44 pools—each pool contains 285 distinct short hairpin RNA's against 95 genes—or pRS as control. After puromycin selection 2×105 cells of each pool and control were plated in 15 cm dishes and cultured in DMEM with 1 μM 4OH-tamoxifen for 4-6 weeks. Tamoxifen resistant individual colonies were isolated and one of the rescuing shRNAs was identified as USP9X.


(B) Knockdown of USP9X rescues tamoxifen induced growth arrest. ZR-75-1 cells were infected with the single shRNA against USP9X recovered from the initial screen or pRS-GFP as control. Cells were cultured for 4-6 weeks in the presence of 1 μM 4OH-tamoxifen. When colonies appeared, cells were fixed and stained.


(C) USP9X hit validation. Five independent shRNAs targeting different regions of the USP9X gene were designed and colony formation assays with ZR-75-1 cells infected with each shRNA were performed. Rescue from tamoxifen induced growth arrest by USP9X knockdown was validated by three independent shRNAs.


(D) Knockdown of USP9X decreases USP9X mRNA levels.


(E) Knockdown of USP9X decreases USP9X protein levels.


(F) Knockdown of USP9X rescues tamoxifen-induced growth arrest in T47D cells. T47D cells were infected with the shRNA against USP9X recovered from the initial screen, pRS-USP9X II or pRS-GFP as control. Cells were cultured for 4-6 weeks in the presence of 1 μM 4OHtamoxifen. When colonies appeared cells were fixed and subsequently stained.



FIG. 2. Knockdown of USP9X increases ERα activity


(A) Knockdown of USP9X increases activity on an ERE luciferase reporter in serum supplemented DMEM, in the absence and presence of tamoxifen. Data are represented as mean and standard deviation (SD) of three independent experiments.


(B) Knockdown of USP9X increases ERE luciferase in hormone-deprived, estradiol and 4OH20 tamoxifen treated cells. Data are represented as mean and SD of three independent experiments.


(C) USP9X knockdown in the presence of estradiol increases mRNA levels of the ERα target genes PGR, TFF1 and ERα. Data are represented as mean and SD of three independent experiments.


(D) Knockdown of USP9X increases ERα and PR protein levels in hormone-deprived, estradiol or 4OH-tamoxifen treated cells.



FIG. 3. Physical interactions between USP9X and ERα


(A) Exogenous expressed ERα binds to endogenous USP9X in Phoenix cells. 48 hours after transfection with ERα, immunoprecipitations were performed for either anti-ERα (third lane) or anti-USP9X (fourth lane) and Westerns were stained for ERα and USP9X. The first lane shows 10% input of the whole cell lysate (wcl), the second lane shows immunoprecipitation with normal mouse serum (nms) as control.


(B) Endogenous ERα binds to endogenous USP9X in ZR-75-1 breast cancer cells. (Experimental conditions were identical to A).



FIG. 4. USP9X loss selectively enhances ERα/chromatin interactions upon tamoxifen treatment. Hormone-deprived monoclonal ZR-75-1 cells stably expressing pRS-USP9X or pRS-GFP as control were treated with vehicle (veh), estradiol (E2), or 4OH-tamoxifen (4-OHT) after which ChIP-seq analysis was performed on ERα.


(A) ERα ChIP-seq signal in control cells (top part) and shUSP9X cells (lower part) in the presence of indicated ligand. Tag counts (Y-axis) and genomic locations (X-axis) are indicated.


(B) Heatmap visualization, depicting a vertical alignment of all identified peaks of control (shGFP, left) and USP9XKD (shUSP9X, right) raw read counts of veh, E2, or 4-OHT treated cells. Arrowhead indicates top of the peak and scale bar is indicated.


(C) Read count quantification of data presented in Fig. B showing enrichment of ERα/DNA interactions in the presence of 4-OHT in the shUSP9X cells compared to the control (shGFP) cells. Y-axis: average tag count (arbitrary units). X-axis shows distance from centre of the peak (−2.5 kb, +2.5 kb).


(D) Venn diagrams showing a significant increase in the number of ERα/chromatin binding events in the shUSP9X (right) cells compared to control (shGFP) cells (left) in the presence of 4-OHT, representing a subset of the E2-induced binding patterns. Numbers indicate binding events in each subgroup (veh; dark grey, E2; black, 4-OHT; light gray).


(E) Venn diagrams showing shared and unique peaks for control cells (left hand circles) and shUSP9X cells (right hand circles) under vehicle (left), E2 (middle) and 4-OHT (right) conditions. Numbers indicate binding events in each subgroup.


(F) Genomic distributions of peaks under all tested conditions. Locations are indicated relative to the most proximal genes. 4-OHT shUSP9X unique: unique binding sites in tamoxifen treated shUSP9X cells as compared to tamoxifen-treated control cells.


(G) De novo motif enrichment analysis identified ESR motifs enriched for 4-OHT shUSP9X unique peaks and peaks shared by 4-OHT-treated shGFP control cells and shUSP9X cells.



FIG. 5. USP9X and global gene expression analyses Hormone-deprived monoclonal ZR-75-1 cells stably expressing pRS-USP9X or pRS-GFP as control were treated with vehicle (veh), estradiol (E2), or 4OH-tamoxifen (4-OHT) after which RNA-seq analysis was performed.


(A) Left panel: Venn diagram showing differentially expressed genes in control cells (shGFP) after treatment with E2 (black) or 4-OHT, (grey), as compared to vehicle control (p<0.05). The 1906 differentially expressed genes after 4-OHT treatment represent a subset of the 8794 E2 induced genes. Right panel: Venn diagram showing differentially expressed genes after E2 treatment in control cells (left hand circle) and differentially expressed genes in 4-OHT-treated shUSP9X cells compared to 4-OHT-treated control (right hand circle). Differentially expressed genes in 4-OHT-treated shUSP9X cells represent a subset of E2-responsive genes in the control cells.


(B) Proximal ERα binding events for differentially expressed genes in 4-OHT-treated shUSP9X cells. ERα binding events found only in 4-OHT-treated control cells (left), 4-OHTtreated shUSP9X cells (middle) or shared between both conditions (right) were analysed for proximal binding (<20 kb) to transcription start sites of differential expressed genes in 4-OHTtreated shUSP9X cells and 4-OHT-treated control cells. Y-axis shows absolute number of differentially expressed genes.


(C) Average ERα read count intensity of ERα chromatin binding sites in 4-OHT-treated shUSP9X cells, proximal to (<20 kb) TSS regions of genes, differential expressed between 4-OHT-treated shUSP9X cells and 4-OHT-treated control cells. Y-axis shows average read count (a.u.). X-axis distance from centre of the peak (−2.5 kb, +2.5 kb).


(D) USP9X-differentially expressed genes in the presence of 4-OHT, with proximal ERα binding sites, were analysed for containing genes from the Perou-signature basal and luminal genes. Y-as shows percentage.


(E) Heatmap showing differentially expressed genes between 250 patients with primary ERα-positive breast cancer who received adjuvant tamoxifen. X-axis: patients. Y-axis: genes.


(F) Left panel: A USP9X knockdown tamoxifen gene signature identifies breast cancer patients with poor outcome after adjuvant tamoxifen treatment. Kaplan-Meier survival curves for distant metastasis free survival (DMFS) in a publically available cohort of primary ERα positive breast cancer patients treated with adjuvant tamoxifen (n=250). Middle panel: The USP9X knockdown tamoxifen gene signature is validated in a second cohort of primary ERα positive breast cancer patients treated with adjuvant tamoxifen. Kaplan-Meier survival curves for DMFS in a cohort of primary ERα positive breast cancer patients treated with adjuvant tamoxifen (n=134). Right panel: The USP9X knockdown tamoxifen gene signature does not correlate with outcome in breast cancer patients who did not receive any adjuvant endocrine treatment. Kaplan-Meier survival curves for DMFS in a cohort of primary ERα positive breast cancer patients that did not receive adjuvant endocrine treatment (n=209).



FIG. 6 Validation of the USP9X classifier in independent patient cohorts Validation of the 155 genes USP9X classifier in 5 independent cohorts. Cohort 1, cross-validated predictions (GSE6532; Loi et al., 2007. J Clin Oncol 25: 1239-46); cohort 2 (GSE12093; Zhang et al., 2009. Breast Cancer Res Treat 116: 303-9), cohort 3 (GSE26971; Filipits et al., 2011. Clin Cancer Res 17:6012-20), cohort 4 (GSE9195; Loi et al., 2008. BMC Genomics 9:239), and cohort 5 (GSE17705; Symmans et al., 2010. J Clin Oncol 28:4111-9).



FIG. 7 Validation of a minimal USP9X classifier in independent patient cohorts Validation of a 5 genes USP9X classifier in 5 independent cohorts. Cohort 1, cross-validated predictions (GSE6532; Loi et al., 2007. J Clin Oncol 25: 1239-46); cohort 2 (GSE12093; Zhang et al., 2009. Breast Cancer Res Treat 116: 303-9), cohort 3 (GSE26971; Filipits et al., 2011. Clin Cancer Res 17:6012-20), cohort 4 (GSE9195; Loi et al., 2008. BMC Genomics 9:239), and cohort 5 (GSE17705; Symmans et al., 2010. J Clin Oncol 28:4111-9).



FIG. 8 Performance of 200 random subsets of between 2 and 50 genes from the USP9X, in comparison to the performance of the USP9X signature, and in comparison to the separation of poor survival from good survival.





DETAILED DESCRIPTION OF THE INVENTION

The term USP9X, as used herein, refers to a ubiquitin specific peptidase 9 which is X-linked. Alternative names for this gene are ubiquitin specific protease 9, X-linked; FAF-X; Drosophila Fat Facets related, X-Linked (DFFRX); Fat Facets Protein-Related, X-Linked; and Ubiquitin Thioesterase.


The term tamoxifen, as used herein, refers to a compounds that bind to the estrogen receptor and that blocks the effects of the hormone estrogen on cancer cells, thereby lowering the chance that breast cancer cells will grow. The term tamoxifen includes the compound tamoxifen ((Z)2-[4-(1,2-diphenyl-1-butenyl) phenoxy]-N, N-dimethylethanamine 2-hydroxy-1,2,3-propanetricarboxylate (1:1)) and variants thereof such as toremifene (2-{4-[(1Z)-4-chloro-1,2-diphenyl-but-1-en-1-yl]phenoxy}-N,N-dimethylethanamine).


The term further antiER directed therapy, as used herein, refers to compounds that modulate the levels of estrogen, the binding of estrogen to the receptor, and/or gene activation by the estrogen receptor. The term further antiER directed therapy excludes tamoxifen. Examples of further antiER directed therapy are provided by selective estrogen receptor modulators apart from tamoxifen, GnRH or a GnRH-analogue and/or of an aromatase inhibitor.


The term typing refers to the classification of a sample from a cancer patient, preferably a breast cancer patient. Said typing is preferably used to predict whether the individual has a high risk of being or becoming resistant to treatment with anti-estrogen receptor-directed therapy selected from tamoxifen, or a low risk of being or becoming resistant to treatment with said anti-estrogen receptor-directed therapy. For this, the level of expression of USP9X or of at least two genes of the set of genes selected from Table 1 is determined in a relevant sample from the individual. Modulation of the level of expression of USP9X, when compared to the level of expression of USP9X in a reference, or modulation of the level of expression of the at least two genes of the set of genes selected from Table 1, compared to the level of expression of the at least two genes of the set of genes selected from Table 1 in a reference, is indicative of a high risk of being or becoming resistant to treatment with tamoxifen.


The term sample, as used herein, refers to a relevant sample comprising expression products from a cancer cell of the patient, preferably a breast cancer cell. Said sample is preferably derived from a primary or metastasized breast cancer. A sample comprising expression products from a cancer cell of an individual suffering from breast cancer is provided after the removal of all or part of a cancerous growth from the individual, for example after biopsy. For example, a sample comprising expression products may be obtained from a needle biopsy sample or from a tissue sample comprising breast cancer cells that was previously removed by surgery. The surgical step of removing a relevant tissue sample, preferably a part of the cancer, from an individual is not part of a method according to the invention. It is preferred that at least 10% of the cells or tissue from which a relevant sample comprising expression products is derived, are breast cancer cells, more preferred at least 20%, more preferred at least 30%, more preferred at least 50%. The sample may have been fixed, for example a formalin-fixed paraffin-embedded (FFPE) sample.


The term expression products, as is used herein, refers to protein expression products or, preferably, RNA expression products. A sample from an individual suffering from breast cancer comprising protein expression products from a cancer of the patient can be obtained in numerous ways, as is known to a skilled person. For example, proteins can be isolated from a sample using, for example, cell disruption and extraction of cellular contents. Suitable methods and means are known in the art, such as dounce pestles and sonication methods. In addition, preferred methods include reagent-based lysis methods using detergents. These methods not only lyse cells but also solubilize proteins. Cell disruption may be followed by methods for enrichment of specific proteins, including subcellular fractionation and depletion of high abundant proteins. Differences in protein expression between a sample from an individual suffering from cancer and a reference sample is studied, for example, by two-dimensional (2D) gel electrophoresis and/or mass spectrometry techniques such as, for example, electrospray ionization and matrix-assisted laser desorption ionization.


The term reference, as used herein, refers to a sample comprising expression products from a related or an unrelated source. A preferred reference comprises expression products from a cancer cell, preferably a breast cancer cell, that is known to be resistant to tamoxifen, from a cancer cell, preferably a breast cancer cell, that is known not to be resistant to tamoxifen, or from a mixture of resistant and non-resistant cancer cells.


The term functionally inactivated, as used herein, refers to an alteration that diminishes or abolishes the expression and/or activity of USP9X. Said alteration can be a genetic alteration, for example an insertion, a point mutation, or, preferably, two or more point mutations in the gene encoding USPX, or an alteration in one of more genes of which the expression product is involved, preferably required, in a USP9X-mediated activity or pathway.


The term target protein, as is used herein, refers to the USP9X protein and/or to a protein product of a gene that is depicted in Table 1.


Methods of Typing a Sample from a Breast Cancer Patient


The present inventors surprisingly found that downregulation of USP9X induces tamoxifen-stimulatory effects on ERα action, leading to resistance to ER-targeting therapy such as tamoxifen. Furthermore, it is shown that a tamoxifen-induced gene expression signature in USP9X knockdown cells can be used to identify cancer patients, especially breast cancer patients, with a poor outcome after tamoxifen treatment and that are likely not to benefit from further tamoxifen treatment.


As is indicated hereinabove, USP9X is an X-linked ubiquitin-specific peptidase. Ubiquitination serves a role in both protein degradation and regulation of protein function. The level of protein ubiquitination is highly regulated by two families of enzymes with opposing activities: the ubiquitin ligases, which add ubiquitin moieties to proteins and deubiquitinating enzymes (DUBs) that remove them. The X-linked deubiquitinase USP9X is a member of the family of DUB enzymes and regulates multiple cellular functions by deubiquitinating and stabilizing its substrates. USP9X has been shown to regulate, amongst others, cell adhesion molecules like 6-catenin and E-cadherin, cell polarity, chromosome segregation, NOTCH, mTOR and TGF-beta signalling as well as apoptosis (Taya et al., (1998) J Cell Biol 142, 1053-1062; Taya et al., (1999) Genes Cells 4, 757-767; Murray et al., (2004) Mol Biol Cell 15, 1591-1599; Théard et al., (2010) EMBO J 29, 1499-1509; Dupont et al., (2009) Cell 136, 123-35).


A shRNA screen in the hormone-dependent human luminal breast cancer cell line ZR-75-1 was employed to identify genes whose suppression can induce tamoxifen resistance. An unexpected role for USP9X in the response to tamoxifen was identified. Loss of expression products of USP9X enhance ERα/chromatin interactions in the presence of tamoxifen, leading to tamoxifen stimulated gene expression of ERα target genes and cell proliferation.


Furthermore, a Tamoxifen-Induced Gene Expression Signature (TIGES) was identified in USP9X knockdown cells that can be used to identify cancer patients, especially breast cancer patients, with a poor outcome after tamoxifen treatment. These genes, as indicated in Tables 1A and 1B, were identified as their relative level of expression was found to be modulated by the presence or absence of USP9X. The term relative is used to indicate that the level of expression was compared to the level of expression in a reference, for example pooled breast cancer samples. The expression of each of the genes depicted in Table 1 correlates with one of two phenotypes. This correlation is represented as a UP or DOWN, indicating upregulation (UP) in the absence of USP9X, and downregulation (DOWN) in the absence of USP9X. For example, upregulation of A1BG or AKT2, and downregulation of ABAT, is indicative of the presence of functionally inactived USP9X.


Methods of classifying a sample from a breast cancer patient that is treated with anti-estrogen receptor-directed therapy selected from tamoxifen according to the presence or absence of a TIGES profile in a breast cancer cell comprise determining the level of expression of at least 2 genes from the gene profile, as indicated in Table 1. The methods of the invention allow classifying a breast cancer sample as likely to become resistant to treatment with anti-estrogen receptor-directed therapy, or not. Therefore, the TIGES profile allows the functional classification of functional inactivation of USP9X in a breast cancer sample. In addition, the TIGES profile can also be used to classify a sample from a breast cancer patient in which a process or signaling pathway involving USP9X is functionally inactivated by functional inactivation of one or more genes encoding other necessary components of the process or pathway.


In a preferred method according to the invention, a level of expression of at least five genes from Table 1 is determined, more preferred a level of expression of at least ten genes from Table 1, more preferred a level of expression of at least twenty genes from Table 1, more preferred a level of expression of at least thirty genes from Table 1, more preferred a level of expression of at least forty genes from Table 1, more preferred a level of expression of at least fifty genes from Table 1, more preferred a level of RNA expression of all two hundred thirty four genes from Table 1.


Said tamoxifen-induced gene expression signature preferably comprises at least two genes from Table 1. Said at least two genes preferably comprise genes with the highest Z-scores. Said at least two genes preferably comprise zinc finger protein 608 ((Z-score −1.008943904) and BUB1 mitotic checkpoint serine/threonine kinase B (Z-score 1.065024239). Said at least two genes preferably comprise zinc finger protein 608 ((Z-score −1.008943904), calpain 2, (m/II) large subunit (Z-score −0.936786567), BUB1 mitotic checkpoint serine/threonine kinase B (Z-score 1.065024239) and centromere protein A (Z-score 1.01511874). Said at least two genes preferably comprise zinc finger protein 608 ((Z-score −1.008943904), calpain 2, (m/II) large subunit (Z-score −0.936786567), FBJ murine osteosarcoma viral oncogene homolog (Z-score −0.920787895), ets homologous factor (Z-score −0.912814779), chondroitin sulfate synthase 1 (Z-score −0.897709367), BUB1 mitotic checkpoint serine/threonine kinase B (Z-score 1.065024239), centromere protein A (Z-score 1.01511874), cell division cycle 45 (Z-score 0.983080062), cell division cycle associated 3 (Z-score 0.97567222), and solute carrier family 25 (mitochondrial thiamine pyrophosphate carrier), member 19 (Z-score 0.974852744).


It is further preferred that said tamoxifen-induced gene expression signature comprises v-myb avian myeloblastosis viral oncogene homolog-like 2 and chondroitin sulfate synthase 1 (P value 1.25E-06 (Loi); 2.32E-05 (Buffa)), v-myb avian myeloblastosis viral oncogene homolog-like 2 and calpain 2, (m/II) large subunit (P value 1.56E-05 (Loi); 4.59E-05 (Buffa)), BUB1 mitotic checkpoint serine/threonine kinase B and calpain 2, (m/II) large subunit (P value 2.67E-06 (Loi); 1.37E-05 (Buffa)), v-myb avian myeloblastosis viral oncogene homolog-like 2, isocitrate dehydrogenase 3 (NAD+) alpha, and calpain 2, (m/II) large subunit (P value 4.77E-08 (Loi); 2.19E-05 (Buffa)), v-myb avian myeloblastosis viral oncogene homolog-like 2, isocitrate dehydrogenase 3 (NAD+) alpha, and calpain 2, (m/II) large subunit (P value 1.56E-06 (Loi); 4.59E-05 (Buffa)), v-myb avian myeloblastosis viral oncogene homolog-like 2, BUB1 mitotic checkpoint serine/threonine kinase B and calpain 2, (m/II) large subunit (P value 4.90E-05 (Loi); 5.42E-06 (Buffa)), chondroitin sulfate synthase 1, BUB1 mitotic checkpoint serine/threonine kinase B and calpain 2, (m/II) large subunit (P value 4.77E-08 (Loi); 2.19E-05 (Buffa)), and/or v-myb avian myeloblastosis viral oncogene homolog-like 2, chondroitin sulfate synthase 1, isocitrate dehydrogenase 3 (NAD+) alpha, and calpain 2, (m/II) large subunit (P value 6.99E-09 (Loi); 1.70E-05 (Buffa)).


More preferably, said signature comprises v-myb avian myeloblastosis viral oncogene homolog-like 2, chondroitin sulfate synthase 1 and isocitrate dehydrogenase 3 (NAD+) alpha (P value 7.75E-06 (Loi); 3.34E-08 (Buffa)), v-myb avian myeloblastosis viral oncogene homolog-like 2, chondroitin sulfate synthase 1, isocitrate dehydrogenase 3 (NAD+) alpha and BUB1 mitotic checkpoint serine/threonine kinase B (P value 8.95E-07 (Loi); 5.78E-08 (Buffa)), v-myb avian myeloblastosis viral oncogene homolog-like 2, chondroitin sulfate synthase 1, isocitrate dehydrogenase 3 (NAD+) alpha, BUB1 mitotic checkpoint serine/threonine kinase B and calpain 2, (m/II) large subunit (P value 6.36E-07 (Loi); 2.28E-07 (Buffa)), and/or chondroitin sulfate synthase 1, isocitrate dehydrogenase 3 (NAD+) alpha, BUB1 mitotic checkpoint serine/threonine kinase B and calpain 2, (m/II) large subunit (P value 3.70E-07 (Loi); 4.46E-07 (Buffa)).


The term P value (Loi) refers to the P-value obtained from a set of 250 ER+ patients that were treated with tamoxifen, as described in Loi et al., 2007. J Clin Oncol 25: 1239-46. The term P value (Buffa) refers to the P-value obtained from a set of 134 ER+ patients that were treated with tamoxifen, as described in Buffa et al., 2011. Cancer Res 71: 5635-45.


A preferred subset comprises calpain 2 (CAPN2). A further preferred subset comprises CAPN2 and BUB1B. A further preferred subset comprises MYBL2, IDH3A, CHSY1, BUB1B, CAPN2. A selection of MYBL2, IDH3A, CHSY1, BUB1B, CAPN2 gave rise to the largest survival differences among 5 independent cohorts that were tested: Cohort 1 (GSE6532; Loi et al., 2007. J Clin Oncol 25: 1239-46); cohort 2 (GSE12093; Zhang et al., 2009. Breast Cancer Res Treat 116: 303-9), cohort 3 (GSE26971; Filipits et al., 2011. Clin Cancer Res 17:6012-20), cohort 4 (GSE9195; Loi et al., 2008. BMC Genomics 9:239), and cohort 5 (GSE17705; Symmans et al., 2010. J Clin Oncol 28:4111-9).


Downregulation of USP9X and/or modulation of the expression of at least two of the genes identified in Table 1, can be monitored at the RNA and protein level. Quantitation of the expression of a gene at the protein level can be either in absolute amount (e.g., μg/ml) or a relative amount (e.g., relative intensity of signals). Usually such procedures are performed by dedicated biochemical assays, such as chromatographic, mass spectrometric or hybridization assays.


Preferred chromatographic assays include Western-blotting assays, following one- or two-dimensional gel electrophoresis.


Hybridization techniques, such as ELISA techniques, immunohistochemistry (IHC), and in situ hybridization, and are very suitable to determine the concentration of a protein in a biological sample. Such techniques preferably involve the production of a calibration curve of label intensity, for example fluorescence intensity, vs. protein concentration, or the use of a competitive ELISA format, wherein known amounts of unlabeled protein are provided in the test. Alternatively, multiple sandwich ELISA can be developed using as second antibody, for instance an antibody raised by peptide immunisation against a second epitope of the target protein (a second synthetic peptide), or against a determinant that is formed by a complex that is formed between the target protein and the antibody.


In this regard, it is preferred to generate a non-natural intermediate, for example an antibody-gene product complex, by reaction of the sample with a first antibody that is directed against the target protein, followed by the application of a detection agent that detects the antibody-target protein complex. It is noted that the antibody-target protein complex does not exist in nature.


Preferred mass spectrometric assays include liquid chromatography-mass spectrometry (LC-MS, or alternatively HPLC-MS), tandem mass spectrometry (MS-MS), matrix assisted laser desorption (MALDI); matrix assisted laser desorption/ionisation time-of-flight (MALDI-TOF), MALDI-Fourier transform ion cyclotron resonance (MALDI-FTICR).


Methods to quantify expression levels of USP9X and/or of at least two of the genes identified in Table 1 at the RNA level are known to a skilled person and include, but are not limited to, Northern blotting, quantitative Polymerase chain reaction (qPCR), also termed real time PCR (rtPCR), microarray analysis and RNA sequencing, preferably next generation sequencing such as whole transcriptome shotgun sequencing. The term qPCR refers to a method that allows amplification of relatively short (usually 100 to 1000 basepairs) of DNA sequences. In order to measure messenger RNA (mRNA), the method involves a reverse transcriptase to convert mRNA into complementary DNA (cDNA) which is then amplified by PCR. The amount of product that is amplified can be quantified using, for example, TaqMan® (Applied Biosystems, Foster City, Calif., USA), Molecular Beacons, Scorpions® and SYBR® Green (Molecular Probes). Methods such as self sustained sequence replication (3SR), loop mediated isothermal amplification (LAMP), strand displacement amplification (SDA), rolling circle amplification (RCA) and quantitative nucleic acid sequence based amplification (qNASBA) can be used as an alternative for qPCR, as is known to the skilled person.


RNA may be isolated from a sample by any technique known in the art, including but not limited to Trizol (Invitrogen; Carlsbad, Calif.), RNAqueous® (Applied Biosystems/Ambion, Austin, Tx), Qiazol® (Qiagen, Hilden, Germany), RNeasy Isolation Kit (Qiagen, Hilden, Germany) Agilent Total RNA Isolation Kits (Agilent; Santa Clara, Calif.), RNA-Bee® (Tel-Test. Friendswood, Tex.), and Maxwell™ Total RNA Purification Kit (Promega; Madison, Wis.). A preferred RNA isolation procedure involves the use of Qiazol® (Qiagen, Hilden, Germany). A further preferred RNA isolation procedure involves the use of the Qiagen RNeasy FFPE RNA isolation Kits (Qiagen, Hilden, Germany). RNA can be extracted from a whole sample or from a portion of a sample generated from the cell sample by, for example, section or laser dissection.


A preferred method for determining a level of RNA expression is microarray analysis. For microarray analysis, a hybridization mixture is prepared by extracting and labelling of RNA. The extracted RNA is preferably converted into a labelled sample comprising either complementary DNA (cDNA) or cRNA using a reverse-transcriptase enzyme and labelled nucleotides. A preferred labelling introduces fluorescently-labelled nucleotides such as, but not limited to, cyanine-3-CTP or cyanine-5-CTP. Examples of labelling methods are known in the art and include Low RNA Input Fluorescent Labelling Kit (Agilent Technologies), MessageAmp Kit (Ambion) and Microarray Labelling Kit (Stratagene).


A labelled sample may comprise two dyes that are used in a so-called two-colour array. For this, the sample is split in two or more parts, and one of the parts is labelled with a first fluorescent dye, while a second part is labelled with a second fluorescent dye. The labelled first part and the labelled second part are independently hybridized to a microarray. The duplicate hybridizations with the same samples allow compensating for dye bias.


More preferably, a sample is labelled with a first fluorescent dye, while a reference, for example a sample from a breast cancer pool or a sample from a relevant cell line or mixture of cell lines, is labelled with a second fluorescent dye (known as dual channel). The labelled sample and the labelled reference are co-hybridized to a microarray.


Even more preferred, a sample is labelled with a fluorescent dye and hybridized to a microarray without a reference (known as single channel).


The labelled sample can be hybridized against the probe molecules that are spotted on the array. A molecule in the labelled sample will bind to its appropriate complementary target sequence on the array. Before hybridization, the arrays are preferably incubated at high temperature with solutions of saline-sodium buffer (SSC), Sodium Dodecyl Sulfate (SDS) and bovine serum albumin (BSA) to reduce background due to nonspecific binding, as is known to a skilled person.


The arrays are preferably washed after hybridization to remove labelled sample that did not hybridize on the array, and to increase stringency of the experiment by reducing cross hybridization of the labelled sample to a partial complementary probe sequence on the array. An increased stringency will substantially reduce non-specific hybridization of the sample, while specific hybridization of the sample is not substantially reduced. Stringent conditions include, for example, washing steps for five minutes at room temperature 0.1× Sodium chloride-Sodium Citrate buffer (SSC)/0.005% Triton X-102. More stringent conditions include washing steps at elevated temperatures, such as 37 degrees Celsius, 45 degrees Celsius, or 65 degrees Celsius, either or not combined with a reduction in ionic strength of the buffer to 0.05×SSC or 0.01×SSC as is known to a skilled person.


Image acquisition and data analysis can subsequently be performed to produce an image of the surface of the hybridised array. For this, the slide can be dried and placed into a laser scanner to determine the amount of labelled sample that is bound to a target spot. Laser excitation yields an emission with characteristic spectra that is indicative of the labelled sample that is hybridized to a probe molecule. In addition, the amount of labelled sample can be quantified.


The level of expression, preferably mRNA expression levels of genes depicted in Table 1, is preferably compared to levels of expression of the same genes in a template. A template is preferably an RNA sample isolated from a tissue of a healthy individual, preferably comprising breast cells. A preferred template comprises a RNA sample from a relevant cell line or mixture of cell lines. The RNA from a cell line or cell line mixture can be produced in-house or obtained from a commercial source such as, for example, Stratagene Human Reference RNA. A further preferred template comprises RNA isolated and pooled from normal breast tissue that is adjacent to the cancer tissue.


A more preferred template comprises an RNA sample from an individual suffering from breast cancer, more preferred from multiple individuals suffering from breast cancer. It is preferred that said multiple samples are pooled from more than 10 individuals, more preferred more than 20 individuals, more preferred more than 30 individuals, more preferred more than 40 individuals, most preferred more than 50 individuals. A most preferred template comprises a pooled RNA sample that is isolated from tissue comprising breast cancer cells from multiple individuals suffering from breast cancer.


As an alternative, a static template can be generated which enables performing single channel hybridizations. A preferred static template is calculated by measuring the median/mean background-subtracted level of expression (for example green-median/MeanSignal or red-median/MeanSignal) of a gene across 1-5 hybridization replicates of a probe sequence. The level of expression may be normalized as is known by a skilled person. Subsequently, a log transformation of each gene/probe gene signal is generated. With this transformation, the variance is stabilized (as with linear values as the signal gets higher the variance also increases; it compresses the range of data) and it makes the data more normally distributed, which allows statistics to be applied to the data. The signal intensity measurements obtain a distribution that is closer to a normal distribution with the variation being independent of the magnitude, allowing statistics to be applied to the data.


Typing of a sample can be performed in various ways. In one method, a coefficient is determined that is a measure of a similarity or dissimilarity of a sample with said template. A number of different coefficients can be used for determining a correlation between the RNA expression level in an RNA sample from an individual and a template. Preferred methods are parametric methods which assume a normal distribution of the data.


The result of a comparison of the determined expression levels with the expression levels of the same genes in at least one template is preferably displayed or outputted to a user interface device, a computer readable storage medium, or a local or remote computer system. The storage medium may include, but is not limited to, a floppy disk, an optical disk, a compact disk read-only memory (CD-ROM), a compact disk rewritable (CD-RW), a memory stick, and a magneto-optical disk.


The expression data are preferably normalized. Normalization refers to a method for adjusting or correcting a systematic error in the measurements of detected label.


Systemic bias results in variation by inter-array differences in overall performance, which can be due to for example inconsistencies in array fabrication, staining and scanning, and variation between labelled RNA samples, which can be due for example to variations in purity. Systemic bias can be introduced during the handling of the sample in a microarray experiment.


To reduce systemic bias, the determined RNA levels are preferably corrected for background non-specific hybridization and normalized using, for example, Feature Extraction software (Agilent Technologies). Other methods that are or will be known to a person of ordinary skill in the art, such as a dye swap experiment (Martin-Magniette et al., Bioinformatics 21:1995-2000 (2005)) can also be applied to normalize differences introduced by dye bias. Normalization of the expression levels results in normalized expression values.


Conventional methods for normalization of array data include global analysis, which is based on the assumption that the majority of genetic markers on an array are not differentially expressed between samples [Yang et al., Nucl Acids Res 30: 15 (2002)]. Alternatively, the array may comprise specific probes that are used for normalization. These probes preferably detect RNA products from housekeeping genes such as glyceraldehyde-3-phosphate dehydrogenase and 18S rRNA levels, of which the RNA level is thought to be constant in a given cell and independent from the developmental stage or prognosis of said cell.


Therefore, a preferred method according to the invention further comprises normalizing the determined RNA levels of said set of at least ten of the genes listed in Table 1 in said sample.


Said normalization preferably comprises previously mentioned global analysis “median centering”, in which the “centers” of the array data are brought to the same level under the assumption that the majority of genes are not changed between conditions (with median being more robust to outliers than the mean). Said normalization preferably comprises Lowess (LOcally WEighted Scatterplot Smoothing) local regression normalization to correct for both print-tip and intensity-dependent bias (for dual channel arrays) or “quantile normalization” (which transforms all the arrays to have a common distribution of intensities) for single channel arrays


In a preferred embodiment, genes are selected of which the RNA expression levels are largely constant between individual tissue samples comprising cancer cells from one individual, and between tissue samples comprising cancer cells from different individuals. It will be clear to a skilled artisan that the RNA levels of said set of normalization genes preferably allow normalization over the whole range of RNA levels. An example of a set of normalization genes is provided in WO 2008/039071, which is hereby incorporated by reference.


The levels of expression of genes from the TIGES signature in a sample of a patient are compared to the levels of expression of the same genes in a reference. Said comparison may result in an index score indicating a similarity of the determined expression levels in a sample of a patient with the expression levels in the reference. For example, an index can be generated by determining a fold change/ratio between the median value of gene expression across samples that have been typed as being responsive to treatment with tamoxifen and the median value of gene expression across samples that are typed as being non-responsive to treatment with tamoxifen. The significance of this fold change/ratio as being significant between the two respective groups can be tested primarily in an ANOVA (Analysis of variance) model. Univariate p-values can be calculated in the model and after multiple correction testing (Benjamini & Hochberg, 1995, JRSS, B, 57, 289-300) can be used as a threshold for determining significance that the gene expression shows a clear difference between the groups. Multivariate analysis may also be performed in adding covariates such as hormone expression, tumor stage/grade/size into the ANOVA model. Significant genes can be imputed into a prediction model such as Diagonal Linear Discriminant analysis (DLDA) to determine the minimal and most reliable group of gene signals that can predict the factor (response to therapy).


As an alternative, an index can be determined by Pearson correlation between the expression levels of the genes in a sample of a patient and the expression levels in one or more breast cancer samples that are known to respond to tamoxifen, and the average expression levels in one or more breast cancer samples that are known not to respond to tamoxifen. The resultant Pearson scores can be used to provide an index score. Said score may vary between +1, indicating a prefect similarity, and −1, indicating a reverse similarity. Preferably, an arbitrary threshold is used to type samples as being responsive or as not being responsive. More preferably, samples are classified as responsive or as not responsive based on the respective highest similarity measurement. A similarity score is preferably displayed or outputted to a user interface device, a computer readable storage medium, or a local or remote computer system.


Methods of Assigning Treatment to a Breast Cancer Patient

The present invention further provides a method of assigning treatment to a breast cancer patient, the method comprising typing a sample from the breast cancer patient with a method according to the invention, and assigning treatment comprising tamoxifen to a patient of which the sample is typed as being responsive to treatment with tamoxifen.


Tamoxifen and tamoxifen derivatives such as toremifene, are known antagonistic compounds of the estrogen receptor. Methods for providing tamoxifen and/or toremifene to an individual in need thereof suffering from breast are known in the art. For example, tamoxifen may be administered at 20 to 200 mg/kg per day, for example as Tamoxifen Citrate Tablets USP for oral administration. Toremifene similarly can be administered as toremifene citrate at 10 to 800 mg/d orally.


The present invention further provides a method of not assigning tamoxifen-comprising therapy to a breast cancer patient, comprising typing a sample from the breast cancer patient with a method according to the invention; and not assigning tamoxifen to a patient of which the sample is typed as being non-responsive to treatment with tamoxifen. Said method preferably comprises the assignment of further antiER directed therapy and/or chemotherapy to a breast cancer patient of which the sample is typed as being non-responsive to treatment with tamoxifen.


Said further antiER directed therapy comprises selective estrogen receptor modulators (SERM), not including tamoxifen, GnRH or a GnRH-analogue and/or of an aromatase inhibitor.


A preferred non-tamoxifen SERM is provided by fulvestrant (7α,17β)-7-{9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl}estra-1,3,5(10)-triene-3,17-diol), which is an estrogen receptor antagonist with no agonist effects, which works by down-regulating the estrogen receptor. It is administered as a once-monthly injection at 500 mg.


A further preferred non-tamoxifen SERM is provided by raloxifene ([6-hydroxy-2-(4-hydroxyphenyl)-benzothiophen-3-yl]-[4-[2-(1-piperidyl)ethoxy]phenyl]-methanone). It is an estrogen receptor antagonist in breast cells, including breast cancer cells. It can be orally administered at 60-240 mg/kg/day.


Yet a further preferred non-tamoxifen SERM is provided by lasofoxifene ((5R,6S)-6-phenyl-5-[4-(2-pyrrolidin-1-ylethoxy)phenyl]-5,6,7,8-tetrahydronaphthalen-2-ol). It is an estrogen receptor antagonist in breast cells, including breast cancer cells. It can be orally administered at 0.001 mg/kg-1.0 mg/kg/day.


A further preferred antiER directed therapy comprises the administration of an aromatase inhibitor. These non-steroidal inhibitors inhibit the synthesis of estrogen via reversible competition for the aromatase enzyme. Preferred aromatase inhibitors include anastrozole (2,2′-[5-(1H-1,2,4-triazol-1-ylmethyl)-1,3-phenylene]bis(2-methylpropanenitrile) and exemestane (6-Methylideneandrosta-1,4-diene-3,17-dione). Anastrozole can be orally administered at 1.0-10 mg/day. Exemestane can be orally administered at 25-50 mg/day


Yet a further preferred antiER directed therapy comprises the administration of gonadotropin-releasing hormone (GnRH), also known as Luteinizing-hormone-releasing hormone (LHRH) and luliberin. GnRH is a trophic peptide hormone responsible for the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary. GnRH is synthesized and released from neurons within the hypothalamus. The peptide belongs to gonadotropin-releasing hormone family. Administration of GnRH lowers the levels of oestrogen and progesterone, resulting in estrogen levels that resemble that of a menopausal or post-menopausal woman.


As is known to the skilled person, a GnRH-analogue, for example Leuprolide, is a synthetic peptide drug that is modeled after the human GnRH. A GnRH-analogue is designed to interact with the GnRH receptor and modify the release of pituitary gonadotropins FSH and LH for therapeutic purposes. The synthetic hormone is preferably injected (1 and 3 month depot injections are available) or prescribed as nasal spray. However, the nasal spray is rarely used, because a constant and regular drug level is difficult to maintain.


Yet a further preferred therapy comprises chemotherapy, which includes the use of a chemotherapeutic agent such as an alkylating agent such as nitrogen mustard, e.g. cyclophosphamide, mechlorethamine or mustine, uramustine or uracil mustard, melphalan, chlorambucil, ifosfamide; a nitrosourea such as carmustine, lomustine, streptozocin; an alkyl sulfonate such as busulfan, an ethylenime such as thiotepa and analogues thereof, a hydrazine/triazine such as dacarbazine, altretamine, mitozolomide, temozolomide, altretamine, procarbazine, dacarbazine and temozolomide, which are capable of causing DNA damage; an intercalating agent such as a platinum agent like cisplatin, carboplatin, nedaplatin, oxaliplatin and satraplatin; an antibiotic such as an anthracycline such as doxorubicin, daunorubicin, epirubicin and idarubicin; mitomycin-C, dactinomycin, bleomycin, adriamycin, mithramycin; an antimetabolite such as capecitabine and 5-fluorouracil, gemcitabine, a folate analogue such as methotrexate, hydroxyurea, mercaptopurine, thioguanine; a mitostatic agent such as eribulin, ixabepilone, irinotecan, vincristine, mitoxantrone, vinorelbine and a taxane such as paclitaxel and docetaxel; an inhibitor of the enzyme poly ADP ribose polymerase (PARP), a receptor tyrosine kinase inhibitor such as gefitinib, erlotinib, EKB-569, lapatinib, CI-1033, cetuximab, panitumumab, PKI-166, AEE788, sunitinib, sorafenib, dasatinib, nilotinib, pazopanib, vandetaniv, cediranib, afatinib, motesanib, CUDC-101, and imatinib mesylate; and kinase inhibitors such as a MEK inhibitor including CKI-27, RO-4987655, RO-5126766, PD-0325901, WX-554, AZD-8330, G-573, RG-7167, SF-2626, GDC-0623, RO-5068760, and AD-GL0001; a B-RAF inhibitor including CEP-32496, vemurafenib, GSK-2118436, ARQ-736, RG-7256, XL-281, DCC-2036, GDC-0879, AZ628, and an antibody fragment EphB4/Raf inhibitor; a serine/threonine kinase receptor inhibitor, including an Alk-1 inhibitor such as crizotinib, ASP-3026, LDK378, AF802, and CEP37440, and combinations thereof.


Said chemotherapy is preferably selected from a platinum agent like cisplatin, carboplatin, oxaliplatin and satraplatin; taxane including paclitaxel and docetaxel, a PARP inhibitor, doxorubicin, daunorubicin, epirubicin, cyclophosphamide, 5-fluorouracil, gemcitabine, eribulin, ixabepilone, methotrexate, mitomycin-C, mitoxantrone, vinorelbine, thiotepa, vincristine, capecitabine, a receptor tyrosine kinase inhibitor and/or irinotecan, and combinations thereof.


A preferred PARP inhibitor includes 3-aminobenzamide, 4-(3-(1-(cyclopropanecarbonyl)piperazine-4-carbonyl)-4-fluorobenzyl)phthalazin-1(2H)-one (AZD-2281), 8-fluoro-2-{4-[(methylamino)methyl]phenyl}-1,3,4,5-tetrahydro-6H-pyrrolo[4,3,2-ef][2]benzazepin-6-one phosphate (1:1) (AG014699), 2-[(2R)-2-Methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide dihydrochloride benzimidazole carboxamide (ABT-888), and (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one (BMN-673).


More preferably, said chemotherapy comprises administration of a platinum agent and/or a PARP inhibitor. A most preferred platinum agent is cisplatin. A most preferred PARP inhibitor is ABT-888.











TABLE 1A





Gene
Direction
Gene name







A1BG
Up
alpha-1-B glycoprotein


ABAT
Down
4-aminobutyrate aminotransferase


AKT2
Up
v-akt murine thymoma viral oncogene homolog 2


ALDH3B1
Up
aldehyde dehydrogenase 3 family, member B1


AMFR
Up
autocrine motility factor receptor, E3 ubiquitin protein




ligase


ANKRD26
Down
ankyrin repeat domain 26


AP2S1
Up
adaptor-related protein complex 2, sigma 1 subunit


ARHGAP35
Down
Rho GTPase activating protein 35


ASCL1
Up
achaete-scute complex homolog 1 (Drosophila)


ASXL1
Up
additional sex combs like 1 (Drosophila)


ATG2B
Down
autophagy related 2B


ATN1
Down
atrophin 1


ATP1B1
Down
ATPase, Na+/K+ transporting, beta 1 polypeptide


BNIPL
Down
BCL2/adenovirus E1B 19 kD interacting protein like


BRF2
Up
BRF2, RNA polymerase III transcription initiation




factor 50 kDa subunit


BUB1B
Up
BUB1 mitotic checkpoint serine/threonine kinase B


C12orf60
Up
chromosome 12 open reading frame 60


C17orf58
Up
chromosome 17 open reading frame 58


C19orf70
Up
chromosome 19 open reading frame 70


C1orf122
Up
chromosome 1 open reading frame 122


C22orf13
Up
Chromosom22 open reading frame 3


C2CD2L
Down
C2CD2-like


C8orf33
Up
chromosome 8 open reading frame 33


C9orf117
Down
chromosome 9 open reading frame 117


CACNG4
Up
calcium channel, voltage-dependent, gamma subunit 4


CACYBP
Up
calcyclin binding protein


CALCOCO1
Down
calcium binding and coiled-coil domain 1


CAP2
Down
CAP, adenylate cyclase-associated protein, 2 (yeast)


CAPN2
Down
calpain 2, (m/II) large subunit


CAPN8
Down
calpain 8


CAV2
Down
caveolin 2


CCDC117
Up
coiled-coil domain containing 117


CCDC47
Up
coiled-coil domain containing 47


CCDC51
Up
coiled-coil domain containing 51


CCDC57
Up
coiled-coil domain containing 57


CCDC88C
Up
coiled-coil domain containing 88C


CD7
Up
cluster of differentiation 7


CDC45
Up
cell division cycle 45


CDCA3
Up
cell division cycle associated 3


CELSR2
Down
cadherin, EGF LAG seven-pass G-type receptor 2


CENPA
Up
centromere protein A


CENPT
Up
centromere protein T


CERS1
Up
ceramide synthase 1


CHCHD4
Up
coiled-coil-helix-coiled-coil-helix domain containing 4


CHSY1
Down
chondroitin sulfate synthase 1


CHTOP
Down
chromatin target of PRMT1


CIC
Down
capicua transcriptional repressor


CISH
Down
cytokine inducible SH2-containing protein


CLIC1
Up
chloride intracellular channel 1


COL18A1
Down
collagen, type XVIII, alpha 1


COPE
Up
coatomer protein complex, subunit epsilon


CORO1B
Up
coronin, actin binding protein, 1B


CRADD
Up
CASP2 and RIPK1 domain containing adaptor with




death domain


CREB3L4
Down
cAMP responsive element binding protein 3-like 4


CRTC2
Down
CREB regulated transcription coactivator 2


CSK
Up
c-src tyrosine kinase


CTNNBL1
Up
catenin, beta like 1


CTNND2
Up
catenin (cadherin-associated protein), delta 2


CYB5D1
Down
cytochrome b5 domain containing 1


DCAF10
Down
DDB1 and CUL4 associated factor 10


DDX49
Up
DEAD (Asp-Glu-Ala-Asp) box polypeptide 49


DEGS2
Down
delta(4)-desaturase, sphingolipid 2


DHRS3
Up
dehydrogenase/reductase (SDR family) member 3


DPAGT1
Down
dolichyl-phosphate (UDP-N-acetylglucosamine) N-




acetylglucosaminephosphotransferase 1 (GlcNAc-1-P




transferase)


DVL3
Up
dishevelled segment polarity protein 3


E2F1
Up
E2F transcription factor 1


EFNA1
Down
ephrin-A1


EHF
Down
ets homologous factor


EIF3B
Up
eukaryotic translation initiation factor 3, subunit B


ELK1
Up
ELK1, member of ETS oncogene family


ERCC1
Down
excision repair cross-complementing rodent repair




deficiency, complementation group 1 (includes




overlapping antisense sequence)


ESR1
Down
estrogen receptor 1


ESRP2
Up
epithelial splicing regulatory protein 2


ETNK2
Up
ethanolamine kinase 2


FAM104A
Up
family with sequence similarity 104, member A


FAM114A1
Down
family with sequence similarity 114, member A1


FAM120A
Down
family with sequence similarity 120A


FAM126A
Down
family with sequence similarity 126, member A


FKBP4
Up
FK506 binding protein 4, 59 kDa


FLT4
Down
fms-related tyrosine kinase 4


FOS
Down
FBJ murine osteosarcoma viral oncogene homolog


FUK
Up
fucokinase


GANC
Up
glucosidase, alpha; neutral C


GAPDH
Up
glyceraldehyde-3-phosphate dehydrogenase


GCET2
Up
germinal center expressed transcript 2


GGPS1
Down
geranylgeranyl diphosphate synthase 1


GNG7
Down
guanine nucleotide binding protein (G protein), gamma 7


H2AFJ
Up
H2A histone family, member J


H3F3B
Up
H3 histone, family 3B (H3.3B)


H3F3C,
Up
H3 histone, family 3C (H3.3C)


H3F3B

H3 histone, family 3B (H3.3B)


HDAC11
Up
histone deacetylase 11


HIGD2A
Up
HIG1 hypoxia inducible domain family, member 2A


HIST1H2AG
Up
histone cluster 1, H2ag


HIST1H2BK
Up
histone cluster 1, H2bk


HIST1H3B
Up
histone cluster 1, H3b


HIST1H4I
Up
histone cluster 1, H4i


HMBOX1
Down
homeobox containing 1


HMG20B
Up
high mobility group 20B


HNRNPA2B1
Down
heterogeneous nuclear ribonucleoprotein A2/B1


HR
Up
hair growth associated


HSP90AB1
Up
heat shock protein 90 kDa alpha (cytosolic), class B




member 1


HSPB8
Up
heat shock 22 kDa protein 8


ICAM3
Up
intercellular adhesion molecule 3


IDH3A
Up
isocitrate dehydrogenase 3 (NAD+) alpha


IGFBP4
Down
insulin-like growth factor binding protein 4


ITPR1
Down
inositol 1,4,5-trisphosphate receptor, type 1


ITPRIPL2
Down
inositol 1,4,5-trisphosphate receptor interacting protein-




like 2


KDM4B
Down
lysine (K)-specific demethylase 4B


KIAA0430
Down
KIAA0430


KIAA1737
Down
KIAA1737


KRT8
Up
keratin 8


LAPTM4B
Up
lysosomal protein transmembrane 4 beta


LEF1
Down
lymphoid enhancer-binding factor 1


LETM1
Up
leucine zipper-EF-hand containing transmembrane




protein 1


LGALS2
Up
lectin, galactoside-binding, soluble, 2


LIN37
Up
lin-37 homolog (C. elegans)


LYST
Down
lysosomal trafficking regulator


MAFG
Up
v-maf avian musculoaponeurotic fibrosarcoma oncogene




homolog G


MAN2C1
Down
mannosidase, alpha, class 2C, member 1


MANEAL
Up
mannosidase, endo-alpha-like


MAPK13
Up
mitogen-activated protein kinase 13


MAPT
Down
microtubule-associated protein tau


MDH1
Up
malate dehydrogenase 1, NAD (soluble)


MDM2
Up
MDM2 oncogene, E3 ubiquitin protein ligase


MFAP3L
Up
microfibrillar-associated protein 3-like


MMP25
Up
matrix metallopeptidase 25


MOCS2
Up
molybdenum cofactor synthesis 2


MRPS14
Down
mitochondrial ribosomal protein S14


MST1P9
Down
macrophage stimulating 1 (hepatocyte growth factor-




like) pseudogene 9


MYBL2
Up
v-myb avian myeloblastosis viral oncogene homolog-like 2


MYO5C
Down
myosin V-C


NDUFAF3
Up
NADH dehydrogenase (ubiquinone) complex I, assembly




factor 3


NDUFB9
Up
NADH dehydrogenase (ubiquinone) 1 beta subcomplex,




9, 22 kDa


NDUFS8
Up
NADH dehydrogenase (ubiquinone) Fe—S protein 8,




23 kDa (NADH-coenzyme Q reductase)


NKAIN1
Up
Na+/K+ transporting ATPase interacting 1


NPB
Up
neuropeptide B


NUF2
Up
NUF2, NDC80 kinetochore complex component


OLFML2A
Down
olfactomedin-like 2A


PALLD
Down
palladin, cytoskeletal associated protein


PAN2
Up
PAN2 poly(A) specific ribonuclease subunit homolog




(S. cerevisiae)


PARP6
Down
poly (ADP-ribose) polymerase family, member 6


PBXIP1
Down
pre-B-cell leukemia homeobox interacting protein 1


PCYT2
Up
phosphate cytidylyltransferase 2, ethanolamine


PDCD6IP
Down
programmed cell death 6 interacting protein


PDCL3
Up
phosducin-like 3


PDF
Up
peptide deformylase (mitochondrial)


PDZK1
Down
PDZ domain containing 1


PFKFB3
Down
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3


PGR
Down
progesterone receptor


PHB
Up
prohibitin


PIN1
Up
peptidylprolyl cis/trans isomerase, NIMA-interacting 1


PIP
Down
prolactin-induced protein


PLA2G15
Up
phospholipase A2, group XV


POGK
Down
pogo transposable element with KRAB domain


POLK
Down
polymerase (DNA directed) kappa


PPFIA1
Up
protein tyrosine phosphatase, receptor type, f




polypeptide (PTPRF), interacting protein (liprin), alpha 1


PPP1R12B
Down
protein phosphatase 1, regulatory subunit 12B


PRDX1
Up
peroxiredoxin 1


PSENEN
Up
presenilin enhancer gamma secretase subunit


PSMD5
Down
proteasome (prosome, macropain) 26S subunit, non-




ATPase, 5


PTPN6
Up
protein tyrosine phosphatase, non-receptor type 6


QSOX1
Down
quiescin Q6 sulfhydryl oxidase 1


RAB11FIP1
Up
RAB11 family interacting protein 1 (class I)


RAB13
Down
RAB13, member RAS oncogene family


RAB7L1
Up
RAB7, member RAS oncogene family-like 1


RALGPS2
Down
Ral GEF with PH domain and SH3 binding motif 2


RARA
Up
retinoic acid receptor, alpha


RCC1
Up
regulator of chromosome condensation 1


RGS19
Up
regulator of G-protein signaling 19


RNASEH2C
Up
ribonuclease H2, subunit C


RPL12
Down
ribosomal protein L12


RPL14
Down
ribosomal protein L14


RPL3
Down
ribosomal protein L3


RPLP0P6
Up
ribosomal protein, large, P0 pseudogene 6


RPS6KB2
Up
ribosomal protein S6 kinase, 70 kDa, polypeptide 2


RRNAD1
Down
ribosomal RNA adenine dimethylase domain containing 1


S100A6
Up
S100 calcium binding protein A6


SCGB2A2
Down
secretoglobin, family 2A, member 2


SCNN1A
Down
sodium channel, non-voltage-gated 1 alpha subunit


SDHB
Up
succinate dehydrogenase complex, subunit B, iron




sulfur (Ip)


SEC11C
Up
SEC11 homolog C (S. cerevisiae)


SELL
Up
selectin L


SEPT8
Down
septin 8


SH2B1
Down
SH2B adaptor protein 1


SIRT7
Up
sirtuin 7


SLC25A1
Up
solute carrier family 25 (mitochondrial carrier; citrate




transporter), member 1


SLC25A19
Up
solute carrier family 25 (mitochondrial thiamine




pyrophosphate carrier), member 19


SLC35E2B
Down
solute carrier family 35, member E2B


SLC38A1
Up
solute carrier family 38, member 1


SLC3A2
Up
solute carrier family 3 (amino acid transporter heavy




chain), member 2


SLC40A1
Down
solute carrier family 40 (iron-regulated transporter),




member 1


SLC4A2
Up
solute carrier family 4 (anion exchanger), member 2


SLC9A3R1
Up
solute carrier family 9, subfamily A (NHE3, cation




proton antiporter 3), member 3 regulator 1


SMARCC2
Down
SWI/SNF related, matrix associated, actin dependent




regulator of chromatin, subfamily c, member 2


SPAG9
Up
sperm associated antigen 9


SRRM2
Down
serine/arginine repetitive matrix 2


SSH3
Down
slingshot protein phosphatase 3


SSPN
Down
sarcospan


SSR3
Up
signal sequence receptor, gamma (translocon-associated




protein gamma)


ST3GAL4
Up
ST3 beta-galactoside alpha-2,3-sialyltransferase 4


SUFU
Up
suppressor of fused homolog (Drosophila)


SYT5
Up
synaptotagmin V


TARBP1
Down
TAR (HIV-1) RNA binding protein 1


TCEB2
Up
transcription elongation factor B (SIII), polypeptide 2




(18 kDa, elongin B)


TEX2
Up
testis expressed 2


TFPT
Up
TCF3 (E2A) fusion partner (in childhood Leukemia)


TGIF2
Up
TGFB-induced factor homeobox 2


THAP11
Up
THAP domain containing 11


THSD4
Down
thrombospondin, type I, domain containing 4


TIMP2
Down
TIMP metallopeptidase inhibitor 2


TMEM170A
Up
transmembrane protein 170A


TMEM63C
Down
transmembrane protein 63C


TOM1L1
Up
target of myb1 (chicken)-like 1


TOR1AIP1
Down
torsin A interacting protein 1


TRAPPC3
Up
trafficking protein particle complex 3


TRAPPC8
Down
trafficking protein particle complex 8


TRIM25
Up
tripartite motif containing 25


TRUB2
Up
TruB pseudouridine (psi) synthase family member 2


TSKU
Up
tsukushi, small leucine rich proteoglycan


TUBA1A
Up
tubulin, alpha 1a


TUBA1C
Up
tubulin, alpha 1c


TUBA1C,
Up
tubulin, alpha 1c


TUBA1A

tubulin, alpha 1a


TXNRD1
Up
thioredoxin reductase 1


UFD1L
Up
ubiquitin fusion degradation 1 like (yeast)


USP5
Up
ubiquitin specific peptidase 5 (isopeptidase T)


UXT
Up
ubiquitously-expressed, prefoldin-like chaperone


WBP11
Up
WW domain binding protein 11


WDR6
Down
WD repeat domain 6


WWC3
Down
WWC family member 3


WWP1
Up
WW domain containing E3 ubiquitin protein ligase 1


XPC
Down
xeroderma pigmentosum, complementation group C


ZFP106
Down
zinc finger protein 106


ZNF302
Down
zinc finger protein 302


ZNF608
Down
zinc finger protein 608



















TABLE 1B





Probe set
Gene
Z-score
Affymetrix probe set sequences


















229819_at
A1BG
0.382021523
CCAACTACAGCTGCGTCTACGTGGA





GCTGCGTCTACGTGGACCTAAAGCC





TACGTGGACCTAAAGCCACCTTTCG





GCTGCGCGAGGGCGAGACGAAGGCC





CGAAGGCCGTGAAGACGGTCCGCAC





CGAACCTCGAGCTGATCTTCGTGGG





CACGCCGGCAACTACAGGTGCCGCT





CACACCTTCGAATCGGAGCTCAGCG





CTGTGGAGCTCCTGGTGGCAGAAAG





GTGCTGTTGGTGTCCTCAGAAGTGC





AAGTGCCGGGGATTCTGGACTGGCT





206527_at
ABAT
−0.51888386
GGATGACCCAGCAGACGTGATGACC





AGGAGTTCAGGCCTAATGCTCCCTA





CTACCGGATCTTCAACACGTGGCTG





CCGTCCAAGAACCTGTTGCTGGCTG





GCTGGCTGAGGTCATCAACATCATC





TGAGAGGACGAGGCACCTTTTGCTC





TCCTTCGATACTCCCGATGATTCCA





TGACAAATCCATTCGTTTCCGTCCC





CGTCCCACGCTGGTGTTCAGGGATC





AAGAAGCCATTTCCACTACAGTGAG





ACAGTGAGAAAGCCCGGATCCCAAC





209459_s_at
ABAT
−0.68458777
TAATGTATCTACATACCTACACCTA





ATCTACATACCTACACCTATCTATA





ACACCTATCTATATATAAGCTCATG





GAAAACCATAGCTAAGTAGCATCGC





GTAGCATCGCAGACTTAAGCGTACA





AAGCGTACAAAGTGATCTTGTTCAC





TCTTGTTCACAAGTAATCTGTTGAC





ATCTGTTGACAGTGCCAATAAATGA





CATGTCACAATGTAACGGATGACCA





CGGATGACCATATGCACAATTCCAT





CCTGTGTTAGTCAGTATTCTTAAAT





209460_at
ABAT
−0.72504225
AGAATTCTCAGCAGAGCTCAAGATT





GATTGTAGAAACTCAGCAGAAGCTG





GCTGGTAAAAACATGGGGAGCCCGG





CTTCCGTGGCCGACAGTCTGGAAAT





TGGCCGACAGTCTGGAAATGAATCC





GAATCCATCATACATTAGTGCCATA





GTGCCATAGAGTTTAGTAACCGTCC





TAGTAACCGTCCAGCAAGTGTCATC





AACCGTCCAGCAAGTGTCATCACTT





AACAAGGTCCAGTAATAGCAAGTCT





GTCCAGTAATAGCAAGTCTTAGTAC





236664_at
AKT2
0.356840165
AGGAAATTCACCCGAGGTCGCAGGG





GGCCTTGAGTACTCATTTTGGTGCT





ATTTTGGTGCTGATTACCTCTCTGC





TAAATTGGTAGTTTCCTGCTCTTTT





TTTCCTGCTCTTTTTGTGTAATCTT





TAATGTGAAGCCTCTGGGGGCTGCC





TGCCCTCGTGCACTGATGGTTGTGT





GGCAGTGCGATTCCCTTTTAGCTGC





TTAGCTGCTGCATGGGGGGAACTCA





TTCCATGGGGTAGACCCCTCAACCG





TTGACTTGGTTTCGTTTGGTGCTAC





205640_at
ALDH3B1
0.505744977
AAAACCTCCTGGGACTGTTGCAAGG





GGGATTGAGGGATTGCTGAGCTGGA





TTCTCAGTGGGGTGGCACGGAGCGG





GGCAGGTGGGGCTGTGGTTATGCGA





GGTTATGCGATAGGGTCTCCCTTCC





TGTAACTCTTTATCCTCATGGTGCC





TGCCCACTACGAGTCATACTCTTCC





GCCAAAGCAGAATGCAGGGTTTCCT





GCGGGGGTGCTTGAGAAACCTACAT





TATCAACCTACAACTTTAGTCGGGA





CAGGGGTGGACCTGAGTTTCGTCTC





202204_s_at
AMFR
0.3946814
AATGCAGGTGTCCTGAGCACCACAC





GTGGGGGAGGCGCACAGTGTGAGCC





CCACGTCGTGGGGTAACATCTGTTA





GAACTCTTGGTTCGATACCTGGAGC





GGTGTGATGAAGTCACCCCTTTCTG





CCTTTCTGTCCCACTACATCTGGGA





TACATCTGGGACTGACTTTCCGAGC





CAGTCCAAAGCCGGCTTGATTTCCG





TTGATTTCCGTGAACTCTGGTGCTC





TGCTCCTGCATCTCATGAGTGTGCC





GCCTGTGGGTTTGGTCCTTGAACAA





205706_s_at
ANKRD26
−0.50628649
GAGAGGCTAGCAGAGGTCAACACCA





AGAGCAGATCTTTGTTCACCACTCT





CAGTCATGGAGCCACCTTGTGTGGG





GAAAACTTAGTGATCTCTACCTCAA





TACCTCAAATCCACGGGCTTCAAAT





GAACTACTTGAGCAAGATGCAGCAG





ACTAGAGAACTCAAAGAAGCTGCTG





GAATCTGGATCAATAGCTTCCCCTC





TTCCCCTCTAGGGTCTACTGATGAG





GGGTCTACTGATGAGTCAAATCTAA





TTTATTACTGGGCTGTTTATGTGAC





202120_x_at
AP2S1
0.489068174
ACTTTAAGATCATTTACCGCCGCTA





ACAAACTGGCTTACCTGGAGGGCAT





GGAGGGCATTCACAACTTCGTGGAG





TGGACCTGGTGTTCAACTTCTACAA





GGTCGTGGACGAGATGTTCCTGGCT





GAAATCCGAGAGACCAGCCAGACGA





AAACAGCTGCTGATGCTACAGTCCC





TCCTTCCCTCAACTGCCTAGGAGGA





GAAGGGACCCAGCTGGGTCTGGGCC





CAAGGGAGGAGACTTCACCCCACTT





GCCGTTGTCGTGTGATTCCATAAGC





208074_s_at
AP2S1
0.499416201
ATCCAGAACCGGGCAGGCAAGACGC





GCGCCTGGCCAAGTGGTACATGCAG





GCCAAGTGGTACATGCAGTTTGATG





GATCGAGGAGGTGCATGCCGTGGTC





GACGCCAAACACACCAACTTTGTGG





AAACGAATATTTCCACAATGTCTGT





CAATGTCTGTGAACTGGACCTGGTG





GACCTGGTGTTCAACTTCTACAAGG





TCTACAAGGTTTACACGGTCGTGGA





CTGATGCTACAGTCCCTGGAGTGAG





GTCCCTGGAGTGAGGGCAGGCGAGC





211047_x_at
AP2S1
0.453831888
ACTTTAAGATCATTTACCGCCGCTA





ATGACAACAACCTGGCTTACCTGGA





GAGGCCATTCACAACTTCGTGGAGG





TGGACCTGGTGTTCAACTTCTACAA





GGTCGTGGACGAGATGTTCCTGGCT





GAAATCCGAGAGACCAGCCAGACGA





AAACAGCTGCTGATGCTACAGTCCC





TGGAGTGAGGGCAGGCGAGCCCCAC





ACAAGGGAGGAGACTGCACCCCACT





GCCGTTGTCGTGTGATGCCATAAGC





CTGTGCGTGGAGTCCCCAATAAACC





202045_s_at
ARHGAP35
−0.47676853
TGCTGCGACCCAGATTCTTCTGCAG





AGGATGTGTCTGTCTTTGTCACGGT





GGGTGACATCATAGGAGCAGCTCGC





CAGCTCGCTGGCCAGAAGGGGATGG





CACACAAAACTTCACAGCAGGCCAG





AGCAGGCCAGCTGCAGTGACTTGTC





TAGGGTGCGGTGGCCAGGAGGGCCC





TCGCTGCTTTCCCGAGGGCAGCGCA





GCAGGGATCCGGGGAAGCTGCGGCA





CGGCTTCGTGGCTCTGAGGTGTAAC





CGGAGGACATCGTCTGTGTCCAGGT





229394_s_at
ARHGAP35
−0.75549803
GTGTTAGTAGTCTGGCTGTGTGCCC





CTGTGTGCCCAAAATTCTGTTTCGC





GTGCCCAAAATTCTGTTTCGCAGCA





GTTTCGCAGCAAAAGTGAAGACCTG





TGGGTTTTTTGAGGCTCCAACCTGA





GGCTCCAACCTGATTAGTGCATGGT





CAATGAAGGCTGAGGCATCTCTGAC





GGCATCTCTGACTGAGGTGTTTTTG





GTACTTGTCTCAATGGGAATGGTGT





AAAAGGCCTTATGTGATCTGTATCA





GAAAATTTGGAATAGTGCTGCTGCC





209985_s_at
ASCL1
0.407298116
GCCACGGCTGGAGAGACCGAGACCC





GAGACCCGGCGCAAGAGAGCGCAGC





GAGAGCGCAGCCTTAGTAGGAGAGG





GTAGGAGAGGAACGCGAGACGCGGC





GAGACGCGGCAGAGCGCGTTCAGCA





GCGCGTTCAGCACTGACTTTTGCTG





AAACAAGAAGGCGCCAGCGGCAGCC





GAAGCCAACCCGCGAAGGGAGGAGG





TTTTTTTGCTCCCACTCTAAGAAGT





TCCCACTCTAAGAAGTCTCCCGGGG





GTCTCCCGGGGATTTTGTATATATT





209987_s_at
ASCL1
0.658405716
GGACGAGCATGACGCGGTGAGCGCC





ACTACTCCAACGACTTGAACTCCAT





TCGTCGGACGAGGGCTCTTACGACC





TTCTCGACTTCACCAACTGGTTCTG





GCCCTGGTGCGAATGGACTTTGGAA





CAGGGTGATCGCACAACCTGCATCT





ACCTGCATCTTTAGTGCTTTCTTGT





TTCGCCCGAACTGATGCGCTGCAAA





CAACTTCAGCGGCTTTGGCTACAGC





AGCGCAACCGCGTCAAGTTGGTCAA





CAAGTTGGTCAACCTGGGCTTTGCC





209988_s_at
ASCL1
0.632471336
GTATCTATCCTAACCAGTTCGGGGA





CATGTAATGCTATTACCTCTGCATA





GATGTGTAGTTCACCTTACAACTGC





ACCTTACAACTGCAATTTTCCCTAT





GCAATTTTCCCTATGTGGTTTTGTA





TGTAAAGAACTCTCCTCATAGGTGA





GAGATCAAGAGGCCACCAGTTGTAC





CACCAGTTGTACTTCAGCACCAATG





AGCACCAATGTGTCTTACTTTATAG





ATGCAGCTACTGTCCAAACTCAAAG





GCAGCCAGTTGGTTTTGATAGGTTG





213768_s_at
ASCL1
0.522864871
GAAGGGAGCAGCACACGCGTTATAG





CGCGTTATAGTAACTCCCATCACCT





CACCTCTAACACGCACAGCTGAAAG





CGCCCTTTCTTAGAGTGCAGTTCTT





CCCACCCCAATAAGCTGTAGACATT





TGCTATTCTCAGCCCTTTGAAACTC





AACCCCATCGCCAACTAAGCGAGGC





GAAGCGCTCAGAACAGTATCTTTGC





GTATCTTTGCACTCCAATCATTCAC





GCAACTGGGACCTGAGTCAATGCGC





TGCAAAAGCAGTGGGCTCCTGGCAG





244519_at
ASXL1
0.402859825
TTAGAAAACTACTCGGATGCTCCAA





CTACTCGGATGCTCCAATGACACCA





CAATGACACCAAAACAGATTCTGCA





TCTCGCATGCCTCAATGCTATGCTA





CGCATGCCTCAATGCTATGCTACAT





GCCTCAATGCTATGCTACATTCCAA





CAATGCTATGCTACATTCCAATTCA





TGTTTTATAAACTGCCTGGCCGAAT





ATAAACTGCCTGGCCGAATCAGCCT





ATCAGCCTTTTCACGCTCAAGGTGT





GCCTTTTCACGCTCAAGGTGTGAGC





226684_at
ATG2B
−0.37898028
TGTAAATGTCATCTCAGCTGGCTCA





AGCTGGCTCAGTTATATCTCTAATG





ATCTCTAATGTCCCGGGTAGCAGCA





CAGCACCTCCCTCTAAAAATATGTT





AATATGTTTACTTCGCTGTTTCACT





AAATGGCAGCTTCCGATTTCTAGTT





TGGTCACCCAGGGCTATTTGCTTTT





AGGGGTGTCTAGTTCAGCTTTTATG





GTTGATCCATCCTGACTTATTTTAG





GACATTGAATTTATCTCACCACAAG





GACTGTCTTTGCTAAGTTTCCTAAT





40489_at
ATN1
−0.45511501
AAGCGACAAGCCACTGTAGAACCTG





AAGCCACTGTAGAACCTGCGATCAA





CACTGTAGAACCTGCGATCAAGAGA





GTAGAACCTGCGATCAAGAGAGCAC





GAACCTGCGATCAAGAGAGCACCAT





AGCCAAGAGGGTGCTGCTCAGTTGC





CCAAGAGGGTGCTGCTCAGTTGCAG





GGTGCTGCTCAGTTGCAGGGCCTCC





GCTGCTCAGTTGCAGGGCCTCCGCA





CTGCTCAGTTGCAGGGCCTCCGCAG





AGTTGCAGGGCCTCCGCAGCTGGAC





CAGGGCCTCCGCAGCTGGACAGAGA





ACAGAAAGCGCACAGAATCTTGGAC





CTTGGACCAGGTCTCTCTTCCTTGT





TGGACCAGGTCTCTCTTCCTTGTCC





CTGCCCCGTTGGTGTGATTATTTCA





201242_s_at
ATP1B1
−0.638675
AGAGCTGATCACAAGCACAAATCTT





TGATCACAAGCACAAATCTTTCCCA





CTTTCCCACTAGCCATTTAATAAGT





AACCTACTAGTCTTGAACAAACTGT





AACTGTCATACGTATGGGACCTACA





GTATGGGACCTACACTTAATCTATA





GGACCTACACTTAATCTATATGCTT





ACACTTAATCTATATGCTTTACACT





ATATGCTTTACACTAGCTTTCTGCA





GCTTTACACTAGCTTTCTGCATTTA





GCTTTCTGCATTTAATAGGTTAGAA





201243_s_at
ATP1B1
−0.70700285
GGTGATGGGTTGTGTTATGCTTGTA





GTTATGCTTGTATTGAATGCTGTCT





GAATGCTGTCTTGACATCTCTTGCC





CTTGTCCTCCGGTATGTTCTAAAGC





TCCGGTATGTTCTAAAGCTGTGTCT





AAGCTGTGTCTGAGATCTGGATCTG





TCTGAGATCTGGATCTGCCCATCAC





GAGGCATCACATGCTGGTGCTGTGT





GGTGCTGTGTCTTTATGAATGTTTT





GACTGGTGTTAAATGTTGTCTACAG





GATCTTGTATTCAGTCAGGTTAAAA





236534_at
BNIPL
−0.65529039
ACTTTAGCTGTAGAACCTTGGGCAA





AACTGGAGGGACTGTGATCCTTCCA





GAAGAGGCTTACCTGACAGCCAGCC





GAGTCAGCTCATTAAATCTTGAAGA





TTTCCTTCTAAGTCATGTCTGCTGC





TCTAAGTCATGTCTGCTGCCTGTGA





TGCTGCCTGTGAGCCTGGGAAGGAG





GAGCCTGGGAAGGAGTGCTTTCAAA





GAGTGCTTTCAAAACCTGTATTTTT





GCTCGGCCAGAGCTCTGGGTTTTAA





CTGGGTTTTAATCCTACTTTAGCTG





218954_s_at
BRF2
0.541780241
GGAGACCCGAGAGAAGGAGCCACCG





TCTTGCCACCCTGCATGTTGAAGTC





TTGAAGTCCCCGAAGCGGATCTGCC





TAGAACAGTATTTGCGTACCCCTCA





TTTGCGTACCCCTCAGGAAGTTAGG





TAGGGACTTTCAGAGAGCCCAGGCT





GATATCCACTGGGAGCACTTCATCC





TGTGCTGCTGCGGATGGCTGAGCAG





CTGGCCTGGTTACGAGTTCTGAGAC





GACTTGACAAACGGTCTGTGGTGAA





GTGAAGCACATCGGTGACCTTCTCC





218955_at
BRF2
0.673065335
AGGAACCAAGAGGGGCTCTGCCATT





CTCTGCCATTAGTTGGACCCTGGGT





GACCCTGGGTCCTGGAGTAAAGTCA





GAGATTCCCATCCCTTGGTGTGGGA





AGAGCAAGTTGCCTATGTCCATGTT





GTTCTGTGAGATGGCTTTCCTCATA





GGCTCTTTGCTGCTGGTTTGAATTG





GGTTTGAATTGGACACACTGCTGCG





CTTCCCTCTGCTTGTGGAGTGGTTG





GAACTGGGGAATTCTGGCCCTACGT





TATGGTGTCATGAGATCCTCTACCT





203755_at
BUB1B
1.065024239
TTCTTTGTGCGGATTCTGAATGCCA





TGGGGTTTTTGACACTACATTCCAA





GTTAACTAGTCCTGGGGCTTTGCTC





GGGGCTTTGCTCTTTCAGTGAGCTA





GAGCTAGGCAATCAAGTCTCACAGA





GTCTCACAGATTGCTGCCTCAGAGC





GGACACATTTAGATGCACTACCATT





CACTACCATTGCTGTTCTACTTTTT





GGTACAGGTATATTTTGACGTCACT





GGCCTTGTCTAACTTTTGTGAAGAA





GTTCTCTTATGATCACCATGTATTT





229888_at
C120060
0.477972255
TTCAAAAGTGCCCATACGCCAGTCA





GCTAAACAGCAGTAACATCCTTGGG





AACATCCTTGGGAGTCTGGAATCTT





GAAATTCCCCATCATGAATCTTCAA





AGAGCAATCAGATGTCACCACATCT





ATCTGAGAGAACCAGAAGTCCTCCA





AAAATCCCACAAAGTCAGCAGCAGA





GGGACCAATCTTAGAGATCCTCCAA





GAAAGCCAGTGACAAGTAGGGATGC





GTTTCTAAGATCTTTTGGTGCCAAA





GTCATCTGGCAAAACATTTACCTGT





226901_at
C170058
0.409662665
GTACATAACAGTAAGCGCACTAGTC





ACAAGGGTCAAAGCCCAGGACAAGT





AAGGGCCAGTGTGCAGATGGGTGGA





GTACTAAAGGGCTTACTTCAGGCAA





GGCAAAAGTGTTCCTGACGTACCAA





CTCCCTGCTCCTAGTAATGTATGTT





AATGTATGTTTTGTGCTGAACTGGC





TGAACTGGCAGCTATCCCAATGTGA





CAGACAATGATTTACACAGCTCAGA





AGCTCAGATAATTGACCTGTCCAGT





GTCCAGTTAACAGATCATTGCTTCA





225823_at
C190070
0.42217782
TCAAGGGAAGTGTGGCTGGGGGCGC





CGCCGTCTACCTGGTGTACGACCAG





CAGTTCAGCCAGTACGTGTGTCAGC





ACGTGTGTCAGCAGACAGGCCTGCA





CAAAGATTTACTTTCCCATCCGTGA





GTGACTCCTGGAATGCAGGCATCAT





TCATGACGGTGATGTCAGCTCTGTC





GGGCTGGGAGTATGTGAAGGCGCGC





GGCGCGCACCAAGTAGCGAGTCAGC





GCCTGCCCCGGCCAGAACGGGCAGG





GTGGTCGCTGATGAGGTTCCTCATC





225480_at
C1orf122
0.598551981
GAGGAGATGTTACGGCAGCTGGGCC





AGGCGGCTTTCCAAAGGATGCTGGC





GACTCTGAACAACTCCCTTCAGTAA





CACTGGCAGTGGCTGGTACTTGGCT





CTTGGCTCTCAGCCTGGAGTGGCAG





AGCTCTGCTAGCAGCTGGGTTCACT





AATGCAGCCAATGAATACCCAGTCT





ATACCCAGTCTGATTACCCAGATTT





AGCAGTGCTCGCCAGAGTGGTCTGG





GTCTGGCCTGCTATGGGGGATCCAG





GGATCCAGGTGGTGTTACATGTCCA





223039_at
C22orf13
0.460898172
GGGCTTTGTTCATTCTAGCCACGGG





GTGCACATGCTGTTAGGGCTGTCAC





GGGCTGTCACTAGGGAGTGGCCTTC





GAGGGTGGTAACAGCACCTCAGTCC





TTAGAAACACTCAGTCTCTGGTCCC





TCTGGTCCCAGAGGATGGCTTCTCA





TGGCTTCTCAGGGCATGCCACAAGT





CATTCTCAAGACTCATCTGCCTAGG





AGACACACTGTGTTGCATTCTTGCA





ACAGCACATGACACCGACAGCTGCC





CCAGCACAGCACCTGAAGCCATGTG





204757_s_at
C2CD2L
−0.65986454
TATATGTGTGGCTTAGGACCCTCCG





GGACCCTCCGTGAACAGATGATAGA





ATGATAGAGGGCATCTCTCCCAGGT





CTTCTTTTCTGTCCCAGGAGGGTGG





CCACTCAGACCAGCACCAGTGTCTG





GAGAATGTTGGCAGCTCACAGAGAG





TTACCGTTTTTTGTACTTGATGCCT





TGTACTTGATGCCTTCTCTGTGAGC





CTCTGTGAGCAGTGGCTCTGTGGGA





TGATGGAGCCACGCAAGGCTGCACC





ATTGCTGTGTGATGGCTTGGAATTT





218187_s_at
C8orf33
0.611515101
GATGCCTGTTGCAAAGTGGACCATG





TGGACCATGGTCTAGCAGTAGCATC





ATGGTCTAGCAGTAGCATCAGTGTC





CTAGCAGTAGCATCAGTGTCAAGGA





AACACCCACTACTTAGCAGACTGGG





CCACTACTTAGCAGACTGGGAAAAG





GAAAGTACTAAATGTCTGATATGCA





GGACACATGACCCATGTGACCTTAC





CACATGACCCATGTGACCTTACCTA





CATGTGACCTTACCTATTATTGGAG





ATTGGAGATGGTTCACATTCCTTAC





222551_s_at
C8orf33
0.521449961
GCTATTGGAGCAATCCGAACCCTGC





TGCGCAGCAAAAGAACGCCCTTGCC





TGGAAGCCGAATGGCGTGAGGCCCT





CTGCTGCTTATTCAGCCCAGGTGCA





GCAACCTGTAGATGGAGCCACCAGA





AAGAGCCAAAGGGTCTGCAGGCCTC





TGCAGGCCTCGCTCTATATGGAGAG





GGGGTTTGTTTTGAGTGCAGAGCCT





CCTTTCCAGGACTTCTGTTGTCAGA





TCCCTGGCTGGTCCAAGGATTTGTA





CAGATAGGCAAAAGACCCCGTTCGT





231172_at
C9orf117
−0.51594747
AGCAGCCAATCGTGTTGCCAACTGT





TGTTGCCAACTGTTTGGCGTCCACC





GCCGCCATGCTTCTGAGGGGCGGAA





TTCAGTAGCGCGGCGTCACAGTGTC





GTCACAGTGTCCCTTCGGGACTTGT





CCCTTCGGGACTTGTGTGGGACGCT





GCTCCAAAACACATCGGCTCATGGC





CTTCGGTTGGGAGGCCTTGTTATGC





TATGGCCCTGACTTGCGGCGAAAAT





GCGAAAATCTGGCAAGTCCTTTCCC





CCTCTCCAGCTAATAAAAGTTTTCT





221585_at
CACNG4
0.452208385
CACTGCCATGACCAGGCCGAAGGCA





GACCAGGCCGAAGGCAGGGAACGCC





AAAGCAAGGCAGCCGTGCTGTTCTA





CAAGGCAGCCGTGCTGTTCTAGTTC





GCCCCAGAAGTTTCTATCATTCCAT





GAAGTTTCTATCATTCCATGGAGAA





GCTGTGTTCCAATGAATCCTACCTC





TCTTGCCCAGTCCCAGGCAGAGTAA





GCCCAGTCCCAGGCAGAGTAAGCAG





GGCCCACCTAGGGACCAAGAAAGAG





GAAGAAGGGGACGAGCCGGGAGCAA





231737_at
CACNG4
0.56182315
CTTTTTGTCACACAGGATGGCATGT





GCATGTGATCCTCAAGACGACGAAC





GCCGAGCTACAGGTACCGGCGACGG





ACGTGTCGCCCATGGGCCTGAAGAT





GCCTGAAGATCACAGGGGCCATCCC





CCATGGGGGAGCTGTCCATGTACAC





TCCATGTACACGCTGTCCAGGGAGC





AGCTTCCTGCAGGTGCATGACTTTT





GACTTTTTCCAGCAGGACCTGAAGG





AAGGAAGGTTTCCACGTCAGCATGC





TCAGCATGCTGAACCGACGGACGAC





62987_r_at
CACNG4
0.398600737
CCGGGCCTTCTCAGCCTTCTCCCCG





GGGCCTTCTCAGCCTTCTCCCCGCG





TCTCCCCGCGGCCAGCTGGGTCTCC





GCGGCCAGCTGGGTCTCCGGGGACC





GGCCAGCTGGGTCTCCGGGGACCCT





GCCCTGGGCCGCCCATTCCTGGCCC





TGGGCCGCCCATTCCTGGCCCTCCC





CCCTCCCGCTGCATCTCAGACCTGA





GCTGCATCTCAGACCTGACACCCAA





TGCATCTCAGACCTGACACCCAACG





GCATCTCAGACCTGACACCCAACGG





TGGCCTGTGCCCACCTTCTCTCCCT





CCTCCCTGGCCTCCAGAGGTGGCGT





CCCCACCCCTGTGTGTTTCGCCAGT





TACTGGTTTTGGGTTGGTTGTTCTG





TGTGCTGGGAGACCGGACCCGGGGC





201381_x_at
CACYBP
0.669614252
ATTAGTACCCTGGTCATTTTGTTCA





GGGTTATATTGCATTCTCACGTGAA





ATCTCTTGAAACCCATCTCTGTGGA





AACCCATCTCTGTGGAAGGCAGTTC





CAAGGTGGGATTACCTGACCCAGGT





AAAGAGAAGCCCTCCTATGACACTG





AGCCCTCCTATGACACTGAAACAGA





GGAGACACGGAATTTTGAGACTTTA





AAAGGCAATGAATTCTCCATTTCCT





AAATATGCTTATTAAACACTCCTGC





ACACTCCTGCAAAGATGGTTTTATT





201382_at
CACYBP
0.394076544
TACTGAAACACATTATGCCTCTGTA





ATGCCTCTGTAATTGGGGTTGACAC





GGGGTTGACACATGAACAGAATAGC





GAATAGCAGACACAATGCATATGAA





TATAGATATATTCCAAGCCGCCTGA





CAAGCCGCCTGACGATCTAATTGTA





GACATTATATGTGACTTAAAACCTA





ACTATTGATCAATTTTAACTACATA





CCCACCATAACCCAAGGCAAACAAT





AAACAATGTATTGACAGGATTCCAA





CATGTAAAGATGCTCACCTTGTTCA





210691_s_at
CACYBP
0.67538078
GAAGAGTTACTCCATGATTGTGAAC





TGAACAATCTCTTGAAACCCATCTC





ATCTCTGTGGAAGGCAGTTCAAAAA





GACTGATACAGTTCTTATATTGTGT





CAAGGTGGGATTACCTGACCCAGGT





CTGACCCAGGTTGAAAAGGAGTGCA





GAAACAGATCCTAGTGAGGGATTGA





TGAAGCGAACCATTAATAAAGCCTG





AAAGCCTGGGTGGAATCAAGAGAGA





GTAAGGGAATATTGGTGAGCTGCAT





AATTTGACAGATAGCTATTTACATA





209002_s_at
CALCOCO1
−0.66325252
GCAGTGGCTGAATTTATCCCCTGAA





GAGGCCTTCCCCTGTGGGAATAGAA





TGGGAATAGAATCGTCCACTCCTAG





AGCCCTGGTTGCTTCTGATACACAG





TTCTGATACACAGCCACTGCACACA





TACCCTCTCTTATTTGGAGTTTCCG





TGGAGTTTCCGTTGGTTTACCTGAG





TCTCTGGGGTCTGCACAGAGGCAGC





CAGTTTCATTGGTTCCTCTTTCTGT





GTGCCTTCTGTGAGGAATGGGGGGA





GTCCCCCCACAGCAATAAAAGCTTC





212551_at
CAP2
−0.48832527
AACTCGGCCTGGTGTTTGACAATGT





GAAGTGATCAACTCCCAGGACATTC





GGTTGCCACATATACCTCAGTGAAG





AGATCGTGAGCGCCAAGTCATCTGA





ATGAACATACTTATCCCTCAGGATG





TTATGGCCTAACTTCCTGAGAGACC





TGAATCCCCCTCTATCAAACAAACA





GCCTCCAACGATTCTGTGCTATAGA





AGATACAGCACTGTTTCTGGCACGC





GCACGCCTCGTGGGCATTTTGAAAT





TAACGTTTCCTCATGATTTGCCTTT





212554_at
CAP2
−0.50081085
AATCAAGCTCAGTTATTATTTTCCA





TTATGTCTTTAACGTTTTCTTATAG





TTCTTATAGACTAATTTCCTCTTTT





CTTGCTGCTCCTATTTTGTAGTCTT





GATGCTTCTTCAGCGTAAGAGTAGC





GAGTAGCTATGATATTCCTTTTTAT





AAATCTGCAACTTCTTGGATCATAT





GTATAATGCTTGCAGGCCCAGTACA





ATATATTGTGCCTCTTACAGCCTTT





GTGCCTCTTACAGCCTTTGGAATAC





AATGCTCATGTACCAAGGTTTTGCT





208683_at
CAPN2
−0.93678657
GACACGAGGCCCTTGGCAGGGAATA





CAGTCCAAGATTACCATTTCCCATG





TCACCTCTGTCGCTTGGGTTAAACA





AATCGTTCTCCTTACAATCAAGTTC





AATCAAGTTCTTGACCCTATTCGGC





TTCGGCCTTATACATCTGGTCTTAC





ATCCTGCGCTTGATCAACTGAACCA





ATAAGCTGTTTGCCACCTCAAAACT





TATGAACTTCACCACCACTAGTGTC





ACCACTAGTGTCTGTCCATGGAGTT





TGCCTTATCTTCTTCCAAATGTACT





229030_at
CAPN8
−0.79447996
ACTGATTATAACCACTCGGGCACCA





GATGCCCACGAGATGAGGACAGCCC





ACAGCCAGGTGCAGCAGACCATTGC





GCGGTATGCGTGCAGCAAGCTTGGC





CATCAACTTTGACAGCTTCGTGGCT





TCGTGGCTTGTATGATCCGCCTGGA





CCTCTTCAAACTATTCAGCCTTCTG





TGGTCTGACCCGGGGTTTCGGACAT





GGTTTCGGACATCAGTGACACTCCC





ACTGGTTGTTCATACCTTTCTTGCC





CTTTCTTGCCCTGGGTCTATTTCAG





203323_at
CAV2
−0.57309235
ATGAAGCTCATATCCTTTTGAAGGT





GAGACATTTCAAAACTGCCCTAGGC





CCTAGGCCATTGCAGCATCCTTAGA





GATGGGACGCATAATCATTACCTTA





ATTACCTTAAAGCATCACCACTCAT





AAGCATCACCACTCATTTTGACCAT





AAGGTCAATCAGCCTCATGACTTTA





GCTATCCTTTCAAACAGCTATTGGC





AAGTAACATGACTTCCTTATTTCTG





AAATCCAGGCTTTATGTACAAACAT





GATGAGCAGACTTCTCGGAATTCAT





203324_s_at
CAV2
−0.47190989
AAAGCACACAACGATTATAGTAACT





TCCTACAGGCCTATTTAACAAGATG





AAATGTTGCTCTAATCAGATTGCTT





ATGTAGCTCCCACAAGGTAAACTTC





AAACTTCATTGGTAAGATTGCACTG





GATTGCACTGTTCTGATTATGTAAG





GTTGACACCACTTAGATTTAAAGGC





AAGGCAGACAGTTTTGCTTTAGTAC





TACCTTTACATATATAGTCACTGGC





AGTCACTGGCATACTGAGAATATAC





GAGAATATACAATGATCCTGGAAAT





225644_at
CCDC117
0.4973068
TTTGCCTTAAGAGTTCCCTAGGGAG





TACCAGGGCTTTTCGTTTTGTGTAG





GTAGCTTTTGCAGCATGGATCAAAC





GGATCAAACATTGGCTTACTGTGCT





ATTGGCTTACTGTGCTAATGTGTGA





ATGTGTATTTTATCTGAGTTTGAGT





GAGTAGGGTGCGTTGTGGATTTTGT





GAAAGTCCAGTTCTCATAAATATTG





GTTTATCAGCACGTTCATTTATTAT





GGAATGTTCTGGAAGATGCTGTTAA





TGAGAATCTGGTGTTACTGTATTTT





217814_at
CCDC47
0.457459652
GTATCTGCACGAGCACTTAGCTTGT





CACTTAGCTTGTTCAGATCTCTGCA





AGGTCATTGCTTGTACCAGGTAATT





GGGTATTTTTTGTTGATGCTTTAGT





GATGCTTTAGTGCAGGCCTGTTCTG





GTGAAAACAGCATGTGCTGCTGCCT





TTGTAACTGCATGGAAACTTTTCAC





TTTTCACATGGGTTTTTCTCCAAGT





TATAGTAGTGGCCTTGTTTTACAAA





AAGTCCCATACATTTGGACCATGGC





ATGAACTACCTATGGACATCTATTA





222432_s_at
CCDC47
0.40877297
CTGGAGGAGGCTGCATTGAGGCGTG





GAAAGCCATGTAAAGCCATCCCAGA





ATTTGAGTTCTGATGCCACCTGTAA





TGCCACCTGTAAGCTCTGAATTCAC





GAAAAACGCCAGTCCATTTCTCAAC





CTCAACCTTAAATTTCAGACAGTCT





TCATCTACTCTGTTTGGGGTTTGGG





AGATACCTGGAAAGGGCTCTGTTTC





TCATCAGTGCTTTTAGTACTTCAGT





GTAGATAACCAGATTGTTGCTTTTT





GACTGACTCTAAACCAAGATTCTGC





218722_s_at
CCDC51
0.405090667
GAACACCATCTATAGCACCCTGGTC





GCACCCTGGTCACCTGTGTGACATT





TGTGACATTTGTGGCCACACTGCCT





GCTATTCAAAGCCAGCTAACCCCTG





GAAGCGAGCCTTTGGGGGCATGTAC





GGGCATGTACAACCTCAATCTGAAG





GGAGCAGTATCTGTGTGGCTCACCA





AGCAGGCATGCTTCGCTTTGTAGAC





AGATGTAGATGTCCTTTCAGCTGCC





AGTCATTCCAGGCAAGTCCATTCAT





CAGCAGACGGGGCTATGCCCAGCTT





227783_at
CCDC57
0.618837339
TCCTCCAGCAGCCGACAGGAGGCCC





AGGCCCGTCAAGATGCAGGCAGGCA





AAGATGCAGGCAGGCATTGCCACCC





GGCATTGCCACCCCAGGGATGAAGA





TCCTGCAAAAGCTAAAGGCTGCCAG





CCCCCAAGATCCGTAACTACAACAT





ACAACATTATGGACTGACTTCCTCC





AGCCGGCCCAGGAGGAAGGCCATGC





CCAGGAGGAAGGCCATGCGTCTCTG





GTGGGCACAGCGTGCAGGGTGGAGG





TCTCGCCCAAGTGAGGCCTGTGTGC





215343_at
CCDC88C
0.401296785
AAGGGATCAGAACTCTCGTGGGCCT





CCTCCAGTGTGTCGCAAGTTTTTGC





GAAAAACTCTCCGGCAGTAAAGCCT





GTAAAGCCTAAAGTTCCACATCCAC





TGATTTCTCTCCTAAGGGTATCCCG





CCCGGAGTAACTTCTGCACATGGAT





ACATGGATGCCTGGGACTTCACAGC





GTCCAAACACATTAACTGCAGCATA





TAGCATGTTCCCAATGATGACTTAC





GATGACTTACAGCACTATGCCTTTT





GCAACTACAATGACTGTACTCTCTA





214049_x_at
CD7
0.494625916
GAATTCGGCGGCATGTGTGGTGTAC





GTGTACGAGGACATGTCGCACAGCC





CAACCAGTACCAGTGACCCAGTGGG





TCCCACGGCTGCAGCAGAGTTTGAA





AGCAGAGTTTGAAGGGCCCAGCCGT





AGCTCCAAGCAGACACACAGGCAGT





CCCACGGTGCTTCTCAGTGGACAAT





TCAGTGGACAATGATGCCTCCTCCG





GAGGAAGCCTGACTGTCCTTTGGCT





GAGGGCTTTTCTGTGGGATGGGCCT





CCACCCAGCCGTACCAGAAATAAAG





214551_s_at
CD7
0.359343344
CCAGGCCATCACGGAGGTCAATGTC





ATCACGGAGGTCAATGTCTACGGCT





CGGAGGTCAATGTCTACGGCTCCGG





GAGGAACAGTCCCAAGGATGGCACA





CGTGTGTGCTGGCGAGGACACAGAT





GTGCTGGCGAGGACACAGATAAAGA





GGGATAAGAATTCGGCGGCATGTGT





GAATTCGGCGGCATGTGTGGTGTAC





GGCGGCATGTGTGGTGTACGAGGAC





GTGGTGTACGAGGACATGTCGCACA





TGTACGAGGACATGTCGCACAGCCG





204126_s_at
CDC45
0.983080062
GGCCTGGAACTCGCCAAGAAGCAGC





TGCTCTCTCATGGAGGGCACTCCAG





GGCACTCCAGATGTCATGCTGTTCT





TGCTCAGCAAACACCTGCTCAAGTC





GCTCAAGTCCTTTGTGTGTTCGACA





GACAAAGAACCGGCGCTGCAAACTG





GCATGGCACAGTGACCGTGGTGGGC





CCCCAGAGACCGACAGCTCGGACAG





GATGCTGCACAACCATTTTGACCTC





AGTTTCTGGACGCACTTATTTCCCT





TTTCCCTCCTGTCCTAGGAATTTGA





221436_s_at
CDCA3
0.971627813
GCACGGACACCTATGAAGACCAGCA





CCCCAAGCCCACTGGTGAAACAGCT





CCAGAGGCACCTTTATCTTCTGAAT





CTGAATTGGACTTGCCTCTGGGTAC





CCAGATCTTCAGGTTCTATGCGCAA





GCAAGGTACTAGGGAGATCCCCCCT





TCCTGCAGGATGACAACTCCCCTGG





TACGACAGGGTAAGCGGCCTTCACC





GGAGCCATTCTTGGAACTGGACGAC





GAGCAAGGCCAGGACCATGACAAGG





AAAATCAGCACTTTCCCTTGGTGGA





223307_at
CDCA3
0.97567222
AATGGCTTGTTTTCTTAGACTCCTC





CCTCCTCAGCTACCAAACTGGGACT





GCTACCAAACTGGGACTCACAGCTT





GGACTCACAGCTTTATTGGGCTTTC





TTATTGGGCTTTCTTTGTGTCTTGT





TTCTTTGTGTCTTGTGTGTTTCTTT





CCTGCATGGCCCCAGCAATGCAGTC





ACCCAGGGCCTGGTGATATCTGTGT





CCTGGTGATATCTGTGTCCTCTCAC





CTTCTTTCCCAGGGATACTGAGGAA





GGGATACTGAGGAATGGCTTGTTTT





204029_at
CELSR2
−0.38609522
TTGGGATGGGTTCGTGTCCAGTCCC





TCCAGTCCCGGGGGTCTGATATGGC





CTGATATGGCCATCACAGGCTGGGT





ACAGGCTGGGTGTTCCCAGCAGCCC





GCCGACTGCTTTTCATCTGAGTCAC





AGTCACCATTTACTCCAAGCATGTA





AAGCATGTATTCCAGACTTGTCACT





CACTGACTTTCCTTCTGGAGCAGGT





GTTTCTCATTTGTGAGGCCAGCCTC





TCCCCTCAGCAATTCCTGCAAAGGG





GCTGGATGCTAACTTGATACTAACC





36499_at
CELSR2
−0.34862803
CTCCCTGTGAAGAGAGAGTTAATAT





TCCCAGCAGCCCTGGCTTGGGGGCT





TGGCTTGGGGGCTTGACGCCCTTCC





CTCTCCTCAGTTTTGCCGACTGCTT





CCAAGCATGTATTCCAGACTTGTCA





ATGTATTCCAGACTTGTCACTGACT





CTTGTCACTGACTTTCCTTCTGGAG





TTTCCTTCTGGAGCAGGTGGCTAGA





GAAAGGCTCCTGTTTCTCATTTGTG





TTCTCATTTGTGAGGCCAGCCTCTG





CTCTGGCTTTTCTGCCGTGGATTCT





TTAACTGGTTTTTACTACTGATGAC





TAACTGGTTTTTACTACTGATGACT





CCATCAGATTGTACAGTTTGGTTGT





TACTACTGAATAAACTAGTTCTGTG





ACTGAATAAACTAGTTCTGTGCGGG





204962_s_at
CENPA
1.01511874
AGACCACTTTGAGCAGTTGCCTGGA





GAAGGCTGGGCATTTCCATCATATA





CATTTCCATCATATAGACCTCTGCC





CCCTTCAGAGTAGCCTCACCATTAG





CCTCACCATTAGTGGCAGCATCATG





GAGTGGACTGTGCTTGTCAACGGAT





GTCAACGGATGTGTAGCTTTTCAGA





GCTTTGATGTTCTGGTTACTTCTAG





TTACTTCTAGTAAATTCCTGTCAAA





TCAACACCGTTCCAAAGGCCTGAAA





GAGACTCCAAGGTTGACTTTAGTTT





210821_x_at
CENPA
0.920552048
CCCTTCAGCCGCCTGGCAAGAGAAA





GACTTCAATTGGCAAGCCCAGGCCC





GGCCCTATTGGCCCTACAAGAGGCA





GTTCATCTCTTTGAGGACGCCTATC





ACATGCAGGCCGAGTTACTCTCTTC





GATCCGGGGCCTTGAGGAGGGACTC





CACCCAGTGTTTCTGTCAGTCTTTC





TCTTTCCTGCTCAGCCAGGGGGGAT





GACTCTCCAGAGCCATGACTAGATC





TGGATTCTGCGATGCTGTCTGGACT





TGTCTGGACTTTGCTGTCTCTGAAC





226788_at
CENPT
0.387999504
CTCAGTACTGTCAACCAGTGCCCAG





GGAGTTCAACAATGGCCTGCGGTCC





AGGGCAGAGTCTAAGGCCCCAGCTT





GATGGGGTCTGGGAGTCCAGCAGGC





TTCACATTCCGTGCTTCTTGCGGAT





TGACAGCCATGGCAAGCAGCCGATC





CAGCTTGGCCTCAGTGAGACGCAGG





CCCAGCTTCCACTTCAGGAGGAAAC





GTCGGAGCCAGTATCAGGGAAGCCC





CAACTGGGGGCCCATAGGGCACTCG





CCAGGTCACCAGCAAGAGAGTCCAG





229448_at
CERS1
0.51372688
AAGGGAGAACCCATCAGATTCGCCT





GGCCTCTGAGTTTGACAGGGGAGCC





CTGGGAGCTCAGACTCAGTCCAGCC





GTGTCTGGGCCAGGGATGAACGGAG





GCAGAGTCGGGTGTGCAGTGTCTCA





CCTGGAAGGTGCCGACCAGCCAGGC





GCCCTCTGATTTGGCCGGTGGGGGC





GGGCCATCGGTGACGTGGGAACGAT





CTCAGAGCTCCGTGACGTTTTTTGG





TGCAGACATTTAACACATCCGGGGC





GTAGCCAGGCAGAGGAGCGTCAGAC





229595_at
CHCHD4
0.662554312
GTGAGCTGATTTATTCTGATTCATT





GATGGGGCCATATCTACTAGCAGAG





TGATTTCTGCAAACCCATCTTGACC





GCAAACCCATCTTGACCTTGAGTAT





AGGGGTACTGTACTTTATTCCTGAT





GGTTTCCATGTAGGTGTTGAGCTCC





TTTGGACCCTTCCATTCATAATCCC





TTGCCCTGAATTTTGCCACTTTTAA





GGCTGTTCCTTGTTATTCCGAAAGC





ACTGGCTCTCAGTCTAGTCAGGTGC





GGTGGGGACCTAATTATTACCAGAG





203044_at
CHSY1
−0.89770937
TTTCATCCTGTCTGTGTTATGTGGG





TTTGTTTTATCCTTTGTATCTGAAA





TTCAGAGCTCTGCCATTTCTTGAGT





GTATCGGGAGTGTGTTTAGTCTGTT





TAAACCGATCTCCAAAGATTTCCTT





AATTTTGGTGCTCATGTGTTTTGGG





AAATTCTCAGATCAAATGTGCCTTA





GACTTGCCATTTTAATACACGTCAT





TACACGTCATTGGAGGGCTGCGTAT





GTAAATAGCCTGATGCTCATTTGGA





AACCATTTTGTCTCATTATTCCTGT





202559_x_at
CHTOP
−0.39904932
ACTTGCCACCAGCTTGTGCATTTAG





CTAGGCCCCACTGCTCTAAGGGGCA





GGGCATTTACTACAGCACCTATTAA





GGACGAGGGAGAGGTGCCCTTGCTC





TGCTCGCCCTGTATTGACCAAGGAG





GGACACCTGGATGCTGAGTTGGATG





GAGTTGGATGCCTACATGGCGCAGA





ATGGCGCAGACAGATCCCGAAACCA





AACCAATGATTGAAGCCTGCCCATC





CCATCCTCCCATGAGAGACTCTTGT





TAGGCTGTGGACTTACTTGCCACCA





212784_at
CIC
−0.44453195
TGGGGGCAGGAAGGTTATCTCCTCC





TCCTCTCCAGTTTGGGGCGGAATGA





TGAGGCCTGCTCCTCTTGTAAATAC





CCAAGCCCCTGTACATAACCTGGAG





TAACCTGGAGCGTGTGACCTTCAGA





GACCTTCAGAGCTTTTCACTTTATG





TGCAAAATGGCTCCTGTGAGGGCTG





GGGAGGCGCCTGTGGAATAGGGGGA





CAGAGGGGCTGGACTCAGGTTAGTT





TGCACTTTGCCACAGGCACGGGGAG





CTTACTGTGCCGAGAAGCCGCAATG





221223_x_at
CISH
−0.56580607
CTGAGCCCTGGTAGTCCAAAGACCC





CTGGTTCTTCCCTGTGGAAAGCCCA





AAAGCCCATCCTGAGACATCTTGCT





GGCAATCCTGGATGTCCTGGTACTG





CTCTGTGAATGTGTCCACTCTCTTC





TTCTGCCCCCAGCCATATTTGGGGA





AGAAAATGCAGCCGGAGCCTCAGTC





CATAAAGCTGGTCTCACTGTGGCGC





GCCACCACTGCAGTTCTGCTAGGTC





GAACAGTTTGGTGGTCTTTTCTCTT





TTTCTCTTCCACTGATTTTTCTGTA





223377_x_at
CISH
−0.50821557
TGAGCCCTGGTAGTCCAGAGACCCC





CTGGTTCTTCCCTGTGGAAAGCCCA





AAAGCCCATCCTGAGACATCTTGCT





GGCAATCCTGGATGTCCTGGTACTG





CACCCGTCTGTGAATGTGTCCACTC





AGAAAATGCAGCCGGAGCCTCAGTC





GCATAGAGCTGGTCTCACTGTGGCG





GCCACCACTGCAGTTCTGCTAGGTC





GAACAGTTTGGTGGTCTTTTCTCTT





TTTCTCTTCCACTGATTTTTCTGTA





GACATTATACCTTTATTACCTCTTT





223961_s_at
CISH
−0.46650396
CCTGGCCACCTGAACTGTATGGGCA





GGAGGATGACATGCAGAGGAACTGA





GATCGACAGTGACTAGTGACCCCTT





GTGACTAGTGACCCCTTGTTGAGGG





GGTAAGCCAGGCTAGGGGACTGCAC





GGGACTGCACAATTATACACTATTT





TTATTCTCCTTGGGGTTGGTGTCAG





TGTGGAAAGCCCATCCTGAGACATC





TCCTGAGACATCTTGCTGGAACCAA





GGAACCAAGGCAATCCTGGATGTCC





GTAAGAAAATGCAGCCGGAGCCTCA





208659_at
CLIC1
0.557267522
CAAAGGCCCTGGTGGTTTCCACATT





ATTGCTACCCAATGGACACACTCCA





GTGGGCAGGGAATCCTGGAGCACTT





GGAGCACTTGTTCCGGGATGGTGTG





GAAGATGAAGGTGTCTCTCAGAGGA





TTTTTGGATGGCAACGAGCTCACCC





GTACCGGGGATTCACCATCCCCGAG





CCTTCCGGGGAGTGCATCGGTACTT





TCGGTACTTGAGCAATGCCTACGCC





GCCCGGGAAGAATTCGCTTCCACCT





GCAAAGGCCCTCAAATAAGCCCCTC





209081_s_at
COL18A1
−0.41482881
TGCCCATCGTCAACCTCAAGGACGA





TTCTCCTTTGACGGCAAGGACGTCC





GACGGCAAGGACGTCCTGAGGCACC





CTGGCCCCAGAAGAGCGTGTGGCAT





CAGGCTGACCGAGAGCTACTGTGAG





AGAGCTACTGTGAGACGTGGCGGAC





TGTGAGACGTGGCGGACGGAGGCTC





CCTACATCGTGCTCTGCATTGAGAA





TGAGAACAGCTTCATGACTGCCTCC





GCTGCCATACTTTCCTGTATAGTTC





ATACTTTCCTGTATAGTTCACGTTT





209082_s_at
COL18A1
−0.40498176
TGGCTGGGACGTGGCTCAGCCAGCA





TCAGCCAGCACTTGTCCAGCTGAGC





GAGCGCCAGGATGGAACACGGCCAC





GCACAGGACATGCGGTAGCCAGCAC





GGTAGCCAGCACACAGGGCAGTGAG





GCTCCAGATGCAGGGCAGTCATTGG





GTCATTGGCTGTCTCCTAGGAAACC





AGGTGCAACAAGGTCCTCTGTCAGT





GAGTCATTCGTTCTGTGGAGGGACA





CCTCAGGACTGCGACGAAACCGGTG





GGGCTGGTTCTGTAATTGTGTGTGA





201264_at
COPE
0.575376523
ACCTCGCCCGGAAGGAGCTGAAGAG





GAGAATGCAGGACCTGGACGAGGAT





GAAGCTGCAGGATGCCTACTACATC





GATGCCTACTACATCTTCCAGGAGA





GGAGATGGCTGACAAGTGCTCGCCC





TGCTCAATGGGCAGGCGGCCTGCCA





TGCTGCAGGAGGCGCTAGACAAGGA





AGGATAGTGGCTACCCAGAGACGCT





CCCAGAGACGCTGGTCAACCTCATC





CCCATCCCTTCATCAAGGAGTACCA





GCCCAGAGCTGTCAGGACCATGAAG





221754_s_at
CORO1B
0.395216845
CAGCGGGACCTGAAGATCAGCCGGC





CGCAACGTGTTGTCTGACAGCCGGC





CCCTGAGGGCGCTGGTCAAGGAGCA





TCAAGGAGCAGGGCGACCGCATCTG





CAGCTGGGCCGCATGGAGAACGGGG





TGGGCCGCATGGAGAACGGGGATGC





GGAGAACGGGGATGCGTAGGGCCAC





CCAGAGCCTCTGAGGCAGCGCAGGG





CCTCCCCAGAGGAGGCGGGAGGGTG





GAGGGTGGGCTCTATATTTTCATTC





GTGGGCTCTATATTTTCATTCCAAA





209833_at
CRADD
0.525119204
ATGACCGACCTGCCTGCAGGTGACA





GGTGACAGATTGACTGGGATCCCCT





TGAGTGGGAGCCCATGGTGCTGTCT





GGGACTGTCCCAGACGGATATCTAC





GGATATCTACCGCTGTAAGGCCAAC





CAGCAACCGCTGGGGAGTGTGTCCC





GTGTCCCTGAGTCATGTGGGCTTGA





TGGGCTTGAATCCTGACTTTCACTC





CAGGGTTTCCACTAGACATTACTTG





CAGATTACTCAGCAGATCTCCCATG





GATCTCCCATGTTGGCTCAACAATT





226455_at
CREB3L4
−0.41959118
TTCAGTCCATTCCAGAGTCGACCAG





GGGTCTGAGGATTACCAGCCTCACG





GACTTCCAGAAATATCCTGACCCAC





GAAGCCAAGACCCAGTGGGCGCATC





TGTGAGCTGGAACAGACCTTCCTGG





GGGATTCCTACTTAGGTGTCTGCCC





CCCTCAGGGGTCCAAATCACTTCAG





ACACCCCAAGAGATGTCCTTTAGTC





CTTTAGTCTCTGCCTGAGGCCTAGT





TGAGGCCTAGTCTGCATTTGTTTGC





GAGGGTACCTCAAATACTTCTGTTA





226307_at
CRTC2
−0.39881009
CTAAACATGCTGAGTGACCCCTGTG





GCTGTGGAGGAGTCATTCCGCAGTG





CAGTGACCGGCTCCAATGAGGGCAC





CAATGAGGGCACCTCATCACCATCC





TCCCCCTGGCAGGTAGAGACTCTAC





CCAGATCCTCTTTCTAGCATGAATG





GGCCCCTGAATTCTGCGCAAGGGAT





GATGGGCCTGGGGGAACTCAAGGGA





AGCACTTGTAACTTTGAACCGTCTG





GAACCGTCTGTCTGGAGGTCAGAGC





CTCTTCCCCTTGCAGTGGAGGAGAG





202329_at
CSK
0.478812142
GCCACTCGCCTTCTTAGAGTTTTAT





CACTCGCCTTCTTAGAGTTTTATTC





TGAGATTTTTTTTCCGTGTGTTTAT





GGAGAAAGAAAGTACCCAGCAAATG





TGTTTGCGCTTGACCATGTTGCACT





GCTTGACCATGTTGCACTGTTTGCA





CATGTTGCACTGTTTGCATGCGCCC





CCCGAGGCAGACGTCTGTCAGGGGC





CAGACGTCTGTCAGGGGCTTGGATT





CGTCTGTCAGGGGCTTGGATTTCGT





TCAGGGGCTTGGATTTCGTGTGCCG





221021_s_at
CTNNBL1
0.419323318
GAACCTGAGAGGGCAGCAGCGGACC





AGCGGACCCGGCTTCTGAATAAATT





GGGTGCAATGCAGGTGGCGGACAAG





GAAAAACACGACATGGTCCGGCGAG





GGTCCGGCGAGGAGAGATCATCGAC





CGAGGAGGAGTTCTACCTCCGGCGC





TCCCCCAGATTCGCCAGAGGGTTCA





AGAGGGTTCACCAGATCCTAAACAT





GGAAGCTCCATCAAAATTGTCAGGC





AGAGAACATCGGGGACGGCCGGAGC





GAGCAAAAGCGCATCCTGGGCTTGC





209617_s_at
CTNND2
0.700055961
GCTCCGGGAACAGTGCATGTGCATG





GTGCATGCATACCACAAGACATTTC





TAGTTTGTTAAAGCCTGTTCCATAG





ATGACAGTGGGCAGCACCTTTCTAG





GCAGCACCTTTCTAGCGTGAGCTGT





GTGCTTTATACTGAACGTGGTTGAT





AGGAGAGACGAGGCATTCGGGCCGG





GGCGTAAGGGTTATCGTTAAGCACA





TACACACTGTGTGGGGGACGGCTTC





GTGACTCTAGGCTTCAGGTTGCATT





TGCATTGGGGTTCCTCTGTACAGCA





209618_at
CTNND2
0.594537267
GAAGCTATTTCATTTGCTGTTCATC





TGTACTGTATCTATTCTTCTGACCA





TATTCTTCTGACCATCTAGTGACTC





GTGACTCAGGATATTAGGCCCAGTT





TTTCCACACATTCACGCATACTTGG





ATACTTGGATATCAACCCTCTCTAC





ATCCCCCTCAGAACACGATAAACCA





ACCATGGCCAATTCAGTTTCACTTT





AAAATGTAAACTGCTCGCCTTATTC





GAACATGGGCCGCGGGTAAACTAGC





TAAACTAGCTTTGCTCTTTAGATGC





226833_at
CYB5D1
−0.52321368
CATCACCTCTTGTCTAAACTGCTAC





CTTCTGACTTCCATGCTGCAATGAG





AACATCGAACTTTCCTTAGCTTCTT





CTTCAGTGGCTTCCAACTGCTTTTG





ATAAATCAGGCTCATCTCGCAACAC





GTTCTCTATGGCCTAGACACACTGG





AGTTCATTACATGTCTTGCCTCAGA





CTTTCCACCTAGCTGATCCTAAATG





TAAATGTTCCTTCCTCAGGGAGGTC





GCTGGCTGCGCTGCTAGATTGTAAG





TTCACATCTTGCTCACTGCTATATT





219001_s_at
DCAF10
−0.47812956
GGGATTACCAAAGGCTGGAGCGATT





TTAAGCTATGCACTAGCCTTGCCCT





CCCTCTTAGGTTGCATTCTCTTTAG





TTCTCTTTAGGCCACTGGTTCTCAA





GGCCACTGGTTCTCAAACATTAGGG





AACATTAGGGTGCACTGTAACCATT





TGAAAAGTGCAGAAACCTGAGCCTC





GTATTTTTCATAGCAACCTCAAGTA





AGGGTCTCGGGATTGCAGGTTGAAA





GAAAAACACAACCTTAATCAGCAGT





GCAGTAAATTCTTCTCTACTCGGCC





222804_x_at
DCAF10
−0.55404981
AAAGTTCTCTCCAACACATTGTCAG





CATTGTCAGATTGCCTCAGGGTGCC





GTGGACGGGTTTCTTTGTATCAGCC





GGAACTCTTCTGGTGTTTGACTTAG





GATCCTGGTTCTTATGGGTCCATGA





GGTCATCCAGCATCATACAGGCATC





ACAGGCATCTCCAAGTTAGACTCTA





AGCATCATCTTTTGCAGCATTCCTC





TGATCTGTGCCACTGAACTCCAGTT





CAGTTCTTCTGGTCATTTTGCATGG





TTTTGCATGGTAGCTCTTGTCACGT





226511_at
DCAF10
−0.53751669
GAAACTCCCAGTTAAAGCCTAGGCT





AGCCTAGGCTAGCAATTTTTTTTAG





ACTAAGGATGCTGCTAGACTAAGGA





CAGAGGGGTCTATCATGCTTTTAAG





GAGTATTTTGGATGCCATTAAACTT





GGCTTAAATTATCACGTATTGTTAC





AATCATGTCCTAAGAATTTCTCCCA





GAATTTCTCCCATTCAAATGATAAT





TCAAAGTTACCATTACGCTGCTCTC





GCTCTCTTGTAAATGAACTAGGGAT





ATCTCACATTCACCTCCTATATGTA





230679_at
DCAF10
−0.40321124
TTTCTCCCTCATTTAGATTTCATGG





GGAAATTTGGAGTATTCCAGACAAT





TTCCAGACAATATACTAGATACCCA





TATACTAGATACCCAGAAACTTTTC





AGAAACTTTTCTCAGTAGGTTCTGA





TAGGTTCTGAGGTGTTTTAAGTTCT





TTTAAGTTCTTATGCTAGACTGTAA





TTATTTATTCTTGTATCCTCAGTGC





CTGGTACAGGACTTGACACAGAGTA





GGACTTGACACAGAGTAGTTGTTCA





ATCTGGTCCAAAGTCTTTAAAATAG





210811_s_at
DDX49
0.683776996
GTGTGAGATCAAACTGGAGGCGGCC





TCAAACTGGAGGCGGCCCACTTTGA





GGCGGCCCACTTTGACGAAAAGAAG





GGAGATCAACAAACGGAAGCAGCTG





TGGAGGCCAAGCGCAAGGCTGAGCT





AGCAGAAGAACCGGCGCTTCAAGGA





GGAGGAGACGCTGAAGCGACAGAAG





GACTCGTCCATGGAGCTGAGGGTCG





GTCCATGGAGCTGAGGGTCGGAGGA





GGGTGCCGCATACAGGAGGTGCTTA





GCCGCATACAGGAGGTGCTTAATAA





31807_at
DDX49
0.753262317
CCACTTTGACGAAAAGAAGGAGATC





GGAAGGACCCTGACCTGGAGGCCAA





AAGGACCCTGACCTGGAGGCCAAGC





AGAACCGGCGCTTCAAGGAGAAGGT





ACGCTGAAGCGACAGAAGGCTGGCA





TGCCCAGTCCTTGACTCGTCCATGG





CCCAGTCCTTGACTCGTCCATGGAG





CTGAGGGTCGGAGGAACCTTCCTTG





AGTGCCCCACAGCAGAACCCGTGGG





CAGCAGAACCCGTGGGCGCTCGTGT





TTCCCTGAGCCCTGGCCAAGATTCA





GCCCTGGCCAAGATTCAGGCTGCAG





CAAGATTCAGGCTGCAGGGGAAGAA





ACATGACCGGGAGGTTGTGACCCCA





CATGACCGGGAGGTTGTGACCCCAA





GGTGCCGCATACAGGAGGTGCTTAA





236496_at
DEGS2
−0.41597379
CACTCCTGGGTGAAGGTGCTCTGGG





GAAGGTGCTCTGGGATTTTGTGTTT





TTTTGTGTTTGAGGACTCCCTGGGG





GGCCCTATGCCAGGGTGAAGCGGGT





GTGAAGCGGGTGTACAGGCTGGCAA





GTGTACAGGCTGGCAAAAGATGGTC





CAAAAGATGGTCTGTGAGCCCGGGC





TGAGAAGCTACATTTCCTTCCTGTG





GCCGCACACGCAGCGGGCAAGGAGA





GCGGGCAAGGAGATACTGGGTGCGG





GGAGATACTGGGTGCGGAAGATCGC





202481_at
DHRS3
0.458263723
GGTGAGCAGGACAGCTCCTGTCCCC





TGTCCCCAGCGAAGAATCCGGCTGC





TGATGGGTGTAACTGACCCCCACAG





TGCTTCTCAAGTCTAACCAGCCTCA





CAGCAGTGTGCATAGACCATTTCCA





CCATGGACAATGCATGCCCTCGTTA





GCATGCCCTCGTTATCTTGAAAAGC





CTTCCACAGGCTGCACTCGAGGAGA





GATCCACAAATTCTCAGGAACCTAC





AGGAACCTACACCTGCATGAACACT





TGAGGAGCCACGGAGTTTGGGGGCC





209509_s_at
DPAGT1
−0.45907357
TCTCCATTCGATATCAGCTCGTTCG





GCTCGTTCGACTCTTCTATGATGTC





TACCTCACAGTCTCTAGGATTCCTG





CTTTCTCTGTGATCATTGGCATCCT





CAGCTTTTTTTGCAGTTATCCACAC





CAGTTATCCACACTCACATTTCAGA





GAGTCCTGACTCTCAAGGAACCACT





CCAGGGCTAGGAACACAGGCTCCAC





CAGGCTCCACGGTGACATGTCATTT





ACTAAGCAGGGGGCCACATGCTCTC





GGGCCACATGCTCTCAATGGAGACA





201907_x_at
DVL3
0.341187495
CGCCAGCAGTCAGCACAGCGAAGGC





GCGAAGGCAGTCGGAGCAGTGGCTC





CGGAGCAGTGGCTCCAACCGTAGCG





AACCGTAGCGGTAGCGATCGGCGGA





GCGGTAGCGATCGGCGGAAGGAGAA





CCACACCACACGCAGCAGTCTGCGG





CCACACGCAGCAGTCTGCGGGGGCC





GTCCTTCCGCATGGCCATGGGAAAC





ATGGGAAACCCCAGTGAGTTCTTTG





GAGTTCTTTGTGGATGTGATGTGAT





TGATGTGATGTGAGCAGGGCCCCTC





2028_s_at
E2F1
0.949930222
CAGGGCAGTGCCTGCTCCCAGAATC





CTGCTCCCAGAATCTGGTGCTCTGA





CCCAGAATCTGGTGCTCTGACCAGG





AATCTGGTGCTCTGACCAGGCCAGG





ACGGTGAGAGCACTTCTGTCTTAAA





GAGAGCACTTCTGTCTTAAAGGTTT





TATTTATCGAGGCCTCTTTGGTGAG





ATCGAGGCCTCTTTGGTGAGCCTGG





TCCCTCTACCCTTGAGCAAGGGCAG





GGGTCCCTGAGCTGTTCTTCTGCCC





CCTGAGCTGTTCTTCTGCCCCATAC





TTCTGCCCCATACTGAAGGAACTGA





CCCCATACTGAAGGAACTGAGGCCT





AAGGAACTGAGGCCTGGGTGATTTA





GAGACAGACTGACTGACAGCCATGG





AGACTGACTGACAGCCATGGGTGGT





204947_at
E2F1
0.927414606
CTGGCTGGGCGTGTAGGACGGTGAG





TAGGACGGTGAGAGCACTTCTGTCT





ATTTATTTATCGAGGCCTCTTTGGT





CTCCCTCTACCCTTGAGCAAGGGCA





GGAACTGAGGCCTGGGTGATTTATT





GACTGACTGACAGCCATGGGTGGTC





GGTGGTCAGATGGTGGGGTGGGCCC





GCTGCCCCCCAGGATGGATATGAGA





TGGGGGACCTTCACTGATGTGGGCA





ACCCTCCAATCTGCACTTTGATTTG





TGATTTGCTTCCTAACAGCTCTGTT





202023_at
EFNA1
−0.79399154
GCTGGAAGGGGCCACGTGGATGGGC





AGAGGCAGCATGCTTGGGCTGACCC





CTGTGCCAACCTGTTCTTAGAGTGT





GAGTGTAGCTGTAAGGGCAGTGCCC





GCAGTGCCCATGTGTACATTCTGCC





ACATTCTGCCTAGAGTGTAGCCTAA





GTGTAGCCTAAAGGGCAGGGCCCAC





AGGGCCCACGTGTATAGTATCTGTA





CCACCTTCACCTCGGAGGGACGGAG





GAAGTGGAGACAGTCCTTTCCCACC





GGCATGGTCCCTTAAGGCACAGTGG





219850_s_at
EHF
−0.79952448
GATTGAGAACCACCAGTTTAGCTAG





GAACCACCAGTTTAGCTAGTCAATA





GGATGGTGGTTTATTCTCAGAAGAA





CCAGATGAGAGCCAATGTCAGATAA





TTTGTCTTTTGGATTATCTGTTTAC





TGGATTATCTGTTTACTGTCTCATC





TACTGTCTCATCTGAACTGATCCCA





GTCTCATCTGAACTGATCCCAGGTG





GATCCCAGGTGAACGGTTTATTGCC





GGTTTATTGCCTAGATTTGTACTCA





GCCTAGATTTGTACTCAGAGGAATT





222932_at
EHF
−0.6110743
AAGGAGTTAAAAGCTTCTTCTCAAT





TGAGCCATGCAATCTGGGAAGCACA





GGAAGCACAGGAATAAGTAGACACT





ATGAAGACATGTATCCATAAGAAGG





ATAAGAAGGAGTGCTCTTCATCAAC





TTCATCAACTAATAGAGCACCTACC





TAGAGCACCTACCACAGTGTCATAC





CACCTACCACAGTGTCATACCTGGT





CACAGTGTCATACCTGGTAGAGGTG





ATATATTCATGAGGCTGGAAGTAAG





GAGGATGGGGCTTAGATAGTATCGA





224189_x_at
EHF
−0.81521604
ACATCACCAAATGTTCCCTGGGGGT





ATTTGCCCTTGATTGAGAACCACCA





GAACCACCAGTTTAGCTAGTCAATA





CTTCAACCTCAACCTATCTTTATGT





AGAGGAGCTTCTTTTCAGAACCCCA





AGAACCCCAGATGAGAGCCAATGTC





ATTTCCAGGGAAAATCCTCTTTGCA





GATTATCTGTTTACTGTCTCATCTG





GTCTCATCTGAACTGATCCCAGGTG





GATCCCAGGTGAACGGTTTATTGCC





GTTTATTGCCTAGATTTGTACTCAG





225645_at
EHF
−0.81425955
TGCCTGCTATGTGCACGGCATGGGC





GCACGGCATGGGCCCATATGTGTGA





GATCTCGGTAGTTACGTATTGGGCA





AATTATCCTCAGTGTAGCTTCTTGG





AAAACTCCTGTTGAGACTGTGTCTT





GACTGTGTCTTATGAACCTCTGAAA





GAACCTCTGAAACGTACAAGCCTTC





AATCTTTCTGTAGTTATCTGCATAA





CTGGCTCCTGGGTTGACAATTTGTG





GAAACAACTCTATTGCTACTATTTA





GTTTATTTGTTTGATGGGTCCCAGG





232360_at
EHF
−0.91281478
TGAAGTGGAACGGTGACTCTCTCTT





CCTGCTAGGAGCCAGCTGGAAGAAT





GAGATTCTGCAGATGACAGGATTCT





GAAAGAGTGGTCTCACCTCCAAATT





TGGTCTCACCTCCAAATTACCATGT





GAAGCATAGGGTACCTGGTGTGCCT





GTGTGCCTAATCCCTTATAAATGCC





ATTTAATTCTTTCCTTATGGTGATA





CGTAGAATACTTACTATCCTTGGAA





TCCTTTGCAAACAGTCCAGTCACTT





ACAGTCCAGTCACTTGCTTGTTAAA





232361_s_at
EHF
−0.89914362
CAAGTACCAGGTGTGGGAGTGGCTC





CTCCTGGACACCAACCAGCTGGATG





TGGACACCAACCAGCTGGATGCCAA





ACACCAACCAGCTGGATGCCAATTG





TGGATGCCAATTGTATCCCTTTCCA





ATTGTATCCCTTTCCAAGAGTTCGA





GTATCCCTTTCCAAGAGTTCGACAT





TCCCTTTCCAAGAGTTCGACATCAA





AGTTCGACATCAACGGCGAGCACCT





CTCCTCTACAGCAACTTGCAGCATC





CTCTACAGCAACTTGCAGCATCTGA





203462_x_at
EIF3B
0.456133148
GGTGGACACTGACGAGCTGGACAGC





GAGACCATTGAGTTCTTCGTCACTG





CACTGAAGAAATCATTCCCCTCGGA





AGGAGTGACCTGGAGCACTGTGCGC





TGGATTCTGCCATTGCGACACATTT





GCGACACATTTTTGTGCCTTTCAGC





AGCCCCTGGTGTCTGCAGTGGGGGA





GCTTCCACTTCTTTCTTGTTTGGAG





GGCTCCGAAGACTTAGCGACGCACT





CTGTACACAGCCGAGCAGCATTTCC





TCCGTTGAAGGACTTGCATCCCCAT





208688_x_at
EIF3B
0.483912025
TGAGCTACAGGACTCCCGAGTGTGA





TGGATTCTGCCATTGCGACACATTT





GCGACACATTTTTGTGCCTTTCAGC





AGCCCCTGGTGTCTGCAGTGGGGGA





CAGTGGGGGATTTAAGGCACCCGCT





GCTTCCACTTCTTTCTTGTTTGGAG





TTGGAGTTTTCTGTTGGAACCGCCG





GGCTCCGAAGACTTAGCGACGCCAC





CTGTACACAGCCGAGCAGCATTTCC





TCCGTTGAAGGACTTGCATCCCCAT





CACCGTGCAGGTTGTGGCCGGTTTT





211501_s_at
EIF3B
0.480989628
GGAGAGAAGGCGCACCATGATGGAA





GATGGAAGATTTCCGGAAGTACCGG





GGAGCAGAAAAACGAGCGCCTGGAG





AGCGCCTGGAGTTGCGAGGAGGGGT





GTTGCGAGGAGGGGTGGACACTGAC





GGTGGACACTGACGAGCTGGACAGC





CGAGCTGGACAGCAACGTGGACGAC





ACGTGGACGACTGGGAAGAGGAGAC





GGAGACCATTGAGTTCTTCGTCACT





ACCATTGAGTTCTTCGTCACTGAAG





GTTTTCTCCGCAGGTTGAACATGGA





203617_x_at
ELK1
0.503580012
CTGCCTGTTTCCTCCCAATGGAGGG





CCCCGCTGCCATTTTGATAGTATAA





GGGGAGAGGGAGTCATCTCTTCCTA





GTCATCTCTTCCTATATTTGGTGGG





GATTTGGGGGGGAATCTTCTGCCTC





AACATGAATTTTCAGTTCCCTCCCT





CAAAGGACCCTTTCAATGTCCCTGG





GACATAAAGCCTGTCCTGTCTCTAT





CTGTCCTGTCTCTATTCTAGGCAAG





GGTTCAAAAGACTCCTGGGCTCACC





GATTTGGGGGACAGTGCTACACTCG





203719_at
ERCC1
−0.54778716
GGCTGTTTGATGTCCTGCACGAGCC





TGCACGAGCCCTTCTTGAAAGTACC





GCCCTTCTTGAAAGTACCCTGATGA





CCTTCTTGAAAGTACCCTGATGACC





TTCTTGAAAGTACCCTGATGACCCC





TCTTGAAAGTACCCTGATGACCCCA





AAGATCTGGCCTTATGCCCAGGCCT





CCCTCAGAAAGCCCGGAGGCTGTTT





CTCAGAAAGCCCGGAGGCTGTTTGA





GAAAGCCCGGAGGCTGTTTGATGTC





AAGCCCGGAGGCTGTTTGATGTCCT





203720_s_at
ERCC1
−0.47904914
TTTGGCGACGTAATTCCCGACTATG





TCCCGACTATGTGCTGGGCCAGAGC





TACATCCATGGGCGGCTGCAGAGCC





CCTGGGGAAGAACTTCGCCTTGCGG





GAAGCTAGAGCAGGACTTCGTCTCC





CTTCGTCTCCCGGGTGACTGAATGT





GACTGAATGTCTGACCACCGTGAAG





ACAAAACGGACAGTCAGACCCTCCT





CCTCCTGACCACATTTGGATCTCTG





TTGGATCTCTGGAACAGCTCATCGC





CAGCTCATCGCCGCATCAAGAGAAG





228131_at
ERCC1
−0.47360973
TACAAGGTTCATGCTTATGGCCTGA





GAAAATAACCACATCCCAGGCTGAC





ACAGAACATGTTCCACCAAGCCTGC





GCCTGCAGAATGTCCAAATGTCCTA





CTAAGAATGCAGCCCCCATTACTTA





GCAGCCCCCATTACTTAAATATAAC





GGTTGCAGGATTAATGGTCGTGGAT





TAGTGAGCTTATCTGCACACTCCAA





ATCTGCACACTCCAAGTTTAACTAT





CTGCTTTCTGAGGACACTCTACTCT





CTGAGGACACTCTACTCTGTAAAGG





205225_at
ESR1
−0.40964831
ATTGCTGCCTCTATTATGGCACTTC





GGCACTTCAATTTTGCACTGTCTTT





GTAAATGCTGCCATGTTCCAAACCC





GTGTTTAGAGCTGTGCACCCTAGAA





ATTATGCCAGTTTCTGTTCTCTCAC





TTTTTGTGCACTACATACTCTTCAG





GATTAATATGCCCTTTTGCCGATGC





TACTGATGTGACTCGGTTTTGTCGC





TTTTGTCGCAGCTTTGCTTTGTTTA





CACACTTGTAAACCTCTTTTGCACT





GATGCTCGAGCACCTGTAAACAATT





219395_at
ESRP2
0.660258078
TGCCAGGGGTGGTCCCACCTAAAGA





GATGGACTGTGCTGCAGTATCACCA





GTATCACCAGAAGACATTAGGGGGC





TAGGGGGCAGTAGGCCCCCACACAA





TAAAGGGGAGGACTTTCTGCCAACT





GCCTTGGGAAAGCCAGTTGCCCTGA





ACACCATGGAATGTCCTTTGCACGC





GTCCTTTGCACGCATTAAATGGTAC





GGTACAGAACTGAAGCCTCGGAAGC





GAAGCCTCGGAAGCAATTTGGAACT





TTTGCCCCAAAGTGAGGGGCTCCAC





219268_at
ETNK2
0.538626729
CTCCAAACCAGATCCAATCAAACCT





AATCAAACCTCAGCCCGAGGAAACA





ACCTCAGCCCGAGGAAACATGCTCC





TTGTGCTGTGGCTTAGCCGGAGGGG





GCTTAGCCGGAGGGGACGTGGCCAA





GCCAAGGGTGAGGTGGCCAAAACCA





CTCCAGCTCTACTTTATGTCCTGAA





TCCTGAAGCTGACCCGAGGTCTTCC





ACCCGAGGTCTTCCTATCTGGAATG





GAGGTCTTCCTATCTGGAATGACTA





GGAATGACTAGAGGGAGCCAAGAGG





225319_s_at
FAM104A
0.570273337
TACCATCTCCCAACTTTTAAAGCCA





TTGAGCTTTCAAACACACATGCACA





GGAGGATTCCTGCAGGCTTAACAGT





GCAGGCTTAACAGTTGGCATCGTAC





GGTTGGCAGTTAACTCTTTCACCCT





TAACTCTTTCACCCTACTAAATTCA





TAAATTCAAGAGCTCATCTCCACCC





CACCCTGTCCTGTATATTTTCTACA





TACTTGGTAGTGTCAGCGGGCATCT





GGCATCTTTTACACCTTCTAGTAGC





AGTAAAACCTTGTACTTCTCTATTG





213455_at
FAM114A1
−0.61972007
TAAAATCGCCTCACAGATCACACTC





GATCACACTCGCTGGTGGCAAATAT





ATGGGAGGCTGCACAGAAGACCCTG





CAGGAGGGGCATTGTCAGTGGCTGC





CCCATGGACATCCCTACAGGTACTG





GGTACTGTCATGTGAAGCCTTGCCT





TGAAGCCTTGCCTAGTAGTTCTCTC





AAACCTCTTATTCACATTTGCTTTG





TTTGCTTTGATTCCCCGATGGAGTA





AGTAGACTGCCTTTGTTCCATACAG





ATATCATCCTACTTCTTATTAGCAT





226697_at
FAM114A1
−0.45986055
CACGATGGAGAGAACCGCGCACTAC





CGCGCACTACGGGATGCTGTTTGAT





ATATCAAGGCTTGTCACACCTGGAA





GGAAGCCCTGGAAATTCTGTCCAAT





CTCGCATGCTTACAGAGCTTCTCTT





GGCCACACCTGACAAACTCAATAAG





AAGAGGGCTCATGACTGGGTGGAAG





GGAGGCCTTGATGCGTTGGAATTCA





GTCCTTGCAGAAAGTGACCCGGGCT





TGACCCGGGCTTTAAGCGGACCAAG





GAACTGTTTCCTTGTCTCAGATGTT





200767_s_at
FAM120A
−0.38030291
TGCGGAGCCTTCTCAGGCAGTGACA





TAGCAAGTCCCAGGGCGGAGTCCAA





CCAACCTATACCTTCTCAGGGAGGC





GTGGTTGGCCATTGGGCTGGGAGCA





GGTGGTTTCTGTCGGAGGACCAGCT





CAAGAGGAGTTATTTCCACCCCAGT





AATTCAGGGCAGACCTCCTTATGCT





GGGAATCGAAGTCCTCTGCTATGTC





TCTGCTATGTCTTCAGACGGGTCCC





ATGAACGGGAGCACGGGTGACGCCA





CCCAGCCACTCTGAAAGTGCCTTGA





200774_at
FAM120A
−0.52200803
GACTAATACCATGCATCTGTGATCA





GAGCTAAACTTCTGCATGGTTCATA





AATATGCATGTTATCGTCCTTTCTT





TCTTAACAGTATGTGCCCATTTGCA





GTCATTGACTGATCTTGCTCTAACC





GTGATTATTGACCTCTGTTGCATTT





TTGCATTTATTCTAAAGCCCCCCAA





AAATTATCTAGCCGTTTCGAATATC





TTCGAATATCAACATTACCCTGGTG





TACCCTGGTGTATTCACTGCTGTAT





GCTGTATGCATTATTGTTCTTTGTT





227239_at
FAM126A
−0.47305424
TCTAGTCCTTTAATGAGCATGAATT





TATACTTCTACATTTGTTGCTTAGT





ATATTGTCTTCTATACTTTGTAACT





ATTTCACGTATTGTTGCTTTCTCTT





GTTGCTTTCTCTTATATGGAACTTA





GGAACTTATTGTGTACCTCTTACCT





GTATTCCTAGAGTTTACATTCCTAA





ACGACGACTTTGGCTATTTTTGTGT





GTTCCCTACCTTCTTAAGGCTATGG





ATTTGTGTAAATGTTCTCCATATGT





CAAGTGTTGCCTCTTGTTTTATTGA





200894_s_at
FKBP4
0.480140894
TCAACCTGGCCATGTGTCATCTGAA





ATCTGAAACTACAGGCCTTCTCTGC





CCTTCTCTGCTGCCATTGAAAGCTG





AACAAGGCCCTAGAACTGGACAGCA





GAATGACTTTGAACTGGCACGGGCT





GGCACGGGCTGATTTCCAGAAGGTC





TTTCCAGAAGGTCCTGCAGCTCTAC





TGTGCCAGCAGCGGATCCGAAGGCA





TCCGAAGGCAGCTTGCCCGGGAGAA





GAAGAAGCTCTATGCCAATATGTTT





ACACGGCAGGGAGCCAGTCTCAGGT





200895_s_at
FKBP4
0.467716809
TGGTTGGATGGTGGCTTTAGGGGAA





GTAGGCTGGGGGATTGAGGTGGGGA





TCATTTTAGCTGGTGTCAGCCCCTC





CCTTCCTCCATTGCACATGAACATA





TGTCCATCCATATATATTCATCAGA





TGGAGAGGGAGACTCCTGGGCAGCC





CATTTCCAAATGTGGCCTCCATGTG





CACCCCCGACGGTGTGGCTGATGAT





GATGTCTTCTGGTGTCATGGTGACC





CTCTTCTCTGCACGTTGCTGAAGGT





TGCACGTTGCTGAAGGTCCAGGCTT





229902_at
FLT4
−0.36328793
CACTGCGCGTTACTCCAGGATATGC





GCGCGTTACTCCAGGATATGCCGAG





CTCCAGGATATGCCGAGTGCACGTA





GCCGAGTGCACGTATAAGGTCATCT





ACGTATAAGGTCATCTTCGTCGTCC





TCTGCACGTCGTCCAACGTGGGACT





ACGTCGTCCAACGTGGGACTGGCGT





GTCCAACGTGGGACTGGCGTGTCGG





TCTGCAGAGAACCAGCCTGGCTCCT





GCCCAACCATCTCACCAGGAGAAAG





CATCTCACCAGGAGAAAGAGCCACA





209189_at
FOS
−0.9207879
CTGCCCGAGCTGGTGCATTACAGAG





GAGAAACACATCTTCCCTAGAGGGT





GAGGGTTCCTGTAGACCTAGGGAGG





AGGACCTTATCTGTGCGTGAAACAC





GTGAAACACACCAGGCTGTGGGCCT





GTGTGGACTCAAGTCCTTACCTCTT





TCCTTACCTCTTCCGGAGATGTAGC





TGTATTGTTCCCAGTGACACTTCAG





TTAGTAGCATGTTGAGCCAGGCCTG





TCTCCTTAGTCTTCTCATAGCATTA





GTGTTCCTGGCAATAGTGTGTTCTG





226072_at
FUK
0.430111836
GCCCTTTGAGGCATTCCCTATGGCT





TACACTCAACCCTCATGTGAGCGTG





TGCCATCCCAGGCCTTAACTAGCAA





TACGGAGCGTGCCAAGTGACCTGGT





GGAAGTGGGTTCTCAGGACTGGCAT





GAAAACCTGGAGCTACAGTGTCCCC





GACAGGGGCCTAGATGTAGCCTCTG





GGAAGGTCCCAAGCTTAGTATCCCA





TTAGTATCCCACGTGGCCTTTACAA





ACAAATCCTATGGCTGGCCTTCTCA





TTGGCATATGGCTGGGAGTCCCTTA





235340_at
GANC
0.375634848
TTCTGTGTGCACTGCATACGCTGCA





AGCCGTGGGAGTTATTCTCCCCTAG





TCTCCCCTAGAGATCGACTTGGCAG





GAAGGATTCTTTTCTCTTTCATGCT





TGCTTCTCAGGCTCAATAGTTTCTA





GAAATAAATACCCATGTACCCACCA





ACCCACCACTGGACTTCAGAAGTAG





GGCTGCGTGGGTCTGTTTTAACGTG





CATGCAGCATTGGCGCTCTGGCTGC





GCAGCAGCTGAGTTGCTCAAGGCCA





GCTCAAGGCCAGTGTCCAAGTGGAC





212581_x_at
GAPDH
0.710511506
CAAGGTCATCCCTGAGCTGAACGGG





GTCCCCACTGCCAACGTGTCAGTGG





GTGTCAGTGGTGGACCTGACCTGCC





GACCTGCCGTCTAGAAAAACCTGCC





ACACTGAGCACCAGGTGGTCTCCTC





TCTCCTCTGACTTCAACAGCGACAC





TTTGACGCTGGGGCTGGCATTGCCC





CGACCACTTTGTCAAGCTCATTTCC





GCAACAGGGTGGTGGACCTCATGGC





TCCTCACAGTTGCCATGTAGACCCC





CGCACCTTGTCATGTACCATCAATA





213453_x_at
GAPDH
0.746040983
CAAGGTCATCCCTGAGCTGAACGGG





GTGTCAGTGGTGGACCTGACCTGCC





GACCTGCCGTCTAGAAAAACCTGCC





TGGTGAAGCAGGCGTCGGAGGGCCC





ACACTGAGCACCAGGTGGTCTCCTC





TCTCCTCTGACTTCAACAGCGACAC





TTTGACGCTGGGGCTGGCATTGCCC





CGACCACTTTGTCAAGCTCATTTCC





GCAACAGGGTGGTGGACCTCATGGC





GCCTCCAAGGAGTAAGACCCCTGGA





CCCTCCGGGAAACTGTGGCGTGATG





217398_x_at
GAPDH
0.716676445
CGACCACTTTGTCAAGCTCATTTCC





CAACGAATTTGGCCACACTCAGTCC





TCCTCACAGTTGCCATGTAGACCCC





CGCACCTTGTCATGTACCATCAATA





GGACTCATGACCACAGTCCATGCCA





CCCTCCGGGAAACTGTGGCGTGATG





CAAGGTCATCCCTGAGCTGAACGGG





CACTGCCAACGTGTCGGTGGTGGAC





GACCTGCCGTCTAGAAAAACCTGCC





ACACTGAGCACCAGGTGGTCTCCTC





TCTCCTCTGACTTCAACAGCGACAC





AFFX-
GAPDH
0.695543658
TCATTTCCTGGTATGACAACGAATT


HUMGAPDH/M


ACAACGAATTTGGCTACAGCAACAG


33197_3_at


GGGTGGTGGACCTCATGGCCCACAT





TCATGGCCCACATGGCCTCCAAGGA





ACATGGCCTCCAAGGAGTAAGACCC





AGGAGTAAGACCCCTGGACCACCAG





GCCCCAGCAAGAGCACAAGAGGAAG





GAGAGAGACCCTCACTGCTGGGGAG





CCTCACTGCTGGGGAGTCCCTGCCA





CCTCCTCACAGTTGCCATGTAGACC





AGTTGCCATGTAGACCCCTTGAAGA





CATGTAGACCCCTTGAAGAGGGGAG





TAGGGAGCCGCACCTTGTCATGTAC





GCCGCACCTTGTCATGTACCATCAA





TGTCATGTACCATCAATAAAGTACC





CCTCTGACTTCAACAGCGACACCCA





GGGCTGGCATTGCCCTCAACGACCA





CCCTCAACGACCACTTTGTCAAGCT





ACCACTTTGTCAAGCTCATTTCCTG





TTGTCAAGCTCATTTCCTGGTATGA





TCATTTCCTGGTATGACAACGAATT





ACAACGAATTTGGCTACAGCAACAG





GGGTGGTGGACCTCATGGCCCACAT





TCATGGCCCACATGGCCTCCAAGGA





ACATGGCCTCCAAGGAGTAAGACCC





AGGAGTAAGACCCCTGGACCACCAG





GCCCCAGCAAGAGCACAAGAGGAAG





GAGAGAGACCCTCACTGCTGGGGAG





CCTCACTGCTGGGGAGTCCCTGCCA





CCTCCTCACAGTTGCCATGTAGACC





AGTTGCCATGTAGACCCCTTGAAGA





CATGTAGACCCCTTGAAGAGGGGAG





TAGGGAGCCGCACCTTGTCATGTAC





GCCGCACCTTGTCATGTACCATCAA





TGTCATGTACCATCAATAAAGTACC





CCTCTGACTTCAACAGCGACACCCA





GGGCTGGCATTGCCCTCAACGACCA





CCCTCAACGACCACTTTGTCAAGCT





ACCACTTTGTCAAGCTCATTTCCTG





TTGTCAAGCTCATTTCCTGGTATGA





AFFX-
GAPDH
0.615788823
GCGCCTGGTCACCAGGGCTGCTTTT


HUMGAPDH/M


GGTCACCAGGGCTGCTTTTAACTCT


33197_5_at


TGCTTTTAACTCTGGTAAAGTGGAT





GGATATTGTTGCCATCAATGACCCC





CATCAATGACCCCTTCATTGACCTC





CTTCATTGACCTCAACTACATGGTT





CAACTACATGGTTTACATGTTCCAA





GGTTTACATGTTCCAATATGATTCC





CCAATATGATTCCACCCATGGCAAA





TGATTCCACCCATGGCAAATTCCAT





ATTCCATGGCACCGTCAAGGCTGAG





TGGCACCGTCAAGGCTGAGAACGGG





CATCAATGGAAATCCCATCACCATC





TCCCATCACCATCTTCCAGGAGCGA





CTTCCAGGAGCGAGATCCCTCCAAA





GCGAGATCCCTCCAAAATCAAGTGG





CGATGCTGGCGCTGAGTACGTCGTG





CGTGGAGTCCACTGGCGTCTTCACC





CTTCACCACCATGGAGAAGGCTGGG





CGGATTTGGTCGTATTGGGCGCCTG





GCGCCTGGTCACCAGGGCTGCTTTT





GGTCACCAGGGCTGCTTTTAACTCT





TGCTTTTAACTCTGGTAAAGTGGAT





GGATATTGTTGCCATCAATGACCCC





CATCAATGACCCCTTCATTGACCTC





CTTCATTGACCTCAACTACATGGTT





CAACTACATGGTTTACATGTTCCAA





GGTTTACATGTTCCAATATGATTCC





CCAATATGATTCCACCCATGGCAAA





TGATTCCACCCATGGCAAATTCCAT





ATTCCATGGCACCGTCAAGGCTGAG





TGGCACCGTCAAGGCTGAGAACGGG





CATCAATGGAAATCCCATCACCATC





TCCCATCACCATCTTCCAGGAGCGA





CTTCCAGGAGCGAGATCCCTCCAAA





GCGAGATCCCTCCAAAATCAAGTGG





CGATGCTGGCGCTGAGTACGTCGTG





CGTGGAGTCCACTGGCGTCTTCACC





CTTCACCACCATGGAGAAGGCTGGG





CGGATTTGGTCGTATTGGGCGCCTG





AFFX-
GAPDH
0.680189706
AAGATCATCAGCAATGCCTCCTGCA


HUMGAPDH/M


ACCAACTGCTTAGCACCCCTGGCCA


33197_M_at


TTAGCACCCCTGGCCAAGGTCATCC





GACAACTTTGGTATCGTGGAAGGAC





GTGGAAGGACTCATGACCACAGTCC





ATCACTGCCACCCAGAAGACTGTGG





GCCACCCAGAAGACTGTGGATGGCC





CCCTCCGGGAAACTGTGGCGTGATG





GGCCGCGGGGCTCTCCAGAACATCA





GCCTCTACTGGCGCTGCCAAGGCTG





GTGGGCAAGGTCATCCCTGAGCTGA





GTCATCCCTGAGCTGAACGGGAAGC





GAGCTGAACGGGAAGCTCACTGGCA





AAGCTCACTGGCATGGCCTTCCGTG





ACTGGCATGGCCTTCCGTGTCCCCA





ACTGCCAACGTGTCAGTGGTGGACC





AACGTGTCAGTGGTGGACCTGACCT





GTGGACCTGACCTGCCGTCTAGAAA





CTGACCTGCCGTCTAGAAAAACCTG





GAAAAACCTGCCAAATATGATGACA





AAGATCATCAGCAATGCCTCCTGCA





ACCAACTGCTTAGCACCCCTGGCCA





TTAGCACCCCTGGCCAAGGTCATCC





GACAACTTTGGTATCGTGGAAGGAC





GTGGAAGGACTCATGACCACAGTCC





ATCACTGCCACCCAGAAGACTGTGG





GCCACCCAGAAGACTGTGGATGGCC





CCCTCCGGGAAACTGTGGCGTGATG





GGCCGCGGGGCTCTCCAGAACATCA





GCCTCTACTGGCGCTGCCAAGGCTG





GTGGGCAAGGTCATCCCTGAGCTGA





GTCATCCCTGAGCTGAACGGGAAGC





GAGCTGAACGGGAAGCTCACTGGCA





AAGCTCACTGGCATGGCCTTCCGTG





ACTGGCATGGCCTTCCGTGTCCCCA





ACTGCCAACGTGTCAGTGGTGGACC





AACGTGTCAGTGGTGGACCTGACCT





GTGGACCTGACCTGCCGTCTAGAAA





CTGACCTGCCGTCTAGAAAAACCTG





GAAAAACCTGCCAAATATGATGACA





235310_at
GCET2
0.36020273
CGATCCTTGGAGATCCCGTAATCCC





TTTGGAGCCTGATTTCCTACTGACT





TTTCCTACTGACTTCCAATTTAGTG





TGCTCCCCCAGTATGCTAAATAGAA





AATAGAAAGCCCTCTGCAATATATT





GATTATTTACTTTCTCTTATCTTTT





TTATCTTTTCCTTAGTGTTCCTCAA





AAATTATATCTATCCTCTAAACCAG





AGGGATCAGCAAACTATAACCCCCA





ACTCATTTGTTTACCTACTATCTAT





TGACATGGACCATAGGCCCTAAAGA





202321_at
GGPS1
−0.41410157
GAGTAGGCATCTTTAATCGCCCTGA





GCCTGAGAGGGCCTGACTGAAAAGT





TCTGTAGTTTCTACACCCAAGCCAC





CACCCAAGCCACTGAAGTCATCTGT





AATATTTGATTTGTTGACATCCCAA





ACATGTTTTGCTTGGTTCTATAGTA





GTTACTTAGGATCTATTTACCATAT





GTATGAGAAATCCTCACCCAAGCAT





TCACCCAAGCATTCAACCTAAATCT





TTGGGTGCTGTCTTTAGTAACTTTT





TGAACTTTATGAACCCATACTTTTA





202322_s_at
GGPS1
−0.46937914
GATGCACGTGGTGGGAACCCTGAGC





GGAACCCTGAGCTAGTAGCCTTAGT





AAGCCATTCTTGATTGGACCTCATA





TTCATTTAGAAGCCCCTCTGTACAG





AAAGCAGCCACAGTTATGTAGGTCT





AGTGACAGGACATTGCCACCAACTC





AACTCTATCCTACTACCATCAATGT





GTTCTCATTTCCTACTATTCATGCT





TTGGTCAAGGCCTGAAAGCACCCAG





CCAGGTGCAGAATATCTTGCGCCAG





GAATACACTCGTAATACCCTTAAAG





206896_s_at
GNG7
−0.37146828
TCTCTGTCTCAGGCAGGGCATCATT





GGGCATCATTCAGTAATTAGCTCAA





CAAACAAAACATCTCAAGTCCCCAA





TCCCACCGCCCGGATGGGGTAGAAT





AGGGATGGAGGCTTTACGGCCACTT





AAAACTCTCGATTGCCGTTTCAATT





CCGTTTCAATTGTGGACCGGCGCCG





GACTTCGCCCGGTGGCAATAGTTCC





GTTCCGGGAGAATTGGCCATTGGTA





GACTTCATAGGGTCACTGGAATGCT





GGGGCGGGAGGTGACATCATGAAGT





220936_s_at
H2AFJ
0.477249577
TTATTGGGCAGGTTCGAGATGTTCT





GATGTTCTGCTATTTACTCTGTGGT





AATGCCTCATTGTTAGAACTACTAC





GAACTACTACTCACAGTTACCACTT





CTCACAGTTACCACTTGGGGTCAGT





AAAATGGGCATAATAGTTTACCTCA





GTGAGGACACTAAGATTCCCATATA





GCGGTAGTTGATGGGAGCTGTTGAA





GGTAAACAGCATTCTAGCAATCCTT





GCAATCCTTCGACTTTTGTGATAGC





GGACATCCACAATTCAATGTATAAC





224301_x_at
H2AFJ
0.591989591
GAACTACGCGGAGCGAGTGGGCGCC





TGTACCTGGCGGCGGTGTTGGAGTA





TTACGGCGGAGATCCTGGAGCTGGC





AGAAGACCAGGATAATTCCCCGCCA





CTCGCCATCCGCAACGACGAGGAGT





GCTGGGCAAAGTGACCATCGCTCAG





GTGCTGCTGCCCAAGAAGACGGAGA





CCCCCAGCAAAGGCCCTTTTCATGG





GTCGTCCCGCAATGCTTTTGAATGT





GTGCTGGATGTCATGGAGGGCCGGT





GACATCTAGCGGGGAGGTGGGCGGC





225245_x_at
H2AFJ
0.611706619
GTGATCATGTCCGGTCGCGGGAAAC





GAACTACGCGGAGCGAGTGGGCGCC





TGTACCTGGCGGCGGTGTTGGAGTA





TTACGGCGGAGATCCTGGAGCTGGC





AGAAGACCAGGATAATTCCCCGCCA





CTCGCCATCCGCAACGACGAGGAGT





GCTGGGCAAAGTGACCATCGCTCAG





GTGCTGCTGCCCAAGAAGACGGAGA





GTCGTCCCGCAATGCTTTTGAATGT





GTGCTGGATGTCATGGAGGGCCGGT





GACATCTAGCGGGGAGGTGGGCGGC





228213_at
H2AFJ
0.448371938
TCCCCGAGGACTGGTCTGTTTAGTT





GAGGACTGGTCTGTTTAGTTGTGCC





AAAAGGCTTAGTCAGGCCCCATAAT





TATGCAAACTTCACAATGCCCCTTC





CAATGCCCCTTCCAGTGGTTGAAAG





GGTTGAAAGGTCGCATACCATGCTG





GTGTAAGAACTTTAGCTCTCTGCAA





TTAGCTCTCTGCAATGAGACTTAAA





AAATTCAGATTCACTCTACTCCTTA





CTCTACTCCTTATTAGTTATCTGAT





GAAACTTAATCTCTTTAAACCTCAG





211999_at
H3F3B
0.441145226
CTTCTGACTGCACTTGTTCTCATAG





ATGCTATGCGCATTTATACCTTGCA





TACCTTGCATAAGTCCTCATTCTAC





CTCATTCTACCACATGTTAACCCTC





GTTAACCCTCTAGCTGATAATGCAA





AACGAGTTATTCACACCAGCATCAT





CATTGTGTTGTGTGGTTGGTCTCAT





ACTAGGTTGAGTTTTTCTCCTCTGC





CAGTACCGAAGTTCTTTTTCTTGTG





GGGAGGAGCACAAAACTCCAGCCCA





CCCACTGAACCTCTGCCAATTAAGA





209069_s_at
H3F3C,
0.336867187
GTTGGTGAGGGAGATCGCGCAGGAT



H3F3B

CCGACCTGAGGTTTCAGAGCGCAGC





ATCGGTGCGCTGCAGGAGGCTAGCG





GGGTCTGTTCGAAGATACCAACCTG





TGTGCCATCCACGCTAAGAGAGTCA





CGCTAAGAGAGTCACCATCATGCCC





CCCAAAGACATCCAGTTGGCTCGCC





TTGGCTCGCCGGATACGGGGAGAGA





GAAGGCAGTTTTTATGGCGTTTTGT





AGGGATGGGTGATACTTCTTGCTTC





ATGTGTACAGGGTCCTTTTGCAATA





227679_at
HDAC11
0.465171926
AGCCCTACTCATGGGGACATTCAGG





GGAAGTGGGCGGGGGAGCATCCACC





AAGTGGGTCCATTGAGGTGGCCCTG





ACCCCGAGGCTCTAACAATGCACTC





AACAATGCACTCTGAGATCCCTACC





CTGACTCGAGGCACCTAACATCCAT





CAACACAGGCCAGCGACTTCTGGGG





CATGGTTTGTCACTGTTGAGCTTCT





GAGCTTCTGTTCCTAGAGAATCCTA





TAGAGGCTTGATTGGCCCAGGCTGC





GTAGCGCAAGGCCTGACATGGGTAG





209328_x_at
HIGD2A
0.426198785
ACTATAGACTCGAAGGATCCACAAG





ACCATCGAAGCCTCCAGTCATTGAG





GAAGCCTCCAGTCATTGAGGGGCTG





CTCCAGTCATTGAGGGGCTGAGCCC





CTCGAAGGATCCACAAGTTTGTACA





TGAGGGGCTGAGCCCCACTGTTTAC





GAGCCCCACTGTTTACAGGAATCCA





TTACAGGAATCCAGAGAGTTTCAAG





GCAGGCTTGTAAAACGACGGCCAGT





GACGGCCAGTAACTATAACGGTCCT





GCCAGTAACTATAACGGTCCTAAGG





207156_at
HIST1H2AG
0.410568514
CCGGCCCACTCTGAAGTAATCTTAA





TAAGAAGACGTTAACTCATTTTTCT





TTTTCTTGTGTATTGTAGACACTTT





TGTAGACACTTTTGGCTGTCTGGTA





GGCTGTCTGGTAACATGGAAAATCT





ACATTACATGATTTGGTGAGCCTAA





GTGAGCCTAATTGCTGTTACTAATT





AATGTTTCACGATAACTCAGCAATT





TCACGATAACTCAGCAATTGTAATG





AACATCTAATGTCTTTTGGGTTACA





AACAGGTACTGAGATTTGTGGCCTA





208579_x_at
HIST1H2BK
0.532020648
AAGCGCAGCCGCAAGGAGAGCTACT





GAGAGCTACTCCGTATACGTGTACA





CAAGGTGCTGAAGCAGGTCCACCCC





GCATCTCCTCTAAGGCCATGGGAAT





TGGGAATCATGAACTCCTTCGTCAA





TCGTCAACGACATCTTCGAACGCAT





TCGAACGCATCGCAGGTGAGGCTTC





GCATTACAACAAGCGCTCGACCATC





TCGACCATCACCTCCAGGGAGATCC





TCACCAAGTACACCAGCGCTAAGTA





GAAGGACGGCAGGAAGCGCAAGCGC





209806_at
HIST1H2BK
0.510579653
TAAACTTGCCAAGGAGGGACTTTCT





ACAATTGCCTTCGGTTACCTCATTA





GGTTACCTCATTATCTACTGCAGAA





GACGAGAATGCAACCATACCTAGAT





ACCTAGATGGACTTTTCCACAAGCT





CAAGCTAAAGCTGGCCTCTTGATCT





TCCATTCCTTCTCTCTAATAATCAT





TACTGTTCCTCAAAGAATTGTCTAC





TCTCCTCTTTTGCCTCTGAGAAAGA





GGGTAATATTCTGTGGTCCTCAGCC





TCCTCAGCCCTGTACCTTAATAAAT





208576_s_at
HIST1H3B
0.507441215
ATGGCTCGTACTAAACAGACAGCTC





GCTACCAAAAGTCGACCGAGTTGCT





AGTCGACCGAGTTGCTGATTCGGAA





GTTGCTGATTCGGAAGCTGCCGTTC





GAAATCGCCCAAGACTTCAAGACCG





GCCCAAGACTTCAAGACCGATCTTC





CAGACAGCTCGGAAATCCACCGGCG





GGAGGCTTGTGAGGCCTACTTGGTA





TGAGGACACAAACCTTTGCGCCATC





CGAGTGACTATTATGCCCAAAGACA





AATCCACCGGCGGTAAAGCGCCACG





214634_at
HIST1H41
0.553652376
GAGTCTCTTAATAGGGCCATTGTCA





ACAGGTGACCTTGGGCCGAGATTTT





ACTTCTGGCGGCTGCCTGGAAATTG





TGGAAATTGCCTGCAGCCGGTTTAC





TAGAAAGCCAAGGGGTCTGCGGTCC





GTCTGCGGTCCAAATAGGGGCGGGC





GGGCTAGATAATTAACTTCCCTCTG





TTCCCTCTGGACCTTCAAATACGTC





GGGCTCCACTAAATGCTAGAACCTC





GGAGGGGGACAGACCATGCTTTTAC





AATGCGCTGGTGACACACCACTTAT





219269_at
HMBOX1
−0.53153352
AGGCTAGAAAATCTTGCTGCTCCGT





GCTCCGTCTTAGCATTCCAAGAGAG





AGATAGCCCTCAGTTCTCAAATATT





TTGTAACACTAGTCTGTACTCCCTT





TTTTCCTTCCCCAAGACTGATAGGA





GGATGCAAGCTGAGGTCGTGGCACA





GAATCCCCACCTCAGCGTGAGGATA





TAAGCCGTGCCTCATTATAGCCACA





GATTATACTTCTTTGGGTGCTGTGC





GAAGTTAACATGCCTGACACAGACA





AGATAAAATACTGCCTTCTGCCTTT





225504_at
HMBOX1
−0.80276841
TGCTGCCTTTCTTCAGATCAGGTTA





CAGATCAGGTTACCACAATGCCTCC





CCCACTTTGCCGGTGCTAAAACACA





GAAAGACAAGCTCCGGGTGTCCAGG





TGACGGGCCAACCATGTGGCAGGTC





GCTCCACAGTGGTCCCACTAATGGG





GGGAGAGTGATACTGCACCTTCACC





ACCTTCACCCGTAGGACTCATATTT





GTAGCAAAAAGCCCTTGTTTCTAGA





AGTCCTGTATCATTGTATCTCCTAT





ATCTCCTATTCTGGATTAGTGCCTT





209113_s_at
HMG20B
0.344160466
CCCACCCCGTGGACGAGAGGCTGGG





TGGACGAGAGGCTGGGGGTCCACCC





TTCGATGTTCCCATCTTCACTGAAG





TTCACTGAAGAGTTCTTGGACCAAA





GGACCAAAACAAAGCGCGTGAGGCG





TCGGCGCTTGCGGAAGATGAATGTG





TGTGGCCTTCGAGGAGCAGAACGCG





AGAACGCGGTACTGCAGAGGCACAC





CCAGCACGAGAAGCTCATCGTCCGC





GCTCATCGTCCGCATCAAGGAAATC





GCCAGCGAGCACCTGTGAGGAGTGG





225107_at
HNRNPA2B1
−0.40053
TAATTCTAGTTCAGTGTCTTACCCT





GTTCAGTGTCTTACCCTGAAGAGAA





GAGAAAGTTGTAGGTTGGCTGTTGA





TGGCTGTTGAAATTCATTCCTTAGA





GATATGATCAGTTTGATTGCCCGGC





TTGATTGCCCGGCTTTATTGCCTTT





GGAATGTGATACTCAGGGCTTACTC





CAGGGCTTACTCTATACACCAATGA





ACACCAATGAGTCTTCTTTGATCCT





AAGACCACCACTGAAGTTGTTTAGG





GATAAACTTCTTCAGATACTTTTTT





225932_s_at
HNRNPA2B1
−0.39306534
ACCATGGACAAGTATATTCTGCTGC





TGGACAAGTATATTCTGCTGCCACA





GCCACAAAGACTGTAAAGTGCTTCA





AGTGCTTCATTTCAACAGCTGAGGC





TCATTTCAACAGCTGAGGCAAGCCA





GAGGCAAGCCAAGTGATCATTAATA





TAAAGCTTTTCTTGGTTCCTTCAGT





TCCTTCAGTGGTGTTGGTAGTAAAA





GTGGTCAACCACAGAGTCTTCAAGA





GAAAGTAGTTCTTGTTGGTGCCTTC





GTTCTTGTTGGTGCCTTCATTTAAA





210086_at
HR
0.353065176
ACCACTCTGGGCACAAGCAGGGCAC





CCCTTAAGCCAACAACCACAGTGCC





CCAGGCCCGCACTGGGGGCAATTGA





TCCGAGACCCAGGAGACAAACAGCC





GGGGAAACTTGGGAATCATTCTGGC





ATTCTGGCTTAAACAACACCTCCTC





GGCTCACTGCAGGCATGCTGAACAA





GGCATGCTGAACAAGGGGCCTCCAA





GAGAGGGTGGCATCAGGAGCTGCTC





GCATGGGCGATGTCACTCATGCCCT





TCCCTCCTTCATGATTTCCATTAAA





220163_s_at
HR
0.376939592
CACCGGGCACAGAAAGACTTCCTTT





CCAGGTCAGCACTGTGTGGCACGTG





CCCCAGGCAGCTGCTACCTGGATGC





TGCTACCTGGATGCAGGGCTGCGGC





GGTGCAGGGCCTGGTGAGCACAGTC





TGGTGAGCACAGTCAGCGTCACTCA





CCACCTGCTTTATGCCCAGATGGAC





GAAGGTGGCCGTGGGGACATTACAG





GATGCTAGGTGTCTGGGATCGGGGT





GTGGGGACAGGTAGACCAGGTGCTC





GCCCAGGCACAACTTCAGCAGGGGA





200064_at
HSP90AB1
0.702960924
AATAGACTTGTGTCTTCACCTTGCT





GTCTTCACCTTGCTGCATTGTGACC





GTGACCAGCACCTACGGCTGGACAG





GAGCGGATCATGAAAGCCCAGGCAC





AAAAGCACCTGGAGATCAACCCTGA





TGGTGGTGCTGCTGTTTGAAACCGC





CAACCGCATCTATCGCATGATCAAG





GCAGAGGAACCCAATGCTGCAGTTC





TCCCCCCTCTCGAGGGCGATGAGGA





GGGCGATGAGGATGCGTCTCGCATG





AACTTGTGCCCTTGTATAGTGTCCC





AATAGACTTGTGTCTTCACCTTGCT





GTCTTCACCTTGCTGCATTGTGACC





GTGACCAGCACCTACGGCTGGACAG





GAGCGGATCATGAAAGCCCAGGCAC





AAAAGCACCTGGAGATCAACCCTGA





TGGTGGTGCTGCTGTTTGAAACCGC





CAACCGCATCTATCGCATGATCAAG





GCAGAGGAACCCAATGCTGCAGTTC





TCCCCCCTCTCGAGGGCGATGAGGA





GGGCGATGAGGATGCGTCTCGCATG





AACTTGTGCCCTTGTATAGTGTCCC





214359_s_at
HSP90AB1
0.545555043
CATACCTCCCAGTCTGGAGATGAGA





ATCTCTGTCAGAGTATGTTTCTCGC





ATGTTTCTCGCATGAAGGAGACACA





GGAGACACAGAAGTCCATCTATTAC





GAAGTCCATCTATTACATCACTGGT





CCATCTATTACATCACTGGTGAGAG





GGTGAGAGCAAAGAGCAGGTGGCCA





AAGAGCAGGTGGCCAACTCAGCTTT





CCCTGCTGGTGTCTAGTGTTTTTTT





AATCTCAAGCTTGGAATCCACGAAG





GGAATCCACGAAGACTCCACTAACC





221667_s_at
HSPB8
0.486202313
GGGACTTAACATTTCACGTTGTATC





ACGTTGTATCTTACTTGCAGTGAAT





TGCAAGGGTTACTTTTCTCTGGGGA





CCATGCCGCATGGTTTGGTTAATGA





GCTTCCACATGCCTGGCCTAAAATG





ATACAGGTCTTATATCCCCATATGG





TGGAATTTATCCATCAACCACATAA





TCAAAGTTTCCACATTAGCACTCCC





TAAGGACGCTGGGAGCCTGTCAGTT





GTTTATGATCTGACCTAGGTCCCCC





TATGGGCGGGACGTGTGTGTCATTA





204949_at
ICAM3
0.480810421
GTACCCCGAGCTGCGGTGTTTGAAG





CTCCAGCCGGGAGGTGCCGGTGGGG





TCCCGTTCTTCGTCAACGTAACACA





TGGTACTTATCAGTGCCAAGCGTCC





AGCGTCCAGCTCACGAGGCAAATAC





GGGCGTGGTGACTATCGTACTGGCC





AATGTACGTCTTCAGGGAGCACCAA





ACCAACGGAGCGGCAGTTACCATGT





TAGGGAGGAGAGCACCTATCTGCCC





TCACGTCTATGCAGCCGACAGAAGC





ATTCCGCACCAATAAAGCCTTCAAA





202069_s_at
IDH3A
0.731202774
CAGTCACTCTAAATGGACACCACAT





TGGACACCACATGAACCTCTGTTTA





ACCTCTGTTTAGAATACCTACGTAT





GTATGCATTGGTTTGCTTGTTTCTT





TTGCTTGTTTCTTGACAGTACATTT





TTAGATCTGGCCTTTTCTTAACAAA





GATGCAGGTGGATGTCCCTAGGTCT





CAAAGAACTTTTTCCAAGTGCTTGT





GAGTGGACTGTATCATTTGCTATTC





GCACAAAATGACACTCTTCTAAAAC





TGGGCACAAGAGAATTTTCCTGGGA





202070_s_at
IDH3A
0.909136128
ATCCCAAAGCACCAATTACTGCCCT





CCTCTGCCTCAGCAGTACCAGTATA





GACTGGAGGCAACTCAGCCTGAGTT





GAGCTTGAGCTTGGGCTTAGGCTTG





TAGGCTTGGGCTCAGCTTTTGACCC





ATCTTCAGACACTCACTATTTTCAT





TCCCCACAACCAAAGACAACTCATG





TCCTTTGGCCCTTGTGTAACATTGC





GGCTTTGCAAAATGTACCCAGGTCA





TTTAGCAATGATATCCCTGTCTGGG





CCTGTCTGGGTCACTTTTTAAGCTT





201508_at
IGFBP4
−0.68950982
AGAGACATGTACCTTGACCATCGTC





CTTCCTCTCAAGCTAGCCCAGAGGG





TAATGGTCACGAGGTCCAGACCCAC





CCCAAAGCTCAGACTTGCCAGGCTC





GTCCTTCCTTTAGGTCTGGTTGTTG





CCATCTGCTTGGTTGGCTGGCAGCT





GGAGAAGACCCACGTGCTAGGGGAT





GCTAGGGGATGAGGGGCTTCCTGGG





ACCCCATTTGTGGTCACAGCCATGA





TCACCGGGATGAACCTATCCTTCCA





GGCATCTTCTGGCTTGACTGGATGG





203710_at
ITPR1
−0.39512527
CTCCGTCTCCTAGTGATAATGCTCC





TAATGCTCCAAGTCTATGAACTGTT





GGGAACTTTCTATGCAATGTTCAGG





GGATAAATCGATACTGCTGGCCAAT





CGATACTGCTGGCCAATCAGTGTCA





TCTCCTGGGTAAATTTTGATGTCGC





TTCTTCATCTGAACCAACATGCTAC





TGACCACAGACATGTTATTCTTCTG





GAAAGAGCCACATTTTGGTTTTATT





TGAAATCTTTTATATCTGTTGCCTA





ATCTGTTGCCTAGTTTTGTACATGG





227514_at
ITPRIPL2
−0.56159871
GAAATATTTCTAGCAGTGTCAGTGA





GTAACATACTGTTCTTGTAGTTTTT





CAGGTTAATTACCCAAAGCCTCATC





GCCATGCTGAGCAATTGTTCTCTGT





TGTTCTCTGTACATGGTAACCAAAA





GCCAGGCATGATGGTTGCCCAAGAC





ATGGTTGCCCAAGACAGTTAAATTA





AATTCTGTATTTTATTAGGGCTCTG





TTAGGGCTCTGTTATGTCCTTCATC





CTCTGTTATGTCCTTCATCTGAAAT





GGTGTATGCTTGGTACTGGAGATTC





227792_at
ITPRIPL2
−0.59300408
ATTTTTTTATACCTACATAGCACAT





TGAAGTATCTACTATTCTGGAATAT





GGTGCCTTGATTCAGTTGCGTGACT





GCGTGACTTAGAACATTCATCCTAT





TGTTTTTGGTTGCAGTCTGGCGGCT





GCAGGCATAGCGTCGGTTTTGTTCC





CAGATATGGTTCAGCTGCTACAATT





ACAGTCAAGACCTGCCATTCGTTTT





CATTCGTTTTCTCTTGCAGGTTGGA





TTGCACTTTGAATCATGTGGGTCAT





ATGTGGGTCATTTGGGGACCTTGTT





227954_at
ITPRIPL2
−0.46044034
GGAAAGGCAATCGAGAGTTGGTTAG





GATCAATTCACTCATTTTGTGGTAA





AGGGAAGCCAGTTATATTTATTATT





GTTCTGTGTAGACGGATTCTGTAGA





GGATGTGGCTTTTAGAGAAGTCCAG





GAAGCAAGAACTAGCTGCAGGGAAA





GCAGGGAAAGTTCCTTCTGTCGGTT





TTTAGACACAGATCTCTCTGCCCAA





CAGATCTCTCTGCCCAAATTAAAAA





GACACAATTACTTGCTAGGTACTGG





GGTACTGGGTTCCTGATTGTCTTTA





212492_s_at
KDM4B
−0.68721271
GAGGAGGAGCTGCCCAAGAGGGTCC





TGCCACGGAGGACTCCGGGCGGAGC





ACCCCACTCAACTACTCAGAATTTT





TAAACCATGTAAGCTCTCTTCTTCT





GCTCTCTTCTTCTCGAAAAGGTGCT





AAAAGGTGCTACTGCAATGCCCTAC





TACTGCAATGCCCTACTGAGCAACC





GCCCTACTGAGCAACCTTTGAGATT





CTTTGAGATTGTCACTTCTGTACAT





TGTCACTTCTGTACATAAACCACCT





AAACCACCTTTGTGAGGCTCTTTCT





212495_at
KDM4B
−0.66054335
TAAAAGAGTGTCCTAACAGTCCCCG





TCCTAACAGTCCCCGGGCTAGAGAG





AACAGTCCCCGGGCTAGAGAGGACT





TCCCCGGGCTAGAGAGGACTAAGGA





GAGAGTGTTACGCAGGAGCAAGCCT





GTGTTACGCAGGAGCAAGCCTTTCA





AAAACGTGGAGGTGTCCCTCTGCAC





CGTGGCGCTGACACTGTATTCTTAT





GGCGCTGACACTGTATTCTTATGTT





CACTGTATTCTTATGTTGTTTGAAA





TGTAAAGAAGCGGGCGGGTGCCCCT





212496_s_at
KDM4B
−0.71421129
CAGAAGGGCAGGCCGGAGCTGCACA





TCTCTGTGTCTTACTCTGTGCAAAG





GTGTCTTACTCTGTGCAAAGACGCG





CTTACTCTGTGCAAAGACGCGGCAA





GCAAAGACGCGGCAAAACCCAGTGC





CAAAGACGCGGCAAAACCCAGTGCC





CCCACCCGAGATGAAGGATACGCTG





GGATACGCTGTATTTTTTGCCTAAT





ACGCTGTATTTTTTGCCTAATGTCC





GTCCCTGCCTCTAGGTTCATAATGA





TCCCTGCCTCTAGGTTCATAATGAA





215616_s_at
KDM4B
−0.59551407
CCAGGCCCTTCTGGTTGGTAGTGAG





GCCCTTCTGGTTGGTAGTGAGTGTG





TAGTGAGTGTGGACAGCTTCCCAGC





CAGCTCTTCGGGTACAACCCTGAGC





GGTACAACCCTGAGCAGGTCGGGGG





CTGAGCAGGTCGGGGGACACAGGGC





CCTGCTTCCGGGCAGGGACGAGGCC





CTGCTGTCACCTGAGGGGAATCTGC





GGAATCTGCTTCTTAGGAGTGGGTT





GGAGTGGGTTGAGCTGATAGAGAAA





GAGAAAAAACGGCCTTCAGCCCAGG





202386_s_at
KIAA0430
−0.75937109
TGGACTTCAGTTCTGCTAGCATGTA





GCTAGCATGTAAAGAGTGGTGGACT





GTATCATTACAAGTCACCTGGAACA





GAACAGGTTCTTTGGGCAACAGACA





CTGTCCCGTGAGTGTGTCTGAGTAC





GTGTGTCTGAGTACCATTCACTGGA





TTCACTGGAGTTGCTGCTTAGGTCT





TGTGACTCTTAACAATTGCTGTCTG





GCACATTGTGTTCATAATGTACTCC





TAATGTACTCCACAATGGCCAGTCC





GCCAGTCCAATTGCTATCTATTTTT





225623_at
KIAA1737
−0.69265964
TGTTCTCTGTTGGAGCTGTAAGCAG





GGAAGGAGAGATCCATTGAGTCCAG





GAGTCCAGAAGCCAGATCAGCAAAT





GACCAGAAAGATCTCCATCGGTTGC





CATCGGTTGCCCAAGGCTGTAAGTA





GTAGTGATGGTTTTAGCGATGAATA





ATTGGCTATGAAGTACTGTGGCAGA





GAGAAGCCATTTTTAGCTCAGAGCA





GAACTTTTGGCAGATTTTGTTGGCA





TTATTACACTCATTGGTTTTTATTG





TTTCTACTATGGTTCCTTTAGCAGA





209008_x_at
KRT8
0.370951507
GAGCAGCGTGGAGAGCTGGCCATTA





AGGATGCCAACGCCAAGTTGTCCGA





GGGCCAAGCAGGACATGGCGCGGCA





CGGCAGCTGCGTGAGTACCAGGAGC





TCGCCACCTACAGGAAGCTGCTGGA





GCGGCTATGCAGGTGGTCTGAGCTC





TCCTCCAGGGCCGTGGTTGTGAAGA





TGGGAAGCTGGTGTCTGAGTCCTCT





GCCCAAGTGAACAGCTGCGGCAGCC





TGAACCGGAACATCAGCCGGCTCCA





GCCGGCTCCAGGCTGAGATTGAGGG





208029_s_at
LAPTM4B
0.594307186
ATTTTCTCCATGGCCTGAATTAAGA





AAGACCATTAGAAAGCACCAGGCCG





CTGACTGTTCTTGTGGATCTTGTGT





TGTGGATCTTGTGTCCAGGGACATG





ACATGGGGTGACATGCCTCGTATGT





GTGACATGCCTCGTATGTGTTAGAG





GTGGAATGGATGTGTTTGGCGCTGC





TTGGCGCTGCATGGGATCTGGTGCC





TGCCCTAGATTGGTTCAAGGAGGTC





GGTTCAAGGAGGTCATCCAACTGAC





GAGGTCATCCAACTGACTTTATCAA





208767_s_at
LAPTM4B
0.592105853
GTAGAATTCTTCCTGTACGATTGGG





TTCACTAACCTTCCCTAGGCATTGA





AACTTCCCCCAAATCTGATGGACCT





GGACCTAGAAGTCTGCTTTTGTACC





TCTGTTCCCTCTCTTTTGAAAATGT





GGGTTACTTGATTAGCTGTGTTTGG





TGGAACTGCTACCGATACATCAATG





ACTCCTCTGATGTCCTGGTTTATGT





GCAATGACACTACGGTGCTGCTACC





TGCCACTGTGAATGGTGCTGCCAAG





GTCTGCCTAAGCCTTCAAGTGGGCG





214039_s_at
LAPTM4B
0.63024599
ATATTTGATATACTTCTGCCTAACA





TATACTTCTGCCTAACAACATGGAA





CATCCTACTGCTTTGAACTTCCAAG





GAACTTCCAAGTATGTCTAGTCACC





CCAAGTATGTCTAGTCACCTTTTAA





GAAAAATGAGGATTGCCTTCCTTGT





TCCTTGTATGCGCTTTTTACCTTGA





TTTTTACCTTGACTACCTGAATTGC





GACTACCTGAATTGCAAGGGATTTT





GTTACAAAGTCAGCAACTCTCCTGT





ACTCTCCTGTTGGTTCATTATTGAA





221558_s_at
LEF1
−0.37358809
AGCTTGTCTGGTAAGTGGCTTCTCT





TGTAACACATAGTGGCTTCTCCGCC





CTTCTCCGCCCTTGTAAGGTGTTCA





CAAACCCCACTCTGTTGGTAGCAAT





GTAGCAATTGGCAGCCCTATTTCAG





AAACCTTAACAGATGCGTTCAGCAG





CGTTCAGCAGACTGGTTTGCAGTGA





AGCCCAGCACTTGAATTGTTATTAC





TGAGCATTGATGTACCCATTTTTTA





ACTGTCATCCTAACGTTTGTCATTC





AACGTTTGTCATTCCAGTTTGAGTT





218939_at
LETM1
0.681360884
GCTCCTTCAGCAAGCAGGCTAGTCA





TGGGGCTTCAAGGGCAATACCCCCG





GCAATACCCCCGTGCTTAGGGTTTG





GGTTCCTGGCAAAAATGTACCTCCA





TCCAGGGGCCTCCAAGCATAGGATT





GAAGACAGGAACGGCACAGGCGTCC





GAAAGCAGCTGCACTCAGACAATGC





AATGCCTTCTCCATTACTTGAAGCT





CTTGAAGCTTCTTTCTGTTCAGCCA





ACCTTTGTGCAGGGACAGTTGGCTT





GGCTTCCAGAGGTTTCAGCTTTCAG





222006_at
LETM1
0.446584363
GATTACGGGCAAGTTTTTATTAGAG





ACTCTCAGTTCTAACGCAGGGATTC





GATTCAGGAATTGGGCTTTCAGACT





TCCTTCTGCAGTGTCACAGTCCAGA





GCAGTGTCACAGTCCAGACTTTTTT





CACAGTGGGTCCCAGGGCTAGCAGG





TCCCAGGGCTAGCAGGAGCGTGCTG





GGTGCTGGCAGGAGTGTGCTGGTGA





GGCAGGAGTGTGCTGGTGAGCCGGC





GCTCTGTCTTTGTAAATCCTTCAGG





TGTCTTTGTAAATCCTTCAGGGGTC





208450_at
LGALS2
0.461084643
ATCGCCGATGGCACTGATGGCTTTG





GACAAGCTGAACCTGCATTTCAACC





TTCAGCGAATCCACCATTGTCTGCA





ATTGTCTGCAACTCATTGGACGGCA





GCAACTGGGGGCAAGAACAACGGGA





GGAGCTGTCACCATGACGGGGGAAC





GCCAGATGGGCACGAGCTGACTTTT





GAGCTACCTGAGCGTAAGGGGCGGG





TAAGGGGCGGGTTCAACATGTCCTC





GACATGAAGCCGGGGTCAACCCTGA





GAAGATCACAGGCAGCATCGCCGAT





213526_s_at
LIN37
0.517736033
GAGGAGGGCTCAGAGGTAACCAACA





GGTAACCAACAGCAAGAGTCGTGAT





GTCGTGATGTGTACAAGCTGCCGCC





CACACTCATCTATCGCAACATGCAG





ATCTATCGCAACATGCAGCGCTGGA





CATGCAGCGCTGGAAACGCATCCGC





AAACGCATCCGCCAGAGGTGGAAGG





AGCTTCGTTACTCAGAAAGCATGAA





GAAAGCATGAAGATCCTACGAGAGA





GATCCTACGAGAGATGTACGAACGA





ACGAGAGATGTACGAACGACAGTGA





203518_at
LYST
−0.6194195
TTCCAAAGTCTCTGCTGTCAAGATA





GATTCGAGAGAAAGCACGTGGCCAT





ACGTGGCCATGTATGCTTTAACCTT





ACATGTAGTGATACCTAGGCTGCAT





TAGGCTGCATTTAGATCACCGTGTG





ATCACCGTGTGCTCAGGCCAGGTGT





GAATCCTGAGGTCCATGGAGGTGCA





GAGATTACTCCTATTCACGTTGAAG





ATAGGGTTGCTACTCATCTTTTTTT





GCTCTGTTACCTTTATATACGCTGC





TATACGCTGCCTCTTCAATTTGGAA





210943_s_at
LYST
−0.42037139
GAGCTAACCCTTCTTTTGAGAATAT





AAGTGATACTACTATGAGCCCTTCA





TATGAGCCCTTCACAGTATCTAACC





CAGTATCTAACCTTCCCTTTACTGC





CTTTACTGCACGCTCCAAATTTAAG





AGAGCACGAGTTTCACGGAGCAAGA





GGCTGATAGAGAGAGTTTTCCCCAT





GCTGCTTTCATCTTGGCACATAGCC





CACCTGCCGTTGCTGGGGCAAAACT





CTGCTGGCCACACCTATCAGAAGGT





AGTGTTTCCCTGTGGTTTAATGTGG





204970_s_at
MAFG
0.587513144
GCTGGGAAGGATTCACTCTCTTTAG





ACTCTCTTTAGCCCCAGGGGAGCAG





TGAAGAGATGGGCTCTGCTCTGAGA





GTAGGGCGGGCTTGAAGGCCCTGAT





GGCCCTGATGGGTGGACCACCAGCC





CTGACCCGTTGCACTGAACAAGACC





CTGGTTGTGCGCTTAACGTGAGGGT





AACGTGAGGGTGGGTCCAGTGTGCC





GGTCCCGTGTCACTGTTTACATGAC





GTGTGGTTATATAGCCCTTTATTTA





TTGTAAACTTACGGACACCTCTTTG





224466_s_at
MAFG
0.46668662
GAGGTGGGTCCAAGCAGAGTTGATC





AGCAGAGTTGATCAGTCCCTGCCTG





TGCCCTGCCTAGGTCTAGCCAGGGG





GAGAAGACCCCGGGATCTGCTGGGG





TGGATGCGGGGTGAGGCCCGAGCGC





CGCTCACACTTCGTGTAGGGCGGGC





CTGCCCTGCGCAGTATTTATTGCTA





ATTATTGTCCAGGAGGGGCAGCACT





TCTGCTAGTCCCTGAAGCCTTTAAC





TGAAGCCTTTAACCAAACGGGAGTG





AACAGGACAAGGGCTGCCCGCGTGT





203668_at
MAN2C1
−0.4312488
CCACGAGTTCACCTATGCACTGATG





CGCACAAGGGCTCTTTCCAGGATGC





GGATGCTGGCGTTATCCAAGCTGCC





AAGCTGCCTACAGCCTAAACTTCCC





TTCACCCGCGGTCGTATTGGAGACC





CCTGAGGCTGTATGAGGCCCACGGC





CGGCAGCCACGTGGACTGCTGGCTG





TCTGCGATCTCTTGGAGCGACCAGA





CTCTGGGGACTCCTAATTTCTGCTT





GCTTCCCCAGCCTAAAGCAGGGATC





AGCAGGGATCAGTCTTTTCTTGTGG





226132_s_at
MANEAL
0.579062432
TGGAAGGGTGTCAGGGTCTGGGCTC





ATCATCTGTCTTCTCTAAGTTAGGG





AGGAAATCATCCTGAGCACTCACAG





GAGCACTCACAGGTTCATTTAACAC





TTTAACACTCACTCATCAAGCACCT





GAAGAGTTCCTGTCCTGAAGCTTCC





TCTGGTGTGGCCTTGTAGCTAGTGC





GTGCCTGGGCACAGGTGTTTTTCTT





GTTTTACCTAGTGCTGGGAGTTCAG





TGGGAGTTCAGTTCTTTTTCCTCTA





AGAGCCTAATTTTTCCCAGATGCAT





210058_at
MAPK13
0.453157102
GGGTCCTTCTCCTTATGTGGGAAAT





GTCGGTTGGGAGAAACTAGCTCTGA





CTAGCTCTGATCCTAACAGGCCACG





ACAGGCCACGTTAAACTGCCCATCT





AAACTGCCCATCTGGAGAATCGCCT





CTGGAGAATCGCCTGCAGGTGGGGC





GGATGCTCTAACGAATTACCACAAA





TTCCCCAGCTTATTGCTGCATCACT





GTTCTCTCCTCTTTTAACAACAGTC





CCCACCCTAATCCTGTGTGATCTTA





GTGTGATCTTATCTTGATCCTTATT





210059_s_at
MAPK13
0.449684703
CCGGGGGCCTATGGCAGTGATGCTG





GGGGCCTATGGCAGTGATGCTGTGT





CCTATGGCAGTGATGCTGTGTTGGT





CAAACCTGGTGGATTGAAACAGCAG





GAAACAGCAGAACTTGATTCCCTTA





AGCAGAACTTGATTCCCTTACAGTT





CAGGGCTGTGGTCCCTTTGAAGGCT





CCTTGGCTCTTTTTAGCTTGTGGCG





TGGCTCTTTTTAGCTTGTGGCGGCA





TTAGCTTGTGGCGGCAGTGGGCAGT





TGATCCTTATTAATTAAACCTGCAA





203928_x_at
MAPT
−0.7271058
GAGTCCAGTCGAAGATTGGGTCCCT





TCCCTGGACAATATCACCCACGTCC





AAGACAGACCACGGGGCGGAGATCG





CGGAGATCGTGTACAAGTCGCCAGT





AGTCGCCAGTGGTGTCTGGGGACAC





TCCACCGGCAGCATCGACATGGTAG





GCTAGCTGACGAGGTGTCTGCCTCC





GCCTCCCTGGCCAAGCAGGGTTTGT





TGTGATCAGGCCCCTGGGGCGGTCA





GCTCCTCGCAGTTCGGTTAATTGGT





ATCACTTAACCTGCTTTTGTCACTC





203929_s_at
MAPT
−0.74252419
CAGGCTGGGTGTCTTGGTTGTCAGT





GGATGGAAGGGCAAGGCACCCAGGG





ATGGAAGGGCAAGGCACCCAGGGCA





CTGCTCAGCTCCACATGCATAGTAT





CTCAGCTCCACATGCATAGTATCAG





GCTCCACATGCATAGTATCAGCCCT





TCCACACCCGACAAAGGGGAACACA





AGTTGTAGTTGGATTTGTCTGTTTA





GTTGGATTTGTCTGTTTATGCTTGG





GATTTGTCTGTTTATGCTTGGATTC





TGTCTGTTTATGCTTGGATTCACCA





203930_s_at
MAPT
−0.5823235
GCCTGGCAGGAGGGTTGGCACTTCG





GACTGACCTTGATGTCTTGAGAGCG





TTGATGTCTTGAGAGCGCTGGCCTC





TCTGAAGGTTGGAACTGCTGCCATG





ACTGCTGCCATGATTTTGGCCACTT





CCACTTTGCAGACCTGGGACTTTAG





GCAGACCTGGGACTTTAGGGCTAAC





TAGGGCTAACCAGTTCTCTTTGTAA





ACCAGTTCTCTTTGTAAGGACTTGT





TAAGGACTTGTGCCTCTTGGGAGAC





GCATCTCTGGAGTGTGTGGGGGTCT





206401_s_at
MAPT
−0.75694157
GCAGCATCGACATGGTAGACTCGCC





GCTAGCTGACGAGGTGTCTGCCTCC





AGGTGGCAGTGGTCCGTACTCCACC





GTCCAAGATCGGCTCCACTGAGAAC





ACTGAGAACCTGAAGCACCAGCCGG





GACCTGAGCAAGGTGACCTCCAAGT





GGCTCATTAGGCAACATCCATCATA





GAGTCCAGTCGAAGATTGGGTCCCT





TCCCTGGACAATATCACCCACGTCC





CGGAGATCGTGTACAAGTCGCCAGT





AGTCGCCAGTGGTGTCTGGGGACAC





225379_at
MAPT
−0.68822477
TATGGACATCTGGTTGCTTTGGCCT





TCAGGGGTCCTAAGCCCACAATCAT





TCATGCCTCCCTAAGACCTTGGCAT





GCTCCAGACACACAGCCTGTGCTTT





TTGGAGCTGAGATCACTCGCTTCAC





TCCTCATCTTTGTTCTCCAAGTAAA





GTAAAGCCACGAGGTCGGGGCGAGG





GCAGAGGTGATCACCTGCGTGTCCC





GCCTCACCTCCTAATAGACTTAGCC





GAGCAGGACTATTTCTGGCACTTGC





GCAAGTCCCATGATTTCTTCGGTAA





200978_at
MDH1
0.502702999
TTTCCTCTGCCTGACTAGACAATGA





GAATTTGTCACGACTGTGCAGCAGC





GCTGCTGTCATCAAGGCTCGAAAAC





AAACTATCCAGTGCCATGTCTGCTG





CTGCAAAAGCCATCTGTGACCACGT





GTGACCACGTCAGGGACATCTGGTT





GTTTGTGTCCATGGGTGTTATCTCT





TGATGGCAACTCCTATGGTGTTCCT





TCCTGATGATCTGCTCTACTCATTC





CTACTCATTCCCTGTTGTAATCAAG





AAGGTCTCCCTATTAATGATTTCTC





217542_at
MDM2
0.35395489
AGTTTTTAGTTGCGCTTTATGGGTG





TGCGCTTTATGGGTGGATGCTGAAT





GTGATCATATTGTCTACCATGTAGC





GTCTACCATGTAGCCAGCTTTCAAT





GTAGCCAGCTTTCAATTATATGTAA





TAAGAGGGACTTTTTGACATTTACA





GATATCTGAAAGCACCAGCACTTGG





GCAAGCAGATGGGAGGCGTGTTCAG





GAGGCGTGTTCAGTAACTTATTCAT





GAAATGATTGCTGTACTCAAATATT





GAAAACCATAGTTGATTGCCTACAC





238733_at
MDM2
0.353767856
ACTTCTGCTTAAGAGGCTTCTATGT





GGTACCTGTAATTTAGCCATTTCCT





AGATGTAAGCTTGAGCCCATCCTCT





GACTGTTAGTTTTCCAGTTCCTACT





CAGTTCCTACTGGAGGCAAATTCTT





GGCAAATTCTTTGTTTACCACTGTT





GTTTACCACTGTTCTCTGTATTTCA





AAAAGCCTTCTCTATATATCAGTAT





GGGATGGTACGAGGCTGTATTATTT





GAAATGGTCCCATAGCTTAGCATGT





CCAGAAGGCATACTTTCCATCCATC





244616_x_at
MDM2
0.571340098
AAAAACTGGCTTTAAAGCAGGAGCT





GGCCCCTAAGCCAGACGGGGACTAG





AAGCCAGACGGGGACTAGCTTTGGC





TGAGACGGAGTCTTGCTCTGTGGCT





GCTCTGTGGCTCAGGCTGGAGTACA





CTCCTGGCTGTGTTCAAGTGGTTCT





AGCTGGGGTTAGAGCACCCTGTCAC





CGCCCCGCTAATTTTGTATTTCTAG





GATGAAGTTTCACTATGTTGGCCAG





TAGTGTGTAGGTCTGTAGGCTTTTG





TGTAGGCTTTTGATGGTAACCACAA





210492_at
MFAP3L
0.374647241
GATCTCATCTTGTCTTGTTTTTCTA





GTCTTGTTTTTCTAAGGCAGGAGAG





TTTTTTTCCCTCATTGACACAGAAG





TTTCCCTCATTGACACAGAAGACAA





GACAAACACAGAAGTCTTTTTAAAG





AATACATCCAATACATTATAGAGAC





CATGGAGATGGCTGGAATAAACAAT





ATAAACAGGAGCTTTGGAGCCAGCA





GAGCCAGCACCCGTGATGTTAGTTC





CACCCGTGATGTTAGTTCTTCTCAT





GATGTTAGTTCTTCTCATGCAAATG





207289_at
MMP25
0.354567436
CCCCTCAAACTTCTGTGCACAAAGT





TTCTGTGCACAAAGTGCTCCCTTCC





GCCCCATCGGTGTGTAAGGTGGCCT





CGGTGTGTAAGGTGGCCTATTCCTC





TGTGTAAGGTGGCCTATTCCTCTGT





GCCATGCTGACTGAGTGACTGGAGA





CATGCTGACTGAGTGACTGGAGACA





GACTGGAGACAGGGATGATGGAGAG





GACAGGGATGATGGAGAGTTCATGA





GCAGCAACTCTATGGTAGGGGGAGA





ATGGTAGGGGGAGAGGGACCTGCCG





207890_s_at
MMP25
0.563908849
TCCTGGGAGGCCTTAGCTCTAGAGT





CCACTCCCCACAGTTTTAGGATCTA





GAACTATTCTTCTAGACTATCCCAC





AGACTATCCCACATCAGAATCACTG





GAATCCTCACTCAGGGTGGGGTCAG





AATCTGCATTTTAACTAGTCGCGGG





TAGTCGCGGGGATTGTGGGGGGCAG





TCCACCCCAGGACCAATATGTTCAG





GATGGCCTGAACCCCATGGGTAGAG





TAGAGTCACTTAGGGGCCACTTCCT





TAAGTTGCTGTCCAGCCTCAGTGAC





218212_s_at
MOCS2
0.341587102
GTGGTAGACATGTCCTTCCATGACT





TCCTTCCATGACTAATTTCTAATTG





CCCTCCTCAGTGACTTTAACTAGCT





TAACTAGCTCAGAAACGTACTCCCC





GTTCTGGGAGAGCATTGTTATTAAG





GACAGTCTTGATATTATACATTTTC





GAGTGCTTTTGGGCATCCAACAGTT





GGCATCCAACAGTTAATCACTTATG





TTTAGAGCATGCAATCTTAACTTTG





TTTTCTCTCCACATCAGGATAGTTT





ACTGAAGCACAATCTCTTATACTAG





203801_at
MRPS14
−0.6674614
GAAGGCCTGAACTAACATTGTGGTA





GATGGTTCTCTGGGTTCCTGATAAA





AGGGCAATTCCAAGAGGGCAACTCC





TTCAGGTTCCAGTCATGCGGTGTTG





CGGTGTTGGAGATGCCTGTGTCATC





GATGAAGACTAGTACGCAGCTGGAT





GCAGCTGGATAGCAGAGTCCGAAAC





GAATGTTCTAGCTAATATCTCAACT





ACTTAGAATCCATCTCACTACCAAT





TACCAATGGGCAAACACTTGTGTTC





GTTTGAACATTTTGTGTACTTCCAA





205614_x_at
MST1P9
−0.40471778
GCATGGAGAGCCAAGCCTACAGCGG





TACAGCGGGTCCCAGTAGCCAAGAT





CCTGCCCCCTGAATGGTATGTGGTG





GTGCCTCCAGGGACCAAGTGTGAGA





GGCCTTTCTGAATGTTATCTCCAAC





TGCACTGAGGGACTGTTGGCCCCTG





TGTGAGGGTGACTACGGGGGCCCAC





GCTTTACCCACAACTGCTGGGTCCT





TAATCCCCAACCGAGTATGCGCAAG





TCACGCGTGTCTCTGTGTTTGTGGA





TTAGGCCCAGCCTTGATGCCATATG





213380_x_at
MST1P9
−0.41073975
CATGGAGAGCCAGGCCTACAGCGGG





TACAGCGGGTCCCAGTAGCCAAGAT





TAGCCAAGATGCTGTGTGGGCCCTC





AAATGTGGCCTTGCTGAACGTCATC





GAACGTCATCTCCAACCAGGAGTGT





TGCACTGAGGGACTGTTGGCCCCTG





GCTTTACCCACAACTGCTGGGTCCT





GAATTAGAATCCCCAACCGAGTATG





TCACGCGTGTCTCTGTGTTTGTGGA





GAGACTGGGTTAGGCCCAGCCTTGA





GCCTTGACGCCATATGCTTTGGGGA





216320_x_at
MST1P9
−0.46303812
GCATGGAGAGCCAAGCCTACAGCGG





TACAGCGGGTCCCAGTAGCCAAGAT





CCTGCCCCCTGAATGGTATGTGGTG





GTGCCTCCAGGGACCAAGTGTGAGA





ATGTGGCCTTGCTGAATGTCATCTC





TGCACTGAGGGACTGTTGGCCCCTG





TGTGAGGGTGACTACGGGGGCCCAC





GCTTTACCCACAACTGCTGGGTCCT





TAATCCCCAACCGAGTATGCGCAAG





TCACGCGTGTCTCTGTGTTTGTGGA





TTAGGCCCAGCCTTGATGCCATATG





201710_at
MYBL2
1.012936028
CCCCTATGTCCAGTGCCTGGAAGAC





ATGCAGGAGAAAGCCCGGCAGCTCC





GACCCTCATCTTGTCCTGAGGTGTT





TGAGGTGTTGAGGGTGTCACGAGCC





GGTTGTGGGGGCAGAGGGGGTCTGT





GGGTCTGTGAATCTGAGAGTCATTC





CATTCAGGTGACCTCCTGCAGGGAG





CCAGACTCTCAGGTGGAGGCAACAG





GAGGCAACAGGGCCATGTGCTGCCC





CGGCTCCTGGTGCTAACAACAAAGT





AGACCCTGCTTAGGATGGGGGATGT





218966_at
MYO5C
−0.60491631
TCTTACCTGCCAACATATTCACCAT





GCAACCTAAATTACTTTCGCTCTCT





ACTTTCGCTCTCTAATCAGCATTTC





ATTGTGTCGGACCCTACTTTTGAGA





TGGGAACTGGCTATTCCTTGTCCCG





TTGATAAGCACTCCTAGTCTCTGGC





TAGTCTCTGGCCTGTGGATCCAGTG





TGGATCCAGTGCTATTCTGTCACCA





AAGAATCCCAATTGCACCTTCTGTT





GCACCTTCTGTTTCTGACAGTCACA





GCATCACCCTGCTAATACATAATAA





209177_at
NDUFAF3
0.475161982
TCTCGCCGGCGGATGACGAGCTGTA





CGAGCTGTATCAGCGGACGCGCATC





GAGGCCGCTCAGGCAATGTACATCG





AACAGCCGCGGCTTCATGATAAACG





TCCCGCACTCGGTGGTGCAGTGGAA





ACATCACCGAAGACAGCTTTTCCCT





GTTGCTGGAGCCCCGGATAGAGATC





TGGAGACCGGACCGAGAGGCTGCAG





CAGGAGGGACTTCACTTACATCTTT





CAAGCTGCTCAATGAACCGCCAGGA





CCGCCAGGAACTGACCTGCTGACTG





222992_s_at
NDUFB9
0.731413576
GTTGCGGCTTTATAAGCGGGCGCTA





TCGAGTCGTGGTGCGTCCAGAGAGA





AATACCGATACTTTGCTTGTTTGAT





TGGGGGCACCTCCTATGAGAGATAC





GAGATACGATTGCTACAAGGTCCCA





GGTGCTTAGATGACTGGCATCCTTC





AATGTATCCTGATTACTTTGCCAAG





TGGTCCTTTAACTGAAGCTTTGCCC





GATTTGCCCCCACTGTGGTGGTATA





GTGGTATATTGTGACCAGACCCCGG





GAGAGAGACCTCATCTTTCATGCTT





203189_s_at
NDUFS8
0.664297427
GTATGTGAACATGCAGGATCCCGAG





GAACATGCAGGATCCCGAGATGGAC





ATGCAGGATCCCGAGATGGACATGA





GGATCCCGAGATGGACATGAAGTCA





GAGATGGACATGAAGTCAGTGACTG





GAAGTCAGTGACTGACCGGGCAGCC





CCATCAACTACCCGTTCGAGAAGGG





GTACCCATCCGGGGAGGAGCGTTGC





CCCATCCGGGGAGGAGCGTTGCATT





CATCCGGGGAGGAGCGTTGCATTGC





AGGAGCGTTGCATTGCCTGCAAGCT





203190_at
NDUFS8
0.518954457
GCAGCCACCTACAAGTATGTGAACA





CATCACCATCGAGGCTGAGCCAAGA





GAGCCAAGAGCTGATGGCAGCCGCC





CCCGCTATGACATCGACATGACCAA





TGACCAAGTGCATCTACTGCGGCTT





CCAACTTTGAGTTCTCCACGGAGAC





TCCACGGAGACCCATGAGGAGCTGC





GTTGCTCAACAACGGGGACAAGTGG





GGGACAAGTGGGAGGCCGAGATCGC





CCAACATCCAGGCTGACTACTTGTA





CTGACTACTTGTATCGGTGACGCCC





219438_at
NKAIN1
0.519264977
ACTGCCTGGTGCGTCCATAGAGAGA





GAACTGGGGGGCACCCAGATGGTGC





TGCAGATGGTTTGCACACCTGAGCC





CATTCCCTACTCTCTAAGGCCAAAA





CACCATCCCAAATGCAAGCAGCCAG





GGTGGGTACAGCTTGAGAGGGGGGC





GCTTGAGAGGGGGGCAGCTCCCTCA





ACTCAACGGGTGTAGCCACTGGTGC





GCCACTGGTGCTTTGAAGCCTTTTG





GACCAGGTTCTCTTTTCACTGGGAC





CTCTTTTCACTGGGACCTTGCAAGG





224010_at
NPB
0.358813063
CACACCGGATCCCTGATGTCTAGGG





TCTAGGGAAGAGTCTTCTAGGTCCC





CCTCCTGCCCTTGATCAAGAGACCA





TCAAGAGACCAGTTCACTACTCAGA





AGTTCACTACTCAGATGCACGTCTC





TCCTTGGTGCCTTGACCATTCATGT





TGGTGCCTTGACCATTCATGTGACC





ATTCATGTGACCTTTTTGGCATCAC





AGATCAAGTGTCTGCAGATGGGCCC





CTGCAGATGGGCCCAGGGCCTGTAG





GCCCAGGGCCTGTAGGCAAGGTGCC





226414_s_at
NPB
0.810447359
TAAGTGCTGGAACGGCGTGGCCACT





GCTCTGGGTGGCCAACGATGAGAAC





ATGAGAACTGTGGCATCTGCAGGAT





CATGCATTGCATCCTCAAGTGGCTG





CAAGTGGCTGCACGCACAGCAGGTG





TCTCGCTGGAGGGGCATCCTGAGAC





CGCCCCTGAGCTGCAACAAGGTGGA





GGGCTGGAGCTGCGTTTGTTTTGCC





GTTTTGCCATCACTATGTTGACACT





CACTATGTTGACACTTTTATCCAAT





AAACTCATTAAACTACTCAAATCTT





223381_at
NUF2
0.549670355
GAGGTGCTGTCTATGAACGAGTAAC





ACTGCTTTGGAGAAATACCACGACG





ACCACGACGGTATTGAAAAGGCAGC





GGCAGCAGAGGACTCCTATGCTAAG





AGATGTTCAAAATGTCAACCTGATT





ATGTCTTTTTGTAAATGGCTTGCCA





TGGCTTGCCATCTTTTAATTTTCTA





AATAATGTTGGCTTCATCAGTTTTT





TCATCAGTTTTTATACACTCTCATA





AATAACTTGTGCAGCTATTCATGTC





TACTCTGCCCCTTGTTGTAAATAGT





213075_at
OLFML2A
−0.45525209
GGGAGCCCTGGGTTGGAATCCAGCC





CCACCTCTTTTATGCCACAGGTTTG





TCTCCCGCTCAGGGTAGGGCTGTGA





TGAACTCCCTCTTACAGCTAAGAAC





ATTATTCCTCCCCATTACAGGTGAT





GAGAGCTTAAGCAACCTGCTCAGGG





GTCACGTCTCCAACAGGCAGTAGAG





GTTTTTGTACCAGAGTCCCAGACTA





CCAATTGTGCTGAGTCTCCTACTAG





CTAGACTCGCTTCATTCTAGCTTTC





TCTAGCTTTCTGCTTTTACCTTTAC





200897_s_at
PALLD
−0.70844818
CTCTCTTAGCTCAGTTACTCAATTC





ATCTGTGTACCACCCCATATATTTC





TTCACATGTACAGCTTTCTACTTCT





GAGCACCGGGTGGCAGATGTTCTAT





GATGTTCTATGCAGTGTGGTTCAAG





GTGGTTCAAGTTTCTTTGACCGCAC





TTGACCGCACTTATATGCATTGCTA





AAGATACCATACACAGTCTCTCATG





TCTCTCATGGACCTATCTCTATTGT





ATGTGACCTTTTTTTGCTGATTTGC





TTAACTAGCATTATTTTGCCACCTT





200906_s_at
PALLD
−0.72710984
GTTGCTGATGGGTACCCAGTGCGGC





CAGTGCGGCTGGAATGTCGTGTATT





GTCGTGTATTGGGAGTGCCACCACC





GTGCCACCACCTCAGATATTTTGGA





GACCGAGTGAGCATGCACCAGGACA





TGCCTGCTCATTCAGGGAGCCACAA





AGGCTGGACGTTTACACCCAGTGGC





GCATCAGCAGTCACAGAGCACCAAG





CAGCACTTTCGGACCAGGGACTAGA





TCAAAGCAGCGTTCCAACCTGAGGC





GCCATTGCCTTGACCAACATATTCC





200907_s_at
PALLD
−0.72999637
AAACACTGCCATTCACAAGTCAAGG





GGAACCCAGGGCCAGCTGGAAGTGT





GTGGAGCACACATGCTGTGGAGCAC





GCTGTGGAGCACACATGCTGTGGAG





GCAGTGTGTCTGAGGTTTGTGTAGT





GAAATTGCCTGTAGCATCTAGTCTA





AAATTATTAGTTCACTTCCCTGCTG





TGCTGCCATGAAACTTTGCCTTAAG





GAAGGTGCTGGATTCCAAGGTTTGT





AAGGCATCTCGGTAAAGACTGCTTT





GACTGAGTTGATTCTGACCAGACTT





209796_s_at
PAN2
0.441449841
TGGAGCGACCCCATTACGCTAAAGA





GAGCGACCCCATTACGCTAAAGATG





GACCCCATTACGCTAAAGATGAAAG





GAGCCAGGATCTCCACTGTGGAGCA





GAATGGGAAATTGCCCAGGTGGACC





ACCCCAAGAAGACCATTCAGATGGG





GACCATTCAGATGGGATCTTTCCGG





GATGGGATCTTTCCGGATCAATCCA





GGATCTTTCCGGATCAATCCAGATG





TTTCCGGATCAATCCAGATGGCAGC





TCCAGATGGCAGCCAGTCAGTGGTG





241867_at
PARP6
−0.46940482
CTCAGTCTTCCTGGCTTATGTCTTA





GGCTTATGTCTTAGTTCATTTTCAG





TTTTCAGTCTGCTTTTGTGCTTGTT





GTGCTTGTTTGATGTAGTCTCTGTA





AGTCTCTGTACAAGGTATAGTCACC





GTCACCATGTAGTTGCATGTTCACT





AAGGGGATTGTGCTAGATTCTTAAT





AAAATGTAGTGCCATCAGGAGGCTG





AGATGAGGTCCAGATTCTAATCAGG





GAAAGTGCCAGAATCAGAGGCCTAA





GATTTAGAGTTCTCTCAGTCTTCCT





207838_x_at
PBXIP1
−0.51747417
GGGACTAAGGACAGCCATGACCCCC





GCAGGAGGGCTTGACTTTCTTTGGC





TTCTTTGGCACAGAGCTAGCCCCAG





TAGCCCCAGTGCGGCAACAGGAGCT





AAGAACATACTTGGCACGGCTGCCC





GTGAGGATGGCATCTTCCGTCATGA





CGCCTCCGATTCCGGGATTTTGTGG





GACTTTGAGGACTTCATCTTCAGCC





ATCTTCAGCCACTTCTTTGGAGACA





AGCACTCACAGAGCCCAAGAGCTGC





CCCACAGGGAATGGCCTTGGCCTTG





212259_s_at
PBXIP1
−0.58424221
CAGCGTTATCTAACTCCTGGAGGGT





TCCTGGAGGGTGGACTCTGTCCTGG





GTTTGGTGTCCTCAGATATCTTTCA





AGTAGAGCAAAATCACCAGCCCTGC





CCCTGCACTGATGTCACTTTATGTA





GGGGTCTGGGGAAGGCAATCTGATT





GAGCTTTCATCCTCTTGAGTGTATG





GAGTGTATGTCCCCATAGTGGGCCC





CCAGCACGAGGACTTACCCTGGGGT





GTTAGGTTTGGAAGCAGCTGTCCCT





GCAGCTGTCCCTAGGGGGTGAAGTC





214177_s_at
PBXIP1
−0.5947096
GTGGTTTCTAAGCACAGGGGACACC





ACACCCCCTGCCTGAATGGATGGGT





ATGGATGGGTCCATCCCAGGCACTG





AACCCTAGGCCCTTGAGAAGCTGAT





GAAGCTGATACTTCTCCTTTTGCTC





CCCACCCCTGGGAGATGTAGCAAAT





GTGGGTTTTGGAGTCTGAGCCTCAG





CTGAGCCTCAGGCTCAAATCCAGGC





GGCAAGTTAATCTCTGGGAACTTTG





TCTCTGGGAACTTTGGGTTTCTTAT





GTTTCTTATCCTCAAAAAAGGCGAT





209577_at
PCYT2
0.40739165
GGGAGCGCGATGGTGACTTCTAACC





GGTGACTTCTAACCTGGCAGAGGCC





TTGGACATAGGACTCTGCAGGGCCG





GCCTACAAGGTGCCTGGTTTGCAGC





CCGCTCTTTCCAGCAAAGCTGCTCA





GCTGCTCAGAGAGGGTGTCCAGCAC





GTGTCCAGCACAGTGGAGAGGCCGG





GAAGTGAGACGGGCAGACGGCACCT





GGTCACCCCTTTAGTTCTCTGGGTG





TCTCTGGGTGTAGACCACACCACCT





AGCGCCTGGCTCCAGGAAAACACGC





230044_at
PCYT2
0.468900214
CGGCCCCGTAGCAGCATTGGAGGCC





GTAGCAGCATTGGAGGCCAGAGCCC





GCGGAGGGAGAACCTACCCATCTCC





TCTGGGGAGGCATGCTCTGGGCCTC





AGAAGGGATGGGGGCAAGAGGAAGG





CCCTCACAGATTTGGCTCTCGAGTT





CACAGATTTGGCTCTCGAGTTGGGG





GATTTGGCTCTCGAGTTGGGGAGCG





GTTGGGGAGCGAAGGGCTGGGGGAG





TTCTCATACCCAGGCTTGGGGATTT





ATACCCAGGCTTGGGGATTTCCAGG





222394_at
PDCD6IP
−0.51106369
GATCTAAGAGAACTCTCCCTGTGCC





GAAAAACAGTCACATGTCACGACAA





GTCACGACAAACCAATCAATCTTTA





TGAGATATTCCTGTATCCATACCCC





GGATTTCACAGAGCCTTGTGTCCCT





CACAGAGCCTTGTGTCCCTAAAGTT





CCTAAAGTTCTGTCCCAGTCAGCAG





GTCCCAGTCAGCAGTCTTTATAGTC





GCAGTCTTTATAGTCCAAACAGATT





CTTGAAGAATCTTGCTACAGCCAAA





AAACCCTGCTAGGTAGTGTTATAAT





219043_s_at
PDCL3
0.6367364
TCATCTTGCACCTTTACAAACAAGG





TGCACCTTTACAAACAAGGAATTCC





ATCAAAGCCATTTCAACAACCTGCA





AAGCCATTTCAACAACCTGCATACC





TTCAACAACCTGCATACCCAATTAT





CGATATTTGTTTACCTGGAAGGAGA





GATATCAAGGCTCAGTTTATTGGTC





AAGGCTCAGTTTATTGGTCCTCTGG





CTCAGTTTATTGGTCCTCTGGTGTT





AAACTGTCTGAATCTGGAGCAATTA





CTGTCTGAATCTGGAGCAATTATGA





219575_s_at
PDF
0.576226091
AAGGTGGGGTAATTGCATTCGTCTG





TCTGCAGTAGACACGAGTTCCTCGG





TCCTCGGACCTGTATAATCTCCCAA





GGGCTGGACCCCAATGGAGAACAGG





TCCAGCACGAGATGGACCACCTGCA





ATGGACAGCAGGACGTTCACAAACG





GCTTTGCTACTGGGGCTGAGGATTC





GAGGATTCCGGATACCAAGACGCAA





AAACACTTTCACTTTGAGCTGGGCA





GAGCTGGGCAAATCTTACTTGGCAT





TCAACTTGGATGGCTCGCATATGAC





205380_at
PDZK1
−0.51406251
GTCAAACCATGACTCGCACATGGCA





AAAGAACGGGCCCACAGTACAGCCT





ATTTGATAGCTGTTTCTGGGTATTT





GTGACCTGTTTACTGTCTCTTTAGA





TCACCATGTGTGACTGTCTTCTGTT





TTATCATTTGTCTTACAGGCGGCTA





TACAGGCGGCTATTGCAGACGGCTA





GATTTTTTTCATGTGATCTTTTCCA





TTCCAAGCTTCAACTTAACTTAACT





GTATGATGATGTCTCTTACTTCTAC





TTACTTCTACAGGTTCCTTGAGCAC





202464_s_at
PFKFB3
−0.75010603
TATTCTGTCCTGAGACCACGGGCAA





TGTCCTGAGACCACGGGCAAAGCTC





TTATTATTTTGATAGCAGATGTGCT





GAGCCTCCTATGTGTGACTTATGAC





TCTCTGTGTTCTGTGTATTTGTCTG





GTGTTCTGTGTATTTGTCTGAATTA





TTGTCTGAATTAATGACCTGGGATA





GACCTGGGATATAAAGCTATGCTAG





GCTATGCTAGCTTTCAAACAGGAGA





GTATATTTTGCAGTTGCCAGACCAA





GCAGTTGCCAGACCAATAAAATACC





208305_at
PGR
−0.66800313
GATGGAGATCCTACAAACACGTCAG





AACACGTCAGTGGGCAGATGCTGTA





ATTCTATTCATTATGCCTTACCATG





TGCCTTACCATGTGGCAGATCCCAC





GGCAGATCCCACAGGAGTTTGTCAA





AGGAGTTGTGTCGAGCTCACAGCGT





GCTCACAGCGTTTCTATCAACTTAC





ACAACTTCATCTGTACTGCTTGAAT





CCAGTCCCGGGCACTGAGTGTTGAA





ATGATGTCTGAAGTTATTGCTGCAC





ATTGCTGCACAATTACCCAAGATAT





228554_at
PGR
−0.74820678
CAGGGAATCTTTCTCATGACTCACG





ATGACTCACGCCCTATTTAGTTATT





ATTAATGCTACTACCCTATTTTGAG





TAGGTCCCTAAGTACATTGTCCAGA





TTTAGCCCCATATACTTCTTGAATC





ATCTAAAGTCATACACCTTGCTCCT





CCTTGCTCCTCATTTCTGAGTGGGA





AATTGTTCTGAAGGTTTTTGCCAAG





GTGATGGGGTGACAATGCAAAGCTG





AGTGGGCACCTAATATCATCATCAT





CAGTCTACTCAGCTTGACAAGTGTT





200658_s_at
PHB
0.758468503
GCAGGGGATGGCCTGATCGAGCTGC





CAGGGGATGGCCTGATCGAGCTGCG





CAGCCCCGATGATTCTTAACACAGC





GCAGGTGAGCGACGACCTTACAGAG





TGAGCGACGACCTTACAGAGCGAGC





TCCTGGATGACGTGTCCTTGACACA





TGGATGACGTGTCCTTGACACATCT





GACCTTCGGGAAGGAGTTCACAGAA





TCGGGAAGGAGTTCACAGAAGCGGT





GAGTTCACAGAAGCGGTGGAAGCCA





GAGCAACAGAAAAAGGCGGCCATCA





200659_s_at
PHB
0.590980749
GTCACTGATGGAAGGTTTGCGGATG





GGATGAGGGCATGTGCGGCTGAACT





CCAGCGGTTCCTGTGCAGATGCTGC





GATGCTGCTGAAGAGAGGTGCCGGG





GTCTGTCTGTTACCATAAGTCTGAT





GAATCTGCCCCTGTTGAGGTGGGTG





AGAGGAGGCCTGGACCGAGATGTGA





CCCTCTCAGATACCCAGTGGAATTC





TGAAGGATTGCATCCTGCTGGGGCT





TGCTGGGGCTGAACATGCCTGCCAA





GAACATGCCTGCCAAAGACGTGTCC





202927_at
PIN1
0.598911611
AGCCATTTGAAGACGCCTCGTTTGC





ATTTGAAGACGCCTCGTTTGCGCTG





TATTGTTCCCACAATGGCTGGGAGG





CCGCCAGATTCTCCCTTAAGGAATT





GATTCTCCCTTAAGGAATTGACTTC





AAGGAATTGACTTCAGCAGGGGTGG





GGTGCTGGAGGCAGACTCGAGGGCC





GGAGGCAGACTCGAGGGCCGAATTG





CAGACTCGAGGGCCGAATTGTTTCT





TCAGTCGCAAAGGTGAACACTCATG





AAAGGTGAACACTCATGCGGCAGCC





206509_at
PIP
−0.87917581
GGGGGCCAACAAAGCTCAGGACAAC





GACATTCCCAAGTCAGTACGTCCAA





AAAACTTACCTCATTAGCAGCATCC





CAGCATCCCTCTACAAGGTGCATTT





ATAAGTATACTGCCTGCCTATGTGA





GACGACAATCCAAAAACCTTCTACT





ATTGCAGCCGTCGTTGATGTTATTC





ATTCGGGAATTAGGCATCTGCCCTG





GCCCTGATGATGCTGCTGTAATCCC





TAATGGAAGCCCTGTCTGTTTGCCA





GTTTGCCACACCCAGGTGATTTCCT





204458_at
PLA2G15
0.399043552
GCCTTCTGGGAACCTATGGAGAAAG





AGGGAATCCAAGGAAGCAGCCAAGG





GGGTCTCACTAGTACCAAGTGGGTC





GCACCCAGCTTAGTGCTGGGACTAG





GGGACTAGCCCAGAAACTTGAATGG





GGCAGTAGGCTCTAAGTGGGTGACT





TGGGTGACTGGCCACAGGCCGAGAA





GAAAAGGGTACAGCCTCTAGGTGGG





CTGTTGCATACATGCCTGGCATCTG





CCCACATGGGGCTCTGAGCAGGCTG





GAGCAGGCTGTATCTGGATTCTGGC





239392_s_at
POGK
−0.43817793
TATGCTGAACATTTAGGGCCAGTAT





GGGCCAGTATGTGTAACTGACATGC





GGACAGTTGTACTCACTTTTGCTGG





GTCTCAGTCCTGGAGCTATCTACAG





GGAGCTATCTACAGTATGTTACCAG





ATCTACAGTATGTTACCAGCGAGTA





GAATAATAGCTTCTACTTGCTTTTC





TACTTGCTTTTCCCTACAGAGTTCA





GCTTTTCCCTACAGAGTTCAGGAGT





TAAAACGTCATCTTAGTCTCATTAT





TCATCTTAGTCTCATTATGACCTTC





223260_s_at
POLK
−0.3539018
GAAGAATGTTCTAGTCTCCCAAGCA





TAGTCTCCCAAGCAAGTCTTTTAAT





CAGAATTCTTCTTCTACTGTTTCAT





ATTTAGACAAGAATACCGCCAGCCT





ACCGCCAGCCTTACTTATGTGAAGT





AACAGGCCAAGCTCTAGTTTGTCCT





TAGTTTGTCCTGTTTGTAACGTAGA





AAAGACTTCAGATCTAACCCTGTTC





CTAACCCTGTTCAATGTGCATGTGG





AAGCTCCAGAAGTACTGGTAGCTCA





AAACAATCCCAAACATACCCTTGAT





223261_at
POLK
−0.47165573
GAATAAGCACTTGAATCAGTTTTTA





GTCAATTATGTTGGTACTTTCCACA





GAAGGATAAATTGTACCATCATTTT





ATCATTTTATTATAATCCTCAAGAG





GTATCTTAGTTACATTTCTATCAGT





TACATTTCTATCAGTACTTTTATTA





GTAGTTAGCTTAAGTAGTTTCTCCA





GTAGTTTCTCCAAGTACTTTTGTGC





TTCTCCAAGTACTTTTGTGCTATCA





TTTGTGCTATCAATGAGTTCTTCTC





AATAATTAGTTAGGCCAGGCACAAT





202066_at
PPFIA1
0.411816725
TAAAGAACGAACCTAGTGGGACATT





GGGACATTTTTAGACTTTGATGCTC





GATGCTCTAGCCATTTTGGATTGTG





GGATTGTGTAAGTTGCAGATGTGGC





TGCAGATGTGGCTTTTACTTTTTAA





AAAGTGTGTCAGACCATGGCGTGGT





ATGGCGTGGTATTTATTGTGCAGCA





CAGAGGCAGCCTGTCTTTTCAGTTG





TGTTTTTCTATTAATCTTTTGTCAA





ATCTTTTGTCAACTTCCTGATTATG





GTATGTACAGTCTACTTTTGAACTA





210235_s_at
PPFIA1
0.350893924
TCGAGTGATTCGCTGGATCCTGTCA





GGATCCTGTCAATTGGCCTTAAAGA





GAGCACTTCTGGCCTTAGATGAAAC





GGCCTTAGATGAAACCTTCGACTTC





GCACTGGCACTGCTGTTACAGATCC





TTACAGATCCCGACGCAGAACACAC





AGAACACACAGGCTCGTGCTGTCTT





CAACCTTTTGGTCATGGGGACTGAT





GCTTTAGGAGAGCACCTTCATGGAG





AAAGGACATTCGTGGCTTAGCTGCT





TCCCTGCAAACTTCCGGGTGACTTC





210236_at
PPFIA1
0.48250638
TGCAGATGGACGGTATGTGATGGGT





TGATGGGTCACACTAACCTGTCACT





GTCACACTAACCTGTCACTTGTTGG





CTAACCTGTCACTTGTTGGGAGCAT





TGTCACTTGTTGGGAGCATGAGCAG





GCAGCTTTCTGTCTGGAACATTAAT





AATAATGATCTAAAACGGCCTATTT





AACGGCCTATTTAATATGTTACAAG





TTTAATATGTTACAAGGCACTTGAG





GGCACTTGAGTATGGTTGCATGTCC





TGAGTATGGTTGCATGTCCAAATAT





201957_at
PPP1R12B
−0.70564636
GTTGTGCCTACCACTGGCTGGCACA





ACTGGCTGGCACACCAGGGCAATGA





GGGCAATGATTTCCCTGCAGAAGGA





GAAAGAATGTTTCACCCTTGCATCC





AGCTACAGCCTGTGCTCAGTTGAGT





GTTCACACTCAGACTTTGGCTTTAT





AAGAACCACCCTGAGGTTTCCATGC





ATGCCTCTCCCATTTTAGTGGTAGC





GGTAGCATTTTGTGTCTTTACTCCA





TAGTTCCACCAAGGTTCACACACCA





TTTGAGTGGCCTTTCAACCCTAAGA





208680_at
PRDX1
0.644273963
TTCTCACTTCTGTCATCTAGCATGG





GGGACCCATGAACATTCCTTTGGTA





TTTGGTATCAGACCCGAAGCGCACC





GAAGCGCACCATTGCTCAGGATTAT





GAAGGCATCTCGTTCAGGGGCCTTT





AAGGGTATTCTTCGGCAGATCACTG





GTTGCCGCTCTGTGGATGAGACTTT





CTTTGAGACTAGTTCAGGCCTTCCA





AGGCCTTCCAGTTCACTGACAAACA





GTGAGCGCTGGGCTGTTTTAGTGCC





TTTAGTGCCAGGCTGCGGTGGGCAG





218302_at
PSENEN
0.429531662
TGCATCTGTTACTTAGGGTCAAGGC





TAGGGTCAAGGCTTGGGTCTTGCCC





CCCCAGCGCAGCTATGAACCTGGAG





GAACCTGGAGCGAGTGTCCAATGAG





AACCTGTGCCGGAAGTACTACCTGG





CCTTTTCTCTGGTTGGTCAACATCT





TTGGTCAACATCTTCTGGTTCTTCC





CAGCCTACACAGAACAGAGCCAAAT





ATCAAAGGCTATGTCTGGCGCTCAG





TCTGGGTGATAGTGCTCACCTCCTG





GCCGGAGGAAGTGAGCTCTCCTGGG





203447_at
PSMD5
−0.40381229
GATTGCTGAGGGTTTTGCTTTGGAT





TGCTTTGGATTTTTCATACCTATAA





GTTCTTCTCTCTAAACAGCAAAGCC





AGCAAAGCCAAAGCACTCTGCACAC





GAGCATATTTCTTTTAGGCCGTGGT





GTGAAGTTGATAAACCACCCCTGCT





TCTAGTCCCCAGATTGATCATCTCC





GGCAACGTGACTCTGTTTTTTGTGT





TGTGTGTGTTTCCATGCTGACTAGT





GACTAGTCCCCTACTGTTAATATCA





TTAGGCTATAACCAGGTCTTTCCTG





206687_s_at
PTPN6
0.515021453
GGGCCTGGACTGTGACATTGACATC





GACGGAGGCGCAGTACAAGTTCATC





CCATCGCCCAGTTCATTGAAACCAC





GCAGTCGCAGAAGGGCCAGGAGTCG





GCCAGGAGTCGGAGTACGGGAACAT





CCTATCCCCCAGCCATGAAGAATGC





GAAGCAGCGGTCAGCAGACAAGGAG





GAGGAAGTGAGCGGTGCTGTCCTCA





ACCCTGTGGAAGCATTTCGCGATGG





TTCGCGATGGACAGACTCACAACCT





CACAACCTGAACCTAGGAGTGCCCC





201482_at
QSOX1
−0.59145376
TGGAATGGAACTCCTCACTAGCTGC





CTGCTCCCTTCCGGACAATGAAGAA





CTCCTGGGTGGGGTTTGGCTTCAGG





TGGTCTCCCAGGTGAGGCAAGCCAT





TAGGGTGAGTGGCTTGCTTGGTGGG





GTGGGACCTGACGAGTTGGTGGCAT





GGGAAGGATGTGGGTCTCTAGTGCC





CTTGCCCTGGCTTAGCTGCAGGAGA





GAGAAGATGGCTGCTTTCACTTCCC





TTTGGTCTCCAAGATGAATGCTCAT





GGAGGGTGCCAGGTAGAAGCTAGGG





219681_s_at
RAB11F1P1
0.430010968
CAGGCTAATAGCGTGGTTGGGGGTG





TGTCCTTGTTACATTGAGGTTAAGA





GTGCAATCTCTTTCCAGGATTTCGT





GGATTTCGTTTGCTGTGGCATTGGT





GGCATTGGTTATATCAGAGCACTTT





GCTTTTAATTATCTACAGCTATTTT





TTCTCTCCTACAGTACTGGGACCAC





CTGGGACCACTGTAAACTTCTCAGA





AAACTTCTCAGATGACTTGTATTTT





TTGTTGTTACTCACTTAAGACTGGA





TTTTTTCCCTGGCTATGATAGAATC





225177_at
RAB11F1P1
0.575553639
GAAGGAGTAAGTCTGCCCTTTGCCA





TGTGGACCCCGATTGGTGAGGGCTC





GTGAGGGCTCTGCATATGCCTGTAT





GTGTGTGCACATGCCGGTATGAAGA





CAGGCATGTGCTTCTCAGTTTTGCT





GTCCATGATGCTCAGCCACATACTG





AATGTTAAATGACGCACCATCCTCC





GAACTACTAATTATCTCTCAAGGCT





GTATCCACCAAACTTAACTCCGTAT





TAACTCCGTATCTCCATATGGTGTC





ACTGAAGGATCGCCCAACGTTTTTG





231830_x_at
RAB11F1P1
0.356254051
TACAGTTCTCCAGGTGTGGAATGAT





GTCAATACGATTGCTTGGCCTTTTC





CAGCAACACTCCTTGTAAGGGGCAG





TAAGGGGCAGAGACAGGGTCCACCA





TCCACCAACTCCCCAAGATGAAGAA





AGATGAAGAAGCCCCTTCAGGCCAG





TCAGGCCAGTCGTGGTGGCTCATGC





CAGCACTTTGCAAGGCCGAGGAGGG





GGAGGCTGCAGCGAGCCAAGATCGT





AGGAGACCATAGGATTTGGACCCCA





GACCCCAAAGGGATGTGAACTGATC





202252_at
RAB13
−0.61976806
GAGAGATGCCTCAGGCTTCAGACCT





CTTCAGACCTTACCTGGGTTTTCAG





AGGGTCCTGCAAAAGGCTAGCTCGG





GCTAGCTCGGCACTACACTAGGGAA





ACTAGGGAATTTGCTCCTGTTCTGT





TCACTTGTCATGGTCTTTCTTGGTA





GGTATTAAAGGCCACCATTTGCACA





CAGGAAACGGCAACAAGCCTCCCAG





GCCTCCCAGTACTGACCTGAAAACT





GAAGAACACCAACAAGTGCTCCCTG





CACCCCGGAAGCTGAACCTGAGGGA





243777_at
RAB7L1
0.650862748
AAGGAGCTGACTGGGATTCAGTCAC





TGACTTGGAGCCGCTCGGGGGAAGT





GACTTGGAGCCGCTCGGGGGAAGTC





TTTCTCGGCAGTCAGGCCAGGAGGG





CTTCCTCACAATTTGGTTTGTGCTG





GTTTGTGCTGCAAGGGGAGGGTCCC





GTGCTGCAAGGGGAGGGTCCCCATC





GCAAGGGGAGGGTCCCCATCATCTG





CAAGGGGAGGGTCCCCATCATCTGG





GCCCCAGTGGTGTAAGGAGCTGACT





GGTGTAAGGAGCTGACTGGGATTCA





220338_at
RALGPS2
−0.49372178
GAGAGCTAACGTTTGATAGTTCTAA





GAATCCTTATAGAATTTGTCTTTTA





AAATTACTCTTCTTTAATGCTAAGT





AATGCTAAGTATTGACACATCGTTG





TTGACACATCGTTGTTTGTTTTTCA





TTTCATTGTTTTTGCGGATTGAGAG





GCGGATTGAGAGACTTGGTCCATCT





ACTTGGTCCATCTTGTCTCAGGAGA





GAAACCTTTCTCCAATGTAGCAGAA





TATCCTCTTCCCTGTATTATAGCAA





TTAAAGATTTTTGAGGCCGGGCACA





227224_at
RALGPS2
−0.57369561
TTACAGACTCTAGCTTTCCTTATTA





TATTAGCTTAAACTGGGGCCCTCAA





CCCTCAAAGAGCAGCCTGTTGATCT





TAAACTGTATACCTTTACTACTGAA





TGGGTTCCATCCATTAGCTTTTTAA





GATCTGGTATTGATTTCCTTCCTGT





GGCACATTCCTTTACAACCAGTGTT





TAAACCACCACGTAATCATCTTCTG





AACAAGGGGTGCCAGTGTTGCCTAA





GAGTTTAACTGTGTCCAGGTGGAGT





GTATGACTTCTTTAGTGACCTTTTA





227533_at
RALGPS2
−0.73589294
GCTGTGCTTTAGATACCAGATAACA





GTTTCCCCTGAAGATATGACCTACT





ATGACCTACTAGAACTACTCACATA





GAGTTTCTGTACCTTGATTATTGAC





GGGGTGGGGAACTGGTTCACAACAT





GTAAGGACAGGTACCCAGTGATGAT





TTTATTCTTTATCCCAATTAACTTG





AGCACTCGATTGCACTATGACCTCC





ATGACCTCCTTGAGTGATGTGCAGC





GTGAGTGTGCGATCTTCAGTGTGTC





CAGTGTGTCTGCATAAGCTAACTTA





232112_at
RALGPS2
−0.62900747
TCTGGCGGTGCTGTGCTTGGAATAG





AGATCGTAGCTAATTTGCATTTCTT





AAAACATACTCTTGTGGATTCCATC





GTGGATTCCATCAGGAGCTGGTTTT





GGAGCTGGTTTTGAACCGAGGTGAA





AATGTTAGTCATGTGAGTTCTTGGG





ACATTATTTCCTGCAGGAGGTACAA





AGGAGGTACAAAGGCTGTGTGTTCA





GGCTGTGTGTTCATTTGCCAGACGC





TGTGTTCATTTGCCAGACGCTTTTT





TTCATTTGCCAGACGCTTTTTTTTT





242458_at
RALGPS2
−0.63334516
ACAATAATTAGATCTTTTTCCAAGT





CCCTTCTCCCAGTCATAGGTGGTTT





GGTGGTTTTTATCATCAAGACAGAC





CAGTGTTTGATGTGCATAATGCCAG





TTCTCTCTTTTTGTTCAATATGAGA





GATTCAGGATCATATTTGTTTAAAA





CTGAAAATTTACTGTCGGTCTCTGA





GTCGGTCTCTGACATGAAACCGTAT





GAAACCGTATTTTGTCAGTAGTTGA





GTAGTTGACCAAGCAGTTTTATGAG





GAGAACTCTTCTATGCAATGATGCA





203750_s_at
RARA
0.417245729
GCCTGACCACTGGGTGTGGACGGTG





ACCACTGGGTGTGGACGGTGTGGGG





GGGCAGCCCTGAAAGGACAGGCTCC





GCAGCCCTGAAAGGACAGGCTCCTG





TGCACCCACCATGAGGCATGGAGCA





CCATGAGGCATGGAGCAGGGCAGAG





GGAGCAGGGCAGAGCAAGGGCCCCG





CCCCCACTGTGAAGGGGCTGGCCAG





CACACACACACTGGACAGTAGATGG





GGACAGTAGATGGGCCGACACACAC





AGATGGGCCGACACACACTTGGCCC





206499_s_at
RCC1
0.693335069
TGTCCCTAACAGTCCACAGGCAAAC





TCATAAGAGCCATCTGTCACGGACC





ACCCACGCCCAGAGGAACGTGCAGA





AAGTGATTCTCCCAGAAGCACAAAG





AAGCACAAAGCATACTCTTGCCCCT





CCCTCAGGTGTTGCTTGTGTACATC





TGCTTGTGTACATCGTACCCATCCA





AGCCAACGGCCTGGAATCGCAAAGA





AAAGAGACACCACTCTGGGCAGAGC





GGAGGGACAGAGTGTTGGAGGGCCA





GGAGGGCCAGAGACTAGTCCTGAGA





215747_s_at
RCC1
0.561781335
CCCAGAACCTAACATCCTTCAAGAA





AGGAAAAGCATACAGCCTGGGCCGG





CCTGGGCCGGGCTGAGTATGGGCGG





CCTCTGTGGGGTATGCTGTGACCAA





CCAAGGATGGTCGTGTTTTCGCCTG





CAACTACCAGCTGGGCACAGGGCAG





CGCCTGGAGCCCTGTGGAGATGATG





GAACCGTGTGGTCTTATCTGTGTCC





GGGGCCAGCATACAGTCTTATTAGT





AGAGCTGATGAAGCCTCTGAGGGCC





CAGCTGCAGATGGCAGCGGGCCTCT





204336_s_at
RGS19
0.391879986
CAGTGGGGAGTGCTGTGTCTCCTGG





GCCAAGCAGGAACTCCAGGTGCAGG





TGGGGGCTCTTGCGTGGTGAGAGTA





TGCGTGGTGAGAGTAGGGGTCCCCC





TTGGTGGGGAACAGAACCTCCGCAT





ACCTCCGCATCGTGTAGTTTTGTGA





TACTTGAGCTGTCTGTACCCCAGAA





TGTACCCCAGAATCAAACACAGAAC





CTCAGAATCCTGCACTCAAGGTGGC





TAAACCTGGAAACATGTCCTTACTA





ACATGTCCTTACTAGGTGTTTTATC





227543_at
RNASEH2C
0.501348241
TTCCTCACCCTCATAATGGACCTTA





GACTGAGTTTCTTCAAGCATCCACT





TCCACTTGTGCTACCAGGCTGAGAA





GACCCCATCTGGGCATCATTTAACC





AGATTCCTGTCTCTAATCCAGACCT





TAGCTGGGACCTTGGGAGTGTCACC





AAGACTTGAGTGGCCTGACTGGGTG





GGTGCTTCCTAAGTCGGGGAGACCA





TCCAACTCGTGCTGATAGCTGGCCG





TGCACAGCCCTGAGTGGCTTCACAT





TTCACATCTCTTGGTCAGTGTCTTC





200088_x_at
RPL12
−0.50184421
GAAGTTCGACCCCAACGAGATCAAA





AGTCGTATACCTGAGGTGCACCGGA





GCAACGGGTGACTGGAAGGGCCTGA





GACCATTCAGAACAGACAGGCCCAG





GGCCCAGATTGAGGTGGTGCCTTCT





TCGACAGATGCGGCACCGATCCTTA





ACCGATCCTTAGCCAGAGAACTCTC





AGATCCTGGGGACTGCCCAGTCAGT





GGCTGTAATGTTGATGGCCGCCATC





CGCCATCCTCATGACATCATCGATG





GTGGTGCTGTGGAATGCCCAGCCAG





GAAGTTCGACCCCAACGAGATCAAA





AGTCGTATACCTGAGGTGCACCGGA





GCAACGGGTGACTGGAAGGGCCTGA





GACCATTCAGAACAGACAGGCCCAG





GGCCCAGATTGAGGTGGTGCCTTCT





TCGACAGATGCGGCACCGATCCTTA





ACCGATCCTTAGCCAGAGAACTCTC





AGATCCTGGGGACTGCCCAGTCAGT





GGCTGTAATGTTGATGGCCGCCATC





CGCCATCCTCATGACATCATCGATG





GTGGTGCTGTGGAATGCCCAGCCAG





200809_x_at
RPL12
−0.4817517
GAGGTGAAGTCGGTGCCACTTCTGC





GCAACGGGTGACTGGAAGGGCCTGA





GGCCCAGATTGAGGTGGTGCCTTCT





CCCTGATCATCAAAGCCCTCAAGGA





TCGTCCCGAATCCGGGTTCATCCGA





TCGACAGATGCGGCACCGATCCTTA





ACCGATCCTTAGCCAGAGAACTCTC





AGATCCTGGGGACTGCCCAGTCAGT





TGTTGATGGCCGCCATCCTCATGAC





GTGGTGCTGTGGAATGCCCAGCCAG





GAAGTTCGACCCCAACGAGATCAAA





214271_x_at
RPL12
−0.38430476
GCAACGGGTGACTGGAAGGGCCTGA





GACCATTCAGAACAGACAGGCCCAG





GGCCCAGATTGAGGTGGTGCCTTCT





CCCTGATCATCAAAGCCCTCAAGGA





AACATTGCTCGACAGATGCGGCACC





AGATCCTGGGGACTGCCCAGTCAGT





TGTTGATGGCCGCCATCCTCATGAC





AGTGGTGCTGTGGAATGCCCAGCCG





TGCCCAGCCGTAAGTGACATTTTCA





GTTACTGGTGGGGTGGGATAATCCT





TTTTCTTTCCCACAGAGTTAAGCAC





200074_s_at
RPL14
−0.39457538
TCAGAACAGGGCTTTGGTCGATGGA





GGCTTTGGTCGATGGACCTTGCACT





TGCCTTTCAAGTGCATGCAGCTCAC





ATGCAGCTCACTGATTTCATCCTCA





AAATGGGCAGCCACACGATGGGCCA





GGCAGCCACACGATGGGCCAAGAAG





AAGATGACAGATTTTGATCGTTTTA





GAAGCTTCAAAAGGCAGCTCTCCTG





TCCCAAAAAAGCACCTGGTACTAAG





GCACCTGGTACTAAGGGTACTGCTG





TGCTGCTGCTAAAGTTCCAGCAAAA





TCAGAACAGGGCTTTGGTCGATGGA





GGCTTTGGTCGATGGACCTTGCACT





TGCCTTTCAAGTGCATGCAGCTCAC





ATGCAGCTCACTGATTTCATCCTCA





AAATGGGCAGCCACACGATGGGCCA





GGCAGCCACACGATGGGCCAAGAAG





AAGATGACAGATTTTGATCGTTTTA





GAAGCTTCAAAAGGCAGCTCTCCTG





TCCCAAAAAAGCACCTGGTACTAAG





GCACCTGGTACTAAGGGTACTGCTG





TGCTGCTGCTAAAGTTCCAGCAAAA





213588_x_at
RPL14
−0.42386316
GGCAGACATCAATACAAAATGGGCA





AGCAAAAAAGATCACCGCCGCGAGT





GCCGCGAGTAAAAAGGCTCCAGCCC





TAAAAAGGCTCCAGCCCAGAAGGTT





CAGGCCAGAAAGCAGCGCCTGCTCC





CGCCTGCTCCAAAAGCTCAGAAGGG





GAAGGGTCAAAAAGCTCCAGCCCAG





AAAAAGCTCCAGCCCAGAAAGCACC





AGAAAGCACCTGCTCCAAAGGCATC





ACCTGCTCCAAAGGCATCTGGCAAG





CATCTGGCAAGAAAGCATAAGTGGC





211073_x_at
RPL3
−0.49096872
GGAACCAAGAAGCGGGTGCTCACCC





AAGTCCTTGCTGGTGCAGACGAAGC





TTAAGTTCATTGACACCACCTCCAA





GCCTGCGCAAGGTGGCCTGTATTGG





TGTATTGGGGCATGGCATCCTGCTC





GCACGCGCTGGGCAGAAAGGCTACC





TACCATCACCGCACTGAGATCAACA





GATTGGCCAGGGCTACCTTATCAAG





GATCAAGAACAATGCCTCCACTGAC





CTCCACTGACTATGACCTATCTGAC





TCAACCCTCTGGGTGGCTTTGTCCA





211666_x_at
RPL3
−0.37973203
TGTGGGCATTGTGGGCTACGTGGAA





CTCCGGACCTTCAAGACTGTCTTTG





GAAGGCCTTTACCAAGTACTGCAAG





AGAAGTACTGCCAAGTCATCCGTGT





GCTTCCTCTGCGCCAGAAGAAGGCC





AGAAGGCCCACCTGATGGAGATCCA





GCACTGTGGCCGAGAAGCTGGACTG





GAGGCTTGAGCAGCAGGTACCTGTG





CAAAGGGGTCACCAGTCGTTGGCAC





GCCTGCGCAAGGTGGCCTGTATTGG





CCTGTATTGGGGCATGGCATCCTGT





212039_x_at
RPL3
−0.43456801
GCACGCGCTGGGCAGAAAGGCTACC





TACCATCACCGCACTGAGATCAACA





GATTGGCCAGGGCTACCTTATCAAG





GATCAAGAACAATGCCTCCACTGAC





CTCCACTGACTATGACCTATCTGAC





CCTCTGGGTGGCTTTGTCCACTATG





GGAACCAAGAAGCGGGTGCTCACCC





AAGTCCTTGCTGGTGCAGACGAAGC





GAAGCGGCGGGCTCTGGAGAAGATT





TTAAGTTCATTGACACCACCTCCAA





CTCCAAGTTTGGCCATGGCCGCTTC





215963_x_at
RPL3
−0.3611629
GGAACCAAGAAGCGGGTGCTCACCC





TGGTGCAGATGAAACGGCAGGCTCT





TTAAGTTCATTGACACCACCTCCAA





ACCACCTCCAAGTTTGGCCATGGCT





CAAAGGGGTCACCAGTCGTTGGCAC





TTGGCACACCAAGAAGCTGCCCTGC





TGTATTGGGGCATGGCATCCTGCTC





CTGGGGAGAAAGGCTACCGTCACCG





GATTGGCCAGGGCTACCTTATCAAG





GATCAAGAACAATGCCTCCACTGAC





AGAGCACCAATCCTCTGGGTGGCTT





211720_x_at
RPLP0P6
0.389281786
ACGCTGCTGAACATGCTCAACATCT





CTGGTCATCCAGCAGGTGTTCGACA





GGCAGCATCTACAACCCTGAAGTGC





CAGAGGAAACTCTGCATTCTCGCTT





CTTCCTGGAGGGTGTCCGCAATGTT





ATGTTGCCAGTGTCTGTCTGCAGAT





GATTGGCTACCCAACTGTTGCATCA





AGTACCCCATTCTATCATCAACGGG





TGTGGAGACGGATTACACCTTCCCA





AAGGTCAAGGCCTTCTTGGCTGATC





GCAGCCCCAGCTAAGGTTGAAGCCA





203777_s_at
RPS6KB2
0.687015289
GCTTCACACGGCAGACGCCGGTGGA





AGACGCCGGTGGACAGTCCTGATGA





TCAGCGAGAGTGCCAACCAGGCCTT





ATCAAGGAGGGCTTCTCCTTCCAGC





TCCAGGGCGCTAGGAAGCCGGGTGG





TGGGGGTGAGGGTAGCCCTTGAGCC





TGTCCCTGCGGCTGTGAGAGCAGCA





GTTCCAGAGACCTGGGGGTGTGTCT





GGTGGGGTGTGAGTGCGTATGAAAG





TGCGTATGAAAGTGTGTGTCTGCTG





CTGAATCATGGGCACGGAGGGCCGC





218914_at
RRNAD1
−0.60664512
CACTGGAGACAGTCATCCGACGGGC





CAGGGTCCACGAGCTCAAGATTGAA





ATATGTGCAGCGGGGGCTACAGCGA





GGCTACAGCGAGTGGGGCTAGATCC





TGGCCCAGGAGAACCGTGTGGTGGC





TGGAGACGCTTATTCTACTGGACCG





GAACTCTCTCCCAGAAACCTGGTTC





GAGACTGAAGACAGCTGATGCAGCC





CATCTCAGACCCCATCATCTGAAAG





CAGTGGCAGAGTACATCTCATCCAG





TCTCATCCAGAGAAACAGCATCCTG





228923_at
S100A6
0.344698431
CTCTCCAAATGAGGACCAGTAACTG





GTAACTGAGAAGTAGCTGAGGAGAA





GCAATGCCAAAGTGACATGGGTCCT





AAAGTGACATGGGTCCTTGGTGATG





GGGTCCTTGGTGATGAGGGAGCACA





GGGGAAGAATCCAGGGTTGTCATCA





AAGAATCCAGGGTTGTCATCACCAC





GTCATCACCACTGAGTATGGATTTC





CACTGAGTATGGATTTCACATTCTA





CCCTGGTCCACATGTAGACCCTGAG





ACATGTAGACCCTGAGCTGTAGACC





206378_at
SCGB2A2
−0.69528746
CTGGCTGCCCCTTATTGGAGAATGT





ATTTCCAAGACAATCAATCCACAAG





GTTCATAGACGACAATGCCACTACA





ACCAAACGGATGAAACTCTGAGCAA





ATGACAGCAGTCTTTGTGATTTATT





TAACTTTCTGCAAGACCTTTGGCTC





AGACCTTTGGCTCACAGAACTGCAG





GAGAAACCAACTACGGATTGCTGCA





TACGGATTGCTGCAAACCACACCTT





CTTCTCTTTCTTATGTCTTTTTACT





GCAGCAGCCTCACCATGAAGTTGCT





203453_at
SCNN1A
−0.5731827
GACTCCCGAGGGCTAGGGCTAGAGC





TTCATACCTCTACATGTCTGCTTGA





CTGCCAGAGAACTCCTATGCATCCC





TTACTTTTGTGAACGCTTCTGCCAC





GTCTTCCCCAAAATTGATCACTCCG





CTCCCGTAGCACACTATAACATCTG





GCTGGAGTGTTGCTGTTGCACCATA





GTTGCACCATACTTTCTTGTACATT





TAAGTGCCTTGCGGTCAGGGACTGA





GAATCTTGCCCGTTTATGTATGCTC





TATGTATGCTCCATGTCTAGCCCAT





202675_at
SDHB
0.607788535
ACCCTCTTCCACACATGTATGTGAT





AAAGGATCTTGTTCCCGATTTGAGC





GTTCCCGATTTGAGCAACTTCTATG





TTTGAGCAACTTCTATGCACAGTAC





AGGATGAATCTCAGGAAGGCAAGCA





GCAGTCCATAGAAGAGCGTGAGAAA





AAGAGCGTGAGAAACTGGACGGGCT





GGAACGGAGACAAATATCTGGGGCC





ATATCTGGGGCCTGCAGTTCTTATG





CTGCAGTTCTTATGCAGGCCTATCG





GATGACTTCACAGAGGAGCGCCTGG





223299_at
SEC11C
0.520144155
TGGAAAGGCTTGATCGTGCTCACAG





CACAGGCAGTGAGAGCCCCATCGTG





CCCCATCGTGGTGGTGCTGAGTGGC





TGAGTGGCAGTATGGAGCCGGCCTT





TCACAGAGGAGACCTCCTGTTCCTC





TCCTGTTCCTCACAAATTTCCGGGA





GGGAAGACCCAATCAGAGCTGGTGA





GACGAGACATTCCAATAGTTCACAG





GGAAGAGCAAGAGGGTTTTTACCAT





TATGCTCTTTTGGCTGTAATGGGTG





ATTTGAGATGTTCCATTTTCTGTAT





204563_at
SELL
0.470833687
CCTCGCCGTCTGTGAATTGGACCAT





GGACCATCCTATTTAACTGGCTTCA





TTTTCAGTTGGCTGACTTCCACACC





CCACACCTAGCATCTCATGAGTGCC





TAGCCTGCGCTGTTTTTTAGTTTGG





TTTATGAGACCCATTCCTATTTCTT





GTCAATGTTTCTTTTATCACGATAT





GACCTTTTATCCACTTACCTAGATT





CACCACTTCTTTTATAACTAGTCCT





TAGTCCTTTACTAATCCAACCCATG





CTCTTCCTGGCTTCTTACTGAAAGG





208999_at
SEPT8
−0.41582035
AGTTAGCCCCCATAGAATGTGACCC





GAATGTGACCCTGTCTGCAGAGTCT





TGTCTGCAGAGTCTCATTTACCCCT





GTTGGCTTTATTAGGGCTGTCTTAC





GTTGGCATTTACTATCATGTCTTTA





ATCACCATATAATTCGTTGCCCAAA





AAAGGCATAAACCAGACCTGTCCCA





GGGGCTCATGGATACGAGGCCTGAG





GAAGTGTGGCTTGCTAGTCTGTTAC





GCTTTTCTAAAATTGCTTCACGTGT





CTTTTCCATTCACTTTGTACTTATT





209000_s_at
SEPT8
−0.41229454
GTGAGGACGGACTGGGAGCCGGTAC





GGAGCCGGTACAGACTCCAGTGTTT





CCCCTCTCTATGCAAACACGTAAAA





TCAGAGCCAGTGGCTGGTCTTCCAT





TACAGTGTCACTATTCCCTGACGGA





TTCCCTGACGGAGCTGTTATGTGCC





TTATGTGCCGCTCTAGCGAAGGCCC





CTAGGCCTAATTGTTCAGCGTGGAG





AGATGGCAACTCACGTGGTGCCCTA





GCGTGGTCTGGTATACATGCTGCAA





TATCCTCTCCCATTATTTTCATAAG





226627_at
SEPT8
−0.47811452
GAAACTCACCATAATAGTGCCGTCT





GGGAGTCTGGTGGAACTGTGTTGGA





TTAAGATACCTTTTCACTCTTCCGT





TCCGTATGTCATGAGCCTTGTGCGT





GGGTAGACTCTGTAAACACCTCCTT





CACCTCCTTACTCACTATAGTCAAG





ATAGTCAAGAAGTCCAGCGGCGTCC





AGCGGCGTCCCAATATAGAGGTCCC





GCAGTCTGTCCAGAATAGCCAGCTC





ATCCTCAGCAGCTCATTCGGGGAAT





GGGGAATAGTCAGAGCCATAGTGCT





40149_at
SH2B1
−0.40484824
GCTGCAGCAGTCACCACTAGGGGGT





CCCAGGGCCATTAACAACCAGTACT





AGTACTCCTTCGTGTGAGCCAACCC





GCTTCCTGACCCTTGTTGGCCAAGG





CTTCCTGACCCTTGTTGGCCAAGGG





TCCTGACCCTTGTTGGCCAAGGGCA





CCCTTGTTGGCCAAGGGCATCTTTG





TTGGCCAAGGGCATCTTTGATGGTA





GCCAAGGGCATCTTTGATGGTACAA





ATCTTTGATGGTACAAGCAGAGGCT





TCTTTGATGGTACAAGCAGAGGCTC





TTTGATGGTACAAGCAGAGGCTCGG





GAGAGGCTCCCGTCACACACTACAG





GGGGATTTGGGCTCCATGAGCTCCT





CTTGAGGGGCTCTTCTGGTCAGCCC





GAGGGGCTCTTCTGGTCAGCCCCAC





218797_s_at
SIRT7
0.50897414
CCCATCCTAGGGGGCTGGTTTGGCA





GGCAGGGGCTGCACAAAACGCACAA





GACGTAATCACGTGCTCGATGAAGA





GCAGATGGCCAGTGTCACGGTGAAG





TTTTCACCGTGACATTTTTAGCCAT





GCCATTTGTCCTTGAGGAAGCCCCT





GATACGGCCTGGCCATCGAGGACAC





CCATCCGGCCTCTGTGTCAAGAGGT





CCTCACCGTATTTCTACTACTACTT





GAACTTTATAGAATCCTCTCTGTAC





TGGATGTGCGGCAGAGGGGTGGCTC





210010_s_at
SLC25A1
0.750588351
GTGTGGAAGACGGACTAAGCCTAGA





CTAGAGAGGCCGCAAGGGGACCGCC





TGCAGTAGTGCCAAAAGGCCCCTTC





TCTGTAGCCTGGTCTGTGCATTGTG





GTGCATTGTGGCTGTCAAATCCATG





CAGCCATGGCTGGATGTGCATCTGG





GCTGGATGTGCATCTGGCCTATGAC





TGCCTGTGTTTCATGTTCTGTGTCA





TCATGTTCTGTGTCACGTGACCCTG





CCTGGATGTGGCCATAGTGTTTGTC





GAAGCTGCTCAACAAAGTGTGGAAG





223222_at
SLC25A19
0.974852744
GTTCTTCTCGTATGAATTCTTCTGT





TTCTGTAATGTCTTCCACTGCATGA





TCAGTCTCCACTGAGAGGTGCCGTC





AAGCGGGGTAGCAGCCTTGAACCCA





GGGACACCACCAGAAGGTCCAGGGC





TCCAGGGCTCTCCCCATGAGAGAAT





GGACGTGGTCTATGGTGAGCCAACG





AACAGAACACACTCCTGGTCTGGAT





GATGGGGCTGCTGCTTGAGTGCAGA





CAGAGGGCTGCGGTAGGCCCTTTGC





CTTTGCAGGAGTCAGGTCCCTACAC





217122_s_at
SLC35E2B
−0.67710358
GTCTCTGAAGTATTTCCTCCAGTTT





GGGCCCCTATGTTTGAGTTTGATGG





GGATCCTCACTCAACGAAAACTCGG





CTCGGTTGGAAACTGTTCCGCCTGG





GACTTGCTCATTTAGACTGTTCACG





GAGTCTGAATCTGCCAACGTGGTGT





TCAGGGCAACTTTCCCCATACAGGA





TACATCAACAGTCTACGTCACAGCC





GTGCTTTCTAGCAAACGGTTCTGTT





TAGCGAGTCACTGTTGATTCTGCTG





ATACCGTGTAACTAATCCCGTGGAT





242367_at
SLC38A1
0.376727271
AAATCATCTCTGCGGGCGTGAAAGC





GTGCCCGATGCTTTCGGATGTTGCT





GAAAAGTCCAGGTCTCCTGTGCTTC





TTGTTTTCCTGTGACTTTGGTGTGT





GATCTGGTTCCATTTTTACGAGAGC





TTACGAGAGCCAGGAACCACGCACG





GAGGTAAGGTGATTATCCGTTCCCG





GCGACCGTGTTCTGGGAGTGTTTGA





TGGTGAAAATTTCCTGTGTCCGCAA





GTCCGCAAGGCCCAGAGGAGATCGT





AGGAGATCGTGTGATGTCCGGGGGG





200924_s_at
SLC3A2
0.42179558
ACAGCCTATGGAGGCTCCAGTCATG





GGCTCCAGTCATGCTGTGGGATGAG





CTGTGGGATGAGTCCAGCTTCCCTG





TTCCCTGACATCCCAGGGGCTGTAA





GGGGCTGTAAGTGCCAACATGACTG





AGCGGAGTAAGGAGCGCTCCCTACT





TCCCTACTGCATGGGGACTTCCACG





ACTGGGACCAGAATGAGCGTTTTCT





GAGCGTTTTCTGGTAGTGCTTAACT





TAACTTTGGGGATGTGGGCCTCTCG





AACTGGAGCCTCACGAAGGGCTGCT





223044_at
SLC40A1
−0.72816035
GGCAAGAATCCCAATTTAACTCATG





GTAAGCCTTCAGCCTGGCAAGTTAC





ACATGTAGAAAGCCCACACTTGTGA





GTTATTTCTACATTGTTCTACAGCA





AAAGTATCCCTTTCAAATGCCTTTG





GCAACATGTCTGTACCAAGATGGTA





GTACTTTGCCTTAACCGTTTATATG





CACTTTCATGGAGACTGCAATACGT





TGCTATGAGCACTTTCTTTATCCTT





ATCCTTGGAGTTTAATCCTTTGCTT





TTGCTTCATCTTTCTACAGTATGAC





202111_at
SLC4A2
0.341046478
GGCCTCTCCATAGTTATCGGGGATC





TAGTTATCGGGGATCTGCTCCGGCA





TTTCCTGTACATGGGAGTCACCTCC





TCACCTCCCTTAACGGGATCCAGTT





AGTTCTATGAGCGGCTGCATCTGCT





CACCCAGATGTCACTTACGTCAAGA





CGTATCTTCACCGACCGAGAGATGA





GAGGCAGAGCCGGTGTTTGATGAGC





ACAATGAGATGCCCATGCCTGTGTA





ACAGCCGAGGGACCGATGGACGAGG





GGACGAGGGGACAGGCTGGTGGGAT





201349_at
SLC9A3
R10.569257778
AGAGAACTATGTTCTTCCCTGACTT





GGAAGGTGAATGTGTTCCCGTCCTC





CCGTCCTCCCGCAGTCAGAAAGGAG





TCATGGGACCAGGCGAGAGGGCACC





GATAAATGGGTCCAGGGCTGATCAA





CTGCCGCTCTCAGTGGACAGGGCAT





CATCTGTTATCCTGAACCTTGGCAG





ACCTTGGCAGACACGTCTTGTTTTC





TGGCCTCAGCCTTAAACTTTTGTTC





GCAGCACGGGGAGGGTTTGGCTACC





AGCCAGGTACCACCATTGTAAGGAA





201320_at
SMARCC2
−0.41120275
TAATTTCGGGGATTTCTGTGGTAGG





CCATGGACTCCTGGAAGGCACAGAG





AGCACTTAAGCACCTCCATATTATG





AAGCACCTCCATATTATGACTTGGT





TATGACTTGGTGGGTCACCCCTTAG





CCCTCTCCCACCAAGACTATGAGAA





GACTATGAGAACTTCAGCTGATAGC





GGGCTCCCCAGATGAGGATGCAGGG





CTTCTCCCCTGTGACGGGAAGGCAG





CGGGAAGGCAGGTGTGACTCCAGGC





CCTTTCTTCTGTTCAAAGTTTTCTG





212470_at
SPAG9
0.401936161
TTCCCTCTATCCTTTTATTTAATGC





ATATTACAAAATCCGTTCTACCATA





AATCCGTTCTACCATAACAATACAG





GTGTTACTGCACCAGTGTTATAGGT





AGAATGTTTACTTCCTGCAAACTGG





AAGCAATCCAGATGTGGTTTACTCT





GGTTTACTCTGCCACAGTCTAATGT





GCCACAGTCTAATGTCATTCACTTC





GTCATTCACTTCATTTGATGGGGTC





TGATGGGGTCACTTGTTAGCTGTCA





GATGTATCTAAATGTCCCGAGAGGG





207435_s_at
SRRM2
−0.58358047
CCTCCAGGTCTCCATAAATTGTCTT





TGGAGCCACAAGGAGTGTCCCTTCT





CCCCAGCAGAGCCGTGGGAGGGTCC





TCTGCTCTCCTTTGAACCTTGGCAG





TCCTGTGAAATGTTAATCTCCGTGA





TAATCTCCGTGAGTTCTTCCTGGTT





GGGGTGATTGTGATGGTGGTTGGGA





TGGAATTAGTTGGTCCCTACTGTCC





TACTGTCCCCCATGAGGTTGTGAAC





TCCCCCATGAGGTTGTGAACCCCTC





CTGTACAGCAAGAGCAACTTTTTCT





208610_s_at
SRRM2
−0.52612752
CACGGGGCCATGTACAACGGGATCG





GTGAGCGGCCTGACTACAAGGGAGA





TGGTGAAGCGGCCTAATCCTGACAT





TCGAGCTGCGATGCCTCGAGCTGGA





GACCTTTCGACTCATGTTGCTGGAG





GTCACGGAGACTCACCAGTTGGCAG





AAGAATGAAAGACTCCGTGCTGCCT





TCCGTGCTGCCTTTGGCATCAGTGA





GATTCTTACGTAGATGGCAGCTCTT





TCAGCGTCGTGCCCGAGAAGCTAAA





GAAGCTAAACAACCAGCTCCTGAGC





219919_s_at
SSH3
−0.38068238
GAAGAGGATCCACAACTCCTTGGAG





GCCTGTCCAAGGGCTCAAGACTTTC





CAAGACTTTCTAACTGGGATGTGGT





TACCTTTGGGGGCAACAGCACCCTA





TTCCTGGAACCAGCCAGGCCAGGCA





GCCCCAGCCGCGGGAGGCTGGAAGG





AGGCTGGAAGGGCTGGCAGATCGCT





TGACACCACGCCAGATCACAGGGCA





GGCACCAGGCCAGAGATAGTCTTCT





TGGCCTCTGGCTAGTCAGTTTTTCA





AGCCTTACAGTATCTGGCTTTGTAC





204963_at
SSPN
−0.40007125
AATTCTGAACTGTATCCATATTTTA





GAACTTTATCAGTATGCTTTGTTGA





TAATTGAGTTCAATTCGCCTCTCCG





CCTCTCCGCATTGCCTATTGATACA





GCATTGCCTATTGATACACTTTACT





AAAACATTTTCCTGCTTGTCTTAGA





GCGTTAAGTCGGTAAGCTAGAGGAT





ATGTCCTCTAGATAAAACACCCGAT





GACACATTGGAGAGCTTAGAGGATA





ATCACACACAAAAGTTACACCAACA





ACCTGTAAAATACCTTGTGCCCTAT





204964_s_at
SSPN
−0.52431915
GCTCCTCCCTGCTAGTCAGGGACAC





GGATCATTGTCTGCTTAGTGGCCTA





TGGCTTGTTTATGCTTTGTGTCTCA





TTCGCAGCTCACACAGTTTACCTGT





TTACCTGTGAGACCACACTCGACTC





CACTCGACTCTTGCCAGTGCAAACT





TCAGCAGGACCTTTGTTTACCGGGA





CGGGATGTGACGGACTGTACCAGCG





CTTGTTGGCCTGCTTTGTGATGTGG





GTACCAGGTCTTCTATGTGGGTGTC





GTGGGTGTCAGGATATGCTCCCTCA





226932_at
SSPN
−0.42535696
CTCAAATGATTATTATCCCCTTCAA





ACTGGTCTGTACTTTGGTGTTGTGG





ATGTTTTCTATTCATGTCCAGGGCA





ACTTCCCTTTTTGCATGCAGTATGT





AAAAGCTGCCCTGCAAAACCAATCC





CAAAACCAATCCTTTCCTATCATGA





GAAGAGTACCTTCATATTTTCTAGA





GTCTCTGAACCGTTGCTACATAGCC





GTTGGCTATCAGTTCTTGCTATTCT





GTTCTTGCTATTCTCAGAGCACTCT





AGAGCACTCTATCATGTTTTTAGGT





237817_at
SSR3
0.476986005
CTATGGGAATCTGTGTCCTTGCCTC





AGAGCCAAAGCAAACCTGTCATTTT





ACCTGTCATTTTTGATAGCTTCTGA





GAAATAATAAGCCCCTGTACCTGTT





GTACCTGTTATTTTTGGGCTCTGGG





GGCTCTGGGGGTTGGGTGGATGGCC





AATAGGTTCATTCCAGTGTATCTTA





TAATAGTGTTTCAAGCTGCTGTTAA





TGCTCTGGGAGTCAGTCCATTAAAT





GGGCAAGAATCAGTCTTCTCTTATT





GATGTTATCCAGGAATGTGCAGCCA





203759_at
ST3GAL4
0.450622686
TGCCAGTATGACCCACTTGGACTCA





CCCTGGCTGCTCTTATGGAGCCGAG





GGCTGCTCTTATGGAGCCGAGATCC





GCCGAGATCCAGTCAGGGTGGGGGC





CCAGTCAGGGTGGGGGCGCTGGAGC





TGCCAGCACCAAGAGATTATTTAAT





AGGCCAGTAGAGAATTCTGCCCACT





ACCAAGGCCTAGACACGGCACTGGC





GGGAAGAGCACTGGTGTGGGGGTTC





TGGTGTGGGGGTTCCACCGAGAAGG





CACCGAGAAGGGGACCTCATCTAGA





224203_at
SUFU
0.476269896
TCTAACAGGTGCTCAACCTACTCCA





CCACCACACTCCCGAGTGTCTTGGA





GTCTTGGAGGGACAGCATCCTTTTT





TCACCTCGCTCGCAAGTATCAAGAA





GGTGGCCATACCTGGTTTGTGAATG





TTGTGAGTTTCACCCAGTCTGGGGA





GTCTGGGGAGTCTGTGAAGCATATG





ACAGACACACTTTTTGTCCCTGCAT





GCATGTCTACAGAATTTCTCCTCCT





CAAACAAAGGACACCAACCACACTC





CACTCCCCAGACTAAGCCGAGATAG





206161_s_at
SYT5
0.439999734
CAAGGTGCATCGGCAGACGCTGAAC





TGAACCCTCACTTTGGGGAGACCTT





GTCATGGCGGTGTACGACTTCGACC





TGACGCCATCGGGGAGGTGCGGGTC





CCGTCATCGTCCTGGAGGCTAAAAA





CAGATCCATACGTCAAGGTCCACCT





AAGAAGAACACTCTGAACCCCTATT





ACCCCTATTACAACGAAGCTTTCAG





GAAGCTTTCAGCTTCGAGGTGCCCT





CTCGGACCCCTATGTGCGGGTCTAC





GGAGGCGGTACGAGACCAAGGTGCA





206162_x_at
SYT5
0.370742661
CCTGTGACCAAGTCCAGAAGGTGCA





AAGGTGCAGGTGGAGCTGACCGTGC





CTGACCGTGCTGGACTACGACAAGC





CTGGACTACGACAAGCTGGGCAAGA





GCTGGGCAAGAACGAGGCCATCGGG





AAGAACGAGGCCATCGGGAGGGTGG





GGCCATCGGGAGGGTGGCCGTGGGG





CCCAACGATGCCAATCACGACAACT





TGCCAATCACGACAACTTTCCAGCA





GACCCCGGGAAGGGAAGGCAGCCTG





AAGGGAAGGCAGCCTGGTTTCTCCT





202813_at
TARBP1
−0.55713006
ACCTAACCCAATATTGCTTTCCTGA





TTGCTTTCCTGAGAAATCTCTGCTC





GGAATTCCAGCAAATCTGATCCAAC





GTGTGGAAATTCCTCAACAGGGCAT





CAACAGGGCATTATCCGCTCCCTGA





CGCTCCCTGAATGTCCATGTGAGTG





GTCCATGTGAGTGGAGCCCTGCTGA





GAGCCCTGCTGATCTGGGAGTACAC





ATCTGGGAGTACACCAGGCAGCAGC





CTCGCACGGAGATACCAAGCCATGA





TGATGTGCCTTCCTTAGTGAACTGC





213877_x_at
TCEB2
0.69305787
AGAGATTTGGGAGTCTGCCTGGTTG





TTTTGGGGCTTGTGCTTGGCAGTTC





ATCCTGAGACCCTGGCTGAGAACTT





TGCTGCTTAAAGGCACCATGGGGAC





CCTCAGACCCAAGCCATTGTTAGCA





GAGACACAAAGACCAGAGCCAGCCT





GCCAGCCTCAGGGACAAGAGATTCC





AGAGATTCCAGTTTTAGGCCTTTCT





GCTGGAGCCAGTGTCCTGGTTTGAC





CACCCACGCTGGGGGCTGTAATCAC





ATCACGGAGGGAAGTGGCTGCCCCC





218099_at
TEX2
0.440263979
TGACAGGATGGGTCCTCTCATACAG





TTTTTCCATCTGGCGTTTCTGTGTC





GTTTCTGTGTCCTCCAGGTTTATAT





GGGAGAGTTCCATGGGCAGATTTCC





GAAGGCCAAAACGGAGAACTGCTCT





AGACCAAAAGTTTGCTCAGCATCAC





TCAGCATCACACTACATCTCAAAAT





TAGTTTACAAGGTTGGGGGCTCTCT





GGGCTCTCTTTGCTTCGAGAAGTAA





GCTGCATTCAACGTCAAAATTACCT





GCACCTTGCCTGAACATGACTTTAA





218996_at
TFPT
0.66617142
GGCGGCGCCAGCGGGAATTAAATCG





AAAGTACCAGGCACTAGGTCGGCGC





GCGCTGCCGGGAGATCGAGCAGGTG





AACGAGCGGGTCCTGAACAGGCTCC





GGTTCCTCATGAGAGTGCTGGACTC





GCTGGACTCCTACGGGGATGACTAC





CAGCCAGTTCACCATTGTGCTGGAG





GCCGAGCAGGAAATGCGCTGACTCC





TGGCCCCGGTGCAGATTAAGGTTGA





CCTGGATTCCAGTTGGGTTTCTCGG





TCGGGGTCCAGACAAACTGCTGCCC





216262_s_at
TGIF2
0.532627427
TCGCCCATCTGTTGCTGTGGGAGTG





GTGGGAGTGTGAACGGATCGCTGAA





GCTTTGCTCTCTCTAGGTGGGCAAG





CCGTGTGCCCCAGGGGGATCAGGGA





GAACATGGCTTCATCCAGGTTAACT





ATCCAGGTTAACTGATGCTGCCATT





GGATGCCTGTAGTAGGGAACTCTGG





TGGGCTGAGGTGGGATTTTCCCTCC





GTGAGGGAGCCATGCTGCTGAATTC





CTGGTTGGCATTTCCCCATTATGTA





GTGTTGGGTAGGGCAGACTCTGCTT





218724_s_at
TGIF2
0.403591471
GCCTCCGCTCAGTGATGAGACCAAG





GAGATCGGAGACAAGCATGGTGCTG





GCTGGGCTCAGGAAAGCTGCCAAAT





TTCAGTCCTATGTTGGGTCCAAGCT





CTGTGCTGTTTCTGTCAAGCCAGGT





GGACATTCCAAGTTCATATGCGTGA





GGATGTAACAGAACCGACTCCAGTT





GCTGTGGTTTGCATTCACGGCAGTA





CACGGCAGTAGTTAGCCCAGGTGTG





GAGTGCACTGCATGATAGCGTTCTG





GGACCAGCTAAGTCTCTGCAGTAGT





212910_at
THAP11
0.435755307
ACACCAGCAATTATGACTTTGTCTA





GAGGCTTCAGAACCACTGAACTTGA





TGAACTTGAAACTTACCCTCTAGGG





GGGATGCAGGTGGGATGTCCAGGGA





GGTTGGTCAGCAGTCAGACAACTCT





TGGGGACTGGTAAATCTGTGCCTCT





GCCTCCTAGGACTTATTTTCCCAGG





ATTTTCCCAGGAGGCCATTTACAAG





AAGGGGATCTGGATGACCTGCTGAT





GATCCAGCTTGCCAGGGACTTAGGT





CCTGTTTTGTTTGCTACTGGTTACA





222835_at
THSD4
−0.4286182
AAAAGCCCAGATTTCGGTAGCCATC





TTTCTGCTTTCTTAGTGCCCATTAT





TTTTTTCTTGGCCTGTGTACGGGAT





TGTGTACGGGATTGCCTCATTTCCT





CCTCATTTCCTGCTCTGAATTTTAA





AAAGCTGTCATATGGTTTCCTCACA





TAGTTTGCCGTTTTACTTTCATCCA





AAGGAAATTGTGCCTCTTGCAGCCT





TTAGTACTATCGATTCTTTCCACCC





GACTTGCGGTTCTCTCTGTAGAAAA





GAGTCAGTTCAGTTCCGTAAAGGTA





226506_at
THSD4
−0.37638707
TAATCAGTCCAGTTCCCTGAGGTTT





TACTCTGCTTTTCGACTCATTCAGG





GTAGCATTGTACCTGAACCTGATTG





TGGGAGGGTGTCTGTTATCCCTTTC





CTTTGTCCCCGTTGTTAGACTGGCA





TAGACTGGCAGCGTCAGTTGCTCGG





GCCGTGGGTGAGGCAGGTGGCTGGC





TGGCATTTACTGCTCTGACACTTCC





CTGTGGGGCCTGTGAACTGCACAGC





CAGCCAGGAGCAAGGAACCCACTAA





CATGTCCCCTCTACAGTGTTAAATT





232944_at
THSD4
−0.44465042
GCAACTGCCACATAATTGCCAAAAC





AAATGAGCCATCACGTCACAAAGAG





GGCGGTGAAACTACTCTGTGTGATA





TACACTGGCGGATGCATGTCACTGT





GCACTTGTCCAGACCCACAGAATGT





GACCCACAGAATGTGCACTCCGAAG





ACTCCGAAGTGTGAACCCTCGTATG





GAACCCTCGTATGGACTATGAACTC





GACATGTCCGTGTAGGGTCATCAGT





AGGGTCATCAGTTACACATGTACCA





TGGTAGTAAGGGACCCTGTGCCTGT





224560_at
TIMP2
−0.40585268
TTGTTTTTGACATCAGCTGTAATCA





CATCAGCTGTAATCATTCCTGTGCT





CCCTTGGTAGGTATTAGACTTGCAC





AACGCGTGGCCTATGCAGGTGGATT





GGCCTATGCAGGTGGATTCCTTCAG





TGCAGGTGGATTCCTTCAGGTCTTT





ACAGGTTAAGAAGAGCCGGGTGGCA





GTTAAGAAGAGCCGGGTGGCAGCTG





GTGGCAGCTGACAGAGGAAGCCGCT





GAGGAAGCCGCTCAAATACCTTCAC





GAAGCCGCTCAAATACCTTCACAAT





231579_s_at
TIMP2
−0.44946961
GAGTAGGTTCGGTCTGAAAGGTGTG





GGCCTTTATATTTGATCCACACACG





GATCCACACACGTTGGTCTTTTAAC





CACGTTGGTCTTTTAACCGTGCTGA





ATTTTCATCCTGCAAGCAACTCAAA





ATTTTCAAATCTTTGCTTGATAAGT





TGGACTTGCTGCCGTAATTTAAAGC





CTGCCGTAATTTAAAGCTCTGTTGA





GGAGCACTGTGTTTATGCTGGAATA





ATGAAGTCTGAGACCTTCCGGTGCT





ACCTTCCGGTGCTGGGAACACACAA





228505_s_at
TMEM170A
0.464931043
CAGCTATTGCTGGAGTTTACCGAGC





GGAGTTTACCGAGCAGCAGGGAAGG





ATGATACCATTTGAAGCCCTCACAC





GCACTGGACAGACATTTTGCGTCTT





TTTTTACGGATTTTAGCTACTCTAT





GCTACTCTATAGCATACATCCTTAT





GAGTGTAGTGTTTTCTTAGTTCTTC





ATTGAAGACTTATGTGGACTCCTAT





GGACTCCTATTGTTCTCAACCAAAA





TAAGCAGTTTTCATGTGTACCTTTA





TACCTTTACCCAAGCCAAGTCAACA





227733_at
TMEM63C
−0.4519704
TCCAGTGTAGCCTGGCTCTGAGAGA





TGGAGAAGGTTCCATAGTCCACTCT





TAGTCCACTCTTAGGGGAACCAGCA





CATGGTCACTACAGGATGGTGGAGC





ATGGTGGAGCAGGGGGCATCTTTTA





AGGAACCGGTATTGCCTAGAGCCTC





ACTGCCCCTGGAAGCAAAGTGCCTA





AAAGTGCCTATCAGCAGCGTTGCGT





GAATGTGCCAGAATGCTGAACCTTC





GCTGAACCTTCTTGTTAATGCTATG





TAATGCTATGACCGTGCCTTGAATA





240261_at
TOM1L1
0.452804108
TGAGAGTCTCACTTTATAAAATGGG





AAATGGGAACAATGATTGCCTTAAA





ATTGCCTTAAAGGGTGGTTGTCAAG





GTAGCAAAGCTTACAATGCATTTTA





GAGTTACCTATCTTACCTGTTATCT





GTTACCTATCTTACCTGTTATCTTC





TATCTTACCTGTTATCTTCTGCTGT





GTCCTTATTCCCAGCAAGGGTTTGG





TATTCCCAGCAAGGGTTTGGCAAAT





AAAACACAGGCTTTAAAGTCAGAGA





CCTCTCAGCCACCTAACTTTTGAGA





212408_at
TOR1AIP1
−0.8187163
GGAGTGCCTCAAGCCAAGATAGTGA





ATAATTGAGCTTTCTCATCTGTCAA





TCTGTCAAATGCTATGGTTTTCTTA





CTAGATCTATCCACCTTGTTTTTTT





AGAGTCAGTCATTGGCTTTGTCATT





GGCTTTGTCATTTACCCTTTGAGAG





ACCCTTTGAGAGTTCCACAAGTGGT





TAGAGTGGTTTAACGTCTTTCCTCT





GTCTTTCCTCTAGTACTACCAGTAT





AATGTATACCCCTTACTGTAATTTG





GTTCCTCTTAGAAGTCAGATCATCT





212409_s_at
TOR1AIP1
−0.60653651
CAGGCTCTACTTTGATCTTCTACAA





AGATGTAGCCTTAGTCCTGACTGTC





CAAGTTCACCAATTCTAACACACCC





ACACCCAACTCCTACAATCATATGG





AATGGCCTCTGGAGCCGTATTTCTC





TTCTCACTTAGTTCTGCCTGTGCAA





GCCTGTGCAACCTGAAAATGCCCTG





GAAAAATCATGTCCCAAGTTCTGAG





AGTTCTGAGAATTGTTCACACTTTC





TTCACACTTTCTAACCAGAGACAGA





GAGACAGAATTCAGAGCTCTTTTTG





216100_s_at
TOR1AIP1
−0.61552544
TTCAGTTTCCATTGAGAGCTCTGTT





AAGGTATCTTAGGAGTGCAGATTAT





TTTGATTCTGGGCTGAGTTATTACA





GTTATTACAGTTATGGTATGACCAG





TCCTTTCTTATGAACCTTCCTGATT





GATTTTTTAACTTAGATTTCTCACT





GATTTCTCACTAAGTTTCCTGAGTT





AAGTTTCCTGAGTTATTAGTAAGAT





CATTTAGGTGTGAGTTCCTTAGCTT





CCTTAGCTTCTGCCTATAGGAACAT





ATGAAAGGTCATCTAGGTGTGTGTT





203511_s_at
TRAPPC3
0.419413644
TGGGCTTTAACATTGGAGTCCGGCT





GAAGATTTCTTGGCTCGGTCAAATG





GGCATCACTCCAAGCATTACTAATT





GCCCAGCTGGTGATGAATTCTCCCT





GGAACTTCCTGATAACCACTCATCC





TCCAATCTCTTGTGTGGGGTGTTGC





GGTGTTGCGGGGAGCTTTGGAGATG





TTGAGGACAATCTTCCAGCTGGAGA





GAGGAATAACCATCCCTACAACTCG





TGTTGGAATCAGCAGGCCTCTGTGC





TCTTATAACCTGTTTCCATTCTCCA





207305_s_at
TRAPPC8
−0.475685
AGTCAGCAGAATTCCATGCCTGCCC





GCCTGCCCTGATCATCATCAGTAAT





GATATCTGATCCCTGCAAAATACTT





GATATCAGCATATTTGTGCACCTTA





TGCACCTTATTAAGCCCCATCTTAA





CAAAGTCTAAGTCTGCTGTTACAAC





GAAAGGCCTTGTTGGCAGTACTCCT





GCAGTACTCCTGTTAAGCCATTAGT





AAGCCATTAGTCTCTAAATTCCAGC





TGCTTCACACAGTTCCTTAAAATCA





GAACTTTGGTCATAGAGTCTTCATA





206911_at
TRIM25
0.464816775
ACCAAGATCTCTGCCTGGCACAATA





TCTCAACTGTGACCACGGCTTTGTC





TTGCCGACAAGGTCCACCTGATGTA





CTCCCCCAAGTAGGCAGGCTGTAGG





GCTGTAGGCACTTGGGCTGACTGCC





ACAGCAGGCAGAACTCTCCTTGGAT





TTGTGGGCGAGGAGGCGTTTCCACC





TATCAGGGCAGGGTGACCTACTCCC





CCTACTCCCCATTGTTCTGGAAATC





TGGAAATCTCCAGGCTGCTGGGCAG





TGAAGTCATGAGTGCCCGATTCCTC





223109_at
TRUB2
0.343758497
GTGCGGGGCAGTGAATGCCCAGGCA





GAAGAACTGCTATGAGCTGGACCTG





GCTGGACCTGATAGCTGTGCAGAAA





GTGAGAGCAGGGGCACCTTTTCTAC





GGCACCTTTTCTACGTGTGACACAA





AATGGACTTGACCCAACTGAGAAGG





AAGTATTGGCAGACCAGGCGTGGTG





TAGTGCGCTAGACGGCGCCTGTGAA





CAGTGGGACCTAACCAACATCCAGG





ACATCCAGGATGCTATCCGGGCTGC





GGATGGTCCTGGGACTCCCAGGGCC





218245_at
TSKU
0.328423261
CATCCAGACTGGAAACCTACCCATT





TGAGCATCCTCTAGATGCTGCCCCA





ATGCTGCCCCAAGGAGTTGCTGCAG





TGCAGTTCTGGAGCCTCATCTGGCT





ATCTGGCTGGGATCTCCAAGGGGCC





TTACCCTCCCAGGAATGCCGTGAAA





TAACGGAGTGTCACTTTCAACCGGC





GTAATATTGTCCTGGGCCTGTGTTG





GGGAAGCTGGGCATCAGTGGCCACA





AGTGGCCACATGGGCATCAGGGGCT





TCATCTATCTAACCGGTCCTTGATT





201090_x_at
TUBA1A
0.90557475
AATACATGGCTTGCTGCCTGTTGTA





ATGTCAATGCTGCCATTGCCACCAT





AACCAAGCGCACGATCCAGTTTGTG





TGCCCCACTGGCTTCAAGGTTGGCA





AAGGTTGGCATCAACTACCAGCCTC





ACACCACAGCCATTGCTGAGGCCTG





GCCTGGACCACAAGTTTGACCTGAT





GACCTGATGTATGCCAAGCGTGCCT





GGCCCGTGAAGATATGGCTGCCCTT





CTAATTATCCATTCCTTTTGGCCCT





GTCATGCTCCCAGAATTTCAGCTTC





211058_x_at
TUBA1A
0.913630736
ATGTCAATGCTGCCATTGCCACCAT





TGCCCCACTGGCTTCAAGGTTGGCA





AAGGTTGGCATCAACTACCAGCCTC





CTCCCACTGTGGTGCCTGGTGGAGA





ACACCACAGCCATTGCTGAGGCCTG





GCCTGGACCACAAGTTTGACCTGAT





GACCTGATGTATGCCAAGCGTGCCT





GGCCCGTGAAGATATGGCTGCCCTT





CTAATTATCCATTCCTTTTGGCCCT





GTCATGCTCCCAGAATTTCAGCTTC





TGTCTTTTCCATGTGTACCTGTAAT





213646_x_at
TUBA1A
0.827697475
AAATGTGACCCTCGCCATGGTAAAT





AATACATGGCTTGCTGCCTGTTGTA





ATGTCAATGCTGCCATTGCCACCAT





TGCCCCACTGGCTTCAAGGTTGGCA





AAGGTTGGCATCAACTACCAGCCTC





ACACCACAGCCATTGCTGAGGCCTG





GCCTGGACCACAAGTTTGACCTGAT





GACCTGATGTATGCCAAGCGTGCCT





GGCCCGTGAAGATATGGCTGCCCTT





CTAATTATCCATTCCTTTTGGCCCT





GTCATGCTCCCAGAATTTCAGCTTC





209251_x_at
TUBA1C
0.858467073
AAATGTGACCCTCGCCATGGTAAAT





ACATGGCTTGCTGCCTGTTATACCG





TATACCGTGGTGACGTGGTTCCCAA





ATGTCAATGCTGCCATTGCCACCAT





TGCCCCACTGGCTTCAAGGTTGGCA





TTGGCATTAATTACCAGCCTCCCAC





GCCTGGACCACAAGTTTGACCTGAT





GACCTGATGTATGCCAAGCGTGCCT





CGTGAGGACATGGCTGCCCTTGAGA





GTGTGCTGTACTTTTACACTCCTTT





TACACTCCTTTGTCTTGGAACTGTC





211750_x_at
TUBA1C
0.783244822
AAATGTGACCCTCGCCATGGTAAAT





ACATGGCTTGCTGCCTGTTATACCG





TATACCGTGGTGACGTGGTTCCCAA





ATGTCAATGCTGCCATTGCCACCAT





TGCCCCACTGGCTTCAAGGTTGGCA





TTGGCATTAATTACCAGCCTCCCAC





GCAATACCACAGCTGTTGCCGAGGC





GCCTGGACCACAAGTTTGACCTGAT





GACCTGATGTATGCCAAGCGTGCCT





CGTGAGGACATGGCTGCCCTTGAGA





TACACTCCTTTGTCTTGGAACTGTC





212639_x_at
TUBA1C,
0.804293444
AAATGTGACCCTCGCCATGGTAAAT



TUBA1A

CCGTGGTGACGTGGTTCCCAAAGAT





ATGTCAATGCTGCCATTGCCACCAT





AGTTTGTGGATTGGTGCCCCACTGG





CTCCCACTGTGGTGCCTGGTGGAGA





GAGAGCTGTGTGCATGCTGAGCAAC





GCCTTTGTTCACTGGTACGTGGGTG





GGCCCGTGAAGATATGGCTGCCCTT





CTAATTATCCATTCCTTTTGGCCCT





GATCACCAATGCTTGCTTTGAGCCA





GCTTTGAGCCAGCCAACCAGATGGT





201266_at
TXNRD1
0.770640577
ACACGTGCTTGTGGACATCAGCCTC





CCTGCCAGCAGTTCTTGAAGCTTCT





ACCTGTATTTCTCAGTTGCAGCACT





CCCATGCATCTGCCTGGCATTTAGG





TGGCATTTAGGCAGCAGAGCCCCTG





TCCTCATCTCATTTGGCTGTGTAAA





GCAATTGAGGCAGTTGACCATATTC





TCCAAGTCCACCAGTCTCTGAAATT





GGAGTGGAATGTTCTATCCCCACAA





TAGACTTGTCTTGTTCAGATTCTGT





TCAGATTCTGTATTTACCCATTTTA





209103_s_at
UFD1L
0.84218285
AAGTGAGGACTGTTGGCTGATTGGA





AAACGCACTTAGGAACTTTGCCTGT





GTCTGACCACCGGGGATGTGATTGC





ACGAACTGCGTGTGATGGAGACCAA





GAGACCAAACCCGACAAGGCAGTGT





GTGTGACATGAACGTGGACTTTGAT





TGCTCCCCTGGGCTACAAAGAACCC





GACAAGTCCAGCATGAGGAGTCGAC





CGCTTTCTCTGGATCTGGCAATAGA





CCCTCCCCAATCAAGCCTGGAGATA





TCACGTCCCCTTGTCAAAAAGGTTG





206031_s_at
USP5
0.420391882
CGCCCAAGGACCTGGGCTACATCTA





GCTACATCTACTTCTACCAGAGAGT





AGAGTGGCCAGCTAAGAGCCTGCCT





TGCCTCACCCCTTACCAATGAGGGC





CAATGAGGGCAGGGGAAGACCACCT





AGACCACCTGGCATGAGGGAGAGGG





CTGAGGGATGGACTTCAGCCCCTCT





GGAGGCCGTGGGAGAATGGCTGGGC





GGGGCAGCGATAGACTCTGGGGATG





GTAAGGAGACTTTGTTGCTTCCCCT





TGCGCGTGGGTGTAGCTTTGTGCAT





218495_at
UXT
0.496966797
GAGAAAGTGCTGCGCTACGAGACCT





GAGACCTTCATCAGTGACGTGCTGC





GCAGCTGGCCAAATACCTTCAACTG





GGATTTGGGCTGTAACTTCTTCGTT





TCTTCGTTGACACAGTGGTCCCAGA





CCAACCGTTCTTATTGCTGGCGGCC





ATACTTCACGCATCTATGTGGCCCT





GACACTGGCAGAAGCTCTCAAGTTC





AAAGCCCATATCCACATGTTGCTAG





ACAAGGCCTGCAGAATTTCCCAGAG





TTCCCAGAGAAGCCTCACCATTGAC





217821_s_at
WBP11
0.39110667
ACCCAACTTGATTCAGCGACCCAAG





GCGACCCAAGGCGGATGATACAAGT





GATACAAGTGCAGCCACCATTGAGA





GAAAGCCACAGCAACCATCAGTGCC





TGCCAAGCCACAGATCACTAATCCC





CAGAGATTACTCGATTTGTGCCCAC





GAATAAAGGGGCTACTGCTGCTCCC





AAAGCAGCACCCAAATCTGGTCCTT





TGTTCCTGTCTCAGTACAAACTAAG





GCTACTGTGACAGCTTTTGATGCCA





GGCTTCTGTTCACAACAGTGGCCCA





217822_at
WBP11
0.456975255
TAGCCTTGTTCAGAATTTACTGCAC





AAAAGGGTATTTCATCCAGAATAGA





GATCAGTTATTGAAGCAGTGCTGCT





AAGCAGTGCTGCTAACATCCATTCC





CCTCCTCCAGTTCTTTGGAAATTTG





GATCGGGGGATCTTAGTTGCTTATT





TGCTTATTTGTTTTGACTCTTGTGT





TGACTCTTGTGTGCTGTGGGCACTG





GTGGGCACTGGAGTAGAGATTTCTG





GGATCACAATGTCATTTCCTAATAC





TATTTCCCACTGACCTAAACTTTCA





217734_s_at
WDR6
−0.50751083
GCTCAGCATGCCTTGAGGGGAGGAG





CGTGGGTTCCTGATGTCGGTGCAGG





GATGACTTTGTGAACATTCCCAGGT





CATTCCCAGGTATTGGAGCCTCTGT





TGGAGCCTCTGTGGCCTTAAATGTG





TGGAGGGAGACCCAGCATAGCCAGG





TAGCCAGGCCAGTATGGAGCACCTC





CTCACGCACAGCTCTCAGAAGCTGC





GCTGCAGGCGGACGAACATCTGACC





AAAGAGGTGTGGTCGAGGCTCCTGA





ACAGAGACTGAGTCACTGGCCCATC





219520_s_at
WWC3
−0.45058724
TATGTTTCAATCTGTCCATCTACCA





ATCTACCAGGCCTCGCGATAAAAAC





GTCTCAAAACCATCAGGATCCTGCC





TCCTGCCACCAGGGTTCTTTTGAAA





GGCTTTCACTTCATCTAATCACTGA





AAGGAAGGCCAGAGAGCCGCGCAGT





GACACCAAGCGCCCTATGTTGCTTG





TGACGTGGTCTTGGAGCTTCTGACT





TCTGACTAGTTCAGACTGCCACGCC





GAAAATACCCCACATGCCAGAAAAG





GTGAAGTCCTAGGTGTTTCCATCTA





225273_at
WWC3
−0.3762162
GACGAACCCTTCGCTATAAGCAGTC





ATAAGCAGTCATGCAGGTCTTCCCT





TGGAGCTGGATCTCCAGGCGTCGAG





GCCGAGCGGCAGACAAGACAGACCA





GACTACCGTCATGAGCAGGCGGCTG





GCCTCCAAGGAGATCTACCAGCTGC





CAAAGAGCCCATCCAAGTGCAGACC





GATAGCATTCTTCACAAGGCCAAGG





GGCCAAGGATCAACATACCTCCTCT





TCCCAGCCGACGACGTCTGATGGAG





GAAGTATTTATCCACCTGTTTTATT





212637_s_at
WWP1
0.331826249
TGGATAGAACCATAACTTACACATG





AAGTCATATACTAGATCCAATACTA





GGAAGGATTCATTGAGCAGCATAGA





GTTTGTTTACATGTTACTTTGAGAT





CTTTGAGATGCTAGGTATTTGTGGA





AAGAATCAGGCTCTTTTGTACTTTG





GTTTTTAAATCTGTGATGCTTTTCA





AATTGATGCAATTTCATACTTAGGA





ATGTAAACTCTGCCACTTTTTTGTG





GGTTTTTATGAAGCCAGATGGATTG





AATATAAGGCTAATGATTTTCTGTT





209375_at
XPC
−0.38045811
AACTGAGGCAGCATGCACGGAGGCG





AGGGGAGACGAGGCCAAGCTGAGGA





AGCCCTTGTCAGATTCACCCAGGGT





TTGCTAGGAGATACTCTTCTGCCTC





GGAAGCCACCGGGAGATTTCTGGAT





TGAATGCGCTGATCGTTTCTTCCAG





CCAGTTAGAGTCTTCATCTGTCCGA





TCATCTGTCCGACAAGTTCACTCGC





TCAGGCTTACTAATGCTGCCCTCAC





CCCTCACTGCCTCTTTGCAGTAGGG





GGTCATCTGCTGGGATCTAGTTTTC





217781_s_at
ZFP106
−0.41254534
GTTGTGGTGGAGGTGATTTGGGATA





GGGATAGACTAGGTTTCCTTATGCA





TGAGCTCCTCATAGAAACCAGACCT





TTAGACAGTAACCTCTAACCTCACC





CAAGCCCAAGTATATGGCCCTGCTG





GGTTACCTGGTGACTACATTTCCCA





ACATTTCCCAGATTCACTCTAAATT





TATATGCCCTAGAGCTGCTCCAGCA





GAAATCAGATGACACCTGACTGCAA





GCAAATAGCCTTCTTACATTTTGGT





CAAATCATCAGGTTCCTCGGGTTTA





218490_s_at
ZNF302
−0.59157756
GAAAAATCTGTGTACATGTAGCAAA





TAGGAATCTCCTGCAAACTCCTACA





TTCCAAGTGCATCCCTTATTCTATA





AGAGATGCAGCAAAGTGTTCACTAA





GTTCACTAAGAGTGTTTATCTTGCC





GAATGGTAGAGCAACCTGAAGGATT





AAATCTTTGCAGTTATGCTATTTGT





GCAGTAGCTTGCAGTTTCAGTTGAG





GTTTCAGTTGAGTTCTACTTAGAAA





GAAATTCTTTTTAGCTAGTGGGCAT





GATATTTAGTCACCCAGAGGAGCCA





229817_at
ZNF608
−1.0089439
GTATCAGTGTGCCTGAACCTTGCAT





TGAACCTTGCATATCCTTCACATAT





TTCCCATAAGCCCCTCAGAAAGGCT





TTAGATGTCTATTTGGTGGCTCCTG





GTGGCTCCTGTTAAAGACGCACCAG





GACGCACCAGTGTAAAATGTTCCTG





TCCTGTAGTCACTGTTTGTACTTGT





GCATGGGGTTGCCAGTACCACAAAA





GAGACATCTGTGATTGTTCTATTAC





AGAGAGACTTTAACGCCATTGCCTG





GCCATTGCCTGGTTACTTGTTTTAT





232303_at
ZNF608
−0.71185659
ATGGCAGTAGCAAGCTTTTCTGTTG





AATCTAGTATACCTTGCTTACCCAG





TACCTTGCTTACCCAGGAGGATGGT





GGAGGATGGTTGTTAGGTGGAAATT





TAAATTCATAGGAACCAACTTTTGG





TTTGGTAAGTAAGTAGTTCAGAGGC





GTTCAGAGGCTACAAACTGTTGACT





ATGTTTTCTTGCAGGATACCTTTTA





TTACATGCAAGTTCAGATCACCTCT





AAATCTGGGCCGGGAGTGAGCCACT





GTAGCCTAGTGGTAGTGGGCACCTG
















TABLE 2







Patient and Tumor Characteristics of Patients with


Estrogen Receptor α positive breast cancers.












Characteristic
Loi
Buffa
Wang
















Sample size
250
134
209



Age, years



Median (SD)
63 (10)
57 (10)
54 (12)



Histologic



Grade



1
47
30



2
128
64



3
40
27



Unknown
35
13
209



Tumor stage



T1
108
55



T2
136
70



T3
6
9



Unknown


209



Lymph node



status



Negative
110
78
209



Positive
132
56



Unknown
8



Adjuvant
Yes
Yes
No



tamoxifen



Median follow-
7
10
7



up (years)










EXAMPLES
Example 1
A shRNA Screen Identifies USP9X as a Tamoxifen Resistance Gene
Materials and Methods
Cell Lines and Culture Conditions

The human breast cancer cell lines ZR-75-1 (ATCC CRL-1500), MDA-MB-231 (ATCC HTB-26) and T47D (ATCC HTB133) were cultured in DMEM supplemented with 10% FCS, 2 mM glutamine, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 1 nM estradiol at 37° C. in 5% CO2. In proliferation assays, estradiol was replaced by DMSO (vehicle), 1 μM 4OHtamoxifen (hereinafter: tamoxifen) or 10-7 M fulvestrant. Phoenix cells (ATCC CRL-3214) were cultured at 37° C. in 5% CO2 in DMEM with 10% FCS, 2 mM glutamine, 100 μg/ml penicillin, and 100 μg/ml streptomycin.


Transfection and Retroviral Infection

Phoenix cells were transfected using calcium phosphate method. Viral supernatant was cleared through a 0.45 μm filter. Target cells were infected with the viral supernatant in the presence of polybrene (8 μg/ml) and the infection was repeated once. For transient transfection of ZR-75-1 cells Lipofectamine 2000 (Invitrogen) was used, according to the manufacturers protocol.


NKI shRNA Library


The construction of the library was described previously (Berns et al., 2004. Nature 428: 431-7). Briefly, the NKI shRNA library was designed to target 7914 human genes, using three shRNA vectors for every targeted gene. The shRNAs are cloned into a retroviral vector (pRetroSUPER (pRS)) to enable infection of target cells.


Colony Formation Assay

Cells were infected with retroviral supernatant and selected with puromycin (2.0 μg/ml). When the selection was completed 5×104 cells were seeded in 10 cm dishes and cultured in DMEM with 1 μM 4OH-tamoxifen for 4-6 weeks. When colonies appeared, cells were fixed in MeOH/HAc (3:1) and subsequently stained with 50% MeOH/10% HAc/0.1% Coomassie.


shRNA Screen and Recovery of shRNA Inserts


ZR-75-1 cells stably expressing the murine ecotropic receptor were infected with retroviral supernatants containing a selection of the NKI pRS-shRNA library (12,540 shRNA vectors targeting 4180 genes divided in 44 pools—each pool contains 285 distinct short hairpin RNA's against 95 genes) or pRS as control (Berns et al., 2004. Nature 428: 431-7). After puromycin selection (2 μg/ml) 2×105 cells of each pool and control were plated in 15 cm dishes and cultured in DMEM with 1 μM 4OHtamoxifen for 4-6 weeks. Individual colonies that grew out in the presence of tamoxifen were isolated and expanded. Genomic DNA was isolated using DNAzol (Life Technologies). PCR amplification of the shRNA inserts was performed with Expand Long Template PCR system (Roche) and the use of pRS-fw primer: 5′-CCCTTGAACCTCCTCGTTCGACC-3′ and pRS-rev primer: 5′-GAGACGTGCTACTTCCATTTGTC-3′. Products were digested with EcoRI/XhoI and recloned into pRS. Hairpins were sequenced with Big Dye Terminator (Perkin Elmer) using pRS-seq primer: 5′-GCTGACGTCATCAACCCGCT-3′.


Constructs

For retroviral transduction of human breast cancer cells, ZR-75-1 cells and T47D cells were transfected with pBabeHygro-Ecotropic Receptor and selected with hygromycin (100 μg/ml) and subsequently infected with the supernatant of the Phoenix ecotrophic virus packaging cell line.


The short hairpin sequence targeting USP9X recovered from the NKI shRNA library was:











GAACAGGAGAAACGGGTAT






For the generation of additional shRNA vectors targeting USP9X the following 19-mer sequences cloned in pRetroSuper were used:











USP9X II
1800-1818
GGAAATGCTTAGCTGAGAA





USP9X III
2725-2743
CCATGGTAATCATTACAGT





USP9X IV
3601-3619
CGAACAGGTTTGCTGTGAA





USP9X V
4483-4501
CTACATGATTCCTTCCATT





USP9X VI
5020-5038
GGAACAGTATGTCAAAGGA






Results

To identify genes causally involved in tamoxifen resistance, a loss-of-function genetic screen was performed in ZR-75-1 luminal breast cancer cells. We first stably expressed the murine ecotropic receptor (Scholz and Beato, 1996. Nucleic Acids Res 24: 979-980) in these cells and subsequently infected them with retroviral supernatants containing a selection of the NM pRS-shRNA library (12,540 shRNA vectors targeting 4180 genes) or pRS as control (Berns et al., 2004. Nature 428: 431-7) (FIG. 1A). Library-infected cells and control cells were plated at low density and cultured in DMEM with 1 μM 4OH-tamoxifen for 4-6 weeks. Individual colonies that grew out in the presence of tamoxifen were isolated and shRNA inserts of the vectors were recovered by PCR. These shRNA inserts were subsequently re-cloned and identified through DNA sequence analysis. This approach resulted the identification of USP9X, as a candidate tamoxifen resistance gene. A colony formation assay in ZR-75-1 cells (FIG. 1B) was performed with the shRNA identified in the screen to confirm the rescue from tamoxifen induced proliferation arrest.


To investigate whether the escape from tamoxifen induced proliferation arrest was the result of an “on target effect of the shRNA”, 5 additional shRNAs targeting different regions of the USP9X gene were designed and tested for their ability to confer tamoxifen resistance. FIG. 1C shows that three of these shRNAs had an identical phenotype to the original shRNA vector as cells grew out in the presence of tamoxifen treatment. Importantly, only the vectors that suppressed USP9X mRNA (FIG. 1D) and protein levels (FIG. 1E) induced tamoxifen resistance. To ask whether the rescue from tamoxifen induced proliferation arrest is independent of cellular context, we also tested two USP9X shRNA vectors for their ability to confer tamoxifen resistance in a second luminal breast cancer cell line: T47D. FIG. 1F shows that knockdown of USP9X in T47D cells enabled cell proliferation in the presence of tamoxifen as well, suggesting that USP9X suppression leads to tamoxifen resistance independent of the cellular context.


Importantly, knockdown of USP9X did not rescue cells from a proliferation arrest induced by the estrogen receptor downregulator fulvestrant, illustrating that shUSP9X-effects on cell proliferation are ERα-dependent (data not shown). In line with these data, knockdown of USP9X in the ERα negative cell line MDA-MB-231 did not induce cell proliferation, even resulting in a growth disadvantage in these cells (not shown).


Example 2
Knockdown of USP9X Increases ERα Activity
Material and Methods
Luciferase Assay

Monoclonal cell lines stably expressing pRS-USP9X or pRS-GFP as control were plated in triplicate in 6 wells plates in regular DMEM. The next morning cells were washed with PBS and fresh DMEM+10% FCS without Pen/Strep was added followed by Lipofectamine (Invitrogen) transfection according to the manufactures protocol with 1.75 μg ERE-TATA luciferase reporter plasmid vector and 0.5 μg pRL-CMV Renilla luciferase (Promega) per well. Eight hours after transfection cells were washed with PBS and supplied with fresh fenol red free DMEM with 10% charcoal stripped serum or DMEM with 10% FCS. 24 hours after transfection medium was refreshed with ligands as indicated and 48 hours after transfection cells were lysed with passive lysis buffer and the luciferase reaction was performed conform the manufactures protocol (Dual Luciferase Reporter Assay System, Promega). The Renilla luciferase activity was used to correct for differences in transfection efficiency. The relative reporter activity in the absence of ligand was used as a reference and set at 1.


QRT-PCR (Quantitative Real Time PCR)

Total RNA was isolated using TRIzol (Invitrogen) or using the Quick RNA MiniPrep kit (R1055 Zymo Research). From the total RNA, cDNA was generated using Superscript II (Invitrogen) with random hexamer primers (Invitrogen). cDNA was diluted and the QRT reaction was performed using SYBR green PCR master mix (Applied Biosystems). All QRT reactions were run in parallel for GAPDH to control for amount cDNA input. The QRT reaction was followed by a melting curve to confirm the formation of a single PCR product. The QRT reactions were run at an AB7500 Fast Real Time PCR system (Applied Biosystems). The following PCR primer sequences were used:












GAPD-81FW
AAG GTG AAG GTC GGA GTC AA







GAPD-188RV
AAT GAA GGG GTC ATT GAT GG







ESR1-120FW
ATG ATC AAC TGG GCG AAG AG







ESR1-212RV
CAG GAT CTC TAG CCA GGC AC







PGR-101FW
GTC CTT ACC TGT GGG AGC TG







PGR-191REV
CGA TGC AGT CAT TTC TTC CA







TFF1-51FW
GGA GAA CAA GGT GAT CTG CG







TTF1-160REV
AAT TCT GTC TTT CAC GGG GG






Results

Next we examined whether the rescue from tamoxifen-induced proliferation arrest was the result of increased ERα signaling. Therefore, ZR-75-1 cell lines stably expressing pRSUSP9X or control pRS-GFP were created. First, we tested whether knockdown of USP9X increased ERα activity, as judged by the activity of a reporter construct having Estrogen Responsive Elements linked to luciferase (ERE-luciferase), under the conditions used in the shRNA screen. FIG. 2A shows that USP9X knockdown (USP9XKD) cells have increased ERα transcriptional activity, both when cultured in normal culture media and when cultured in the presence of 4OH-tamoxifen. To rule out a residual effect of estradiol seen when cultured in regular DMEM with 4OH-tamoxifen (as fetal calf serum contains small amounts of estradiol, and the phenol red dye in the culture media has been shown to have weak estrogenic activity), we performed luciferase assays after 24 hours of serum starvation of cells in phenol red-free DMEM supplemented with 10% charcoal stripped (and hence steroid-free) serum, followed by 24 hours of treatment with either estradiol, estradiol+4OH-tamoxifen or 4OHtamoxifen alone. FIG. 2B shows that under all these conditions ERα signaling is about 2.5 times higher in the USP9XKD cell line as compared to the control cell line. Knockdown of USP9X also resulted in increased mRNA levels (FIG. 2C) and protein levels (FIG. 2D) of the ERα target genes Progesterone Receptor (PR), Trefoil factor 1 (TFF1/PS2) and of ERα itself (Eeckhoute et al., 2007. Cancer Res 67: 6477-83).


Example 3
Physical Interactions Between USP9X and ERα
Materials and Methods
Immunoprecipitation and Immunoblotting

For immunoprecipitation cells were lysed in ELB containing 250 mM NaCl, 0.1% NP-40, 50 mM Hepes pH 7.3, and Complete protease inhibitor cocktail from Roche. Supernatants of the lysates were incubated with either anti-USP9X (clone 1C4; Abnova/Sigma Aldrich), or anti-ERα (D-12; Santa Cruz) coupled to protein A/G sepharose beads. Normal mouse serum coupled to protein A/G sepharose beads was used as control. For Western blotting antibodies were used detecting USP9X (clone 1C4; Abnova/Sigma Aldrich), ERα (clone 1D5; Dako), Progesterone Receptor (clone 1A6; Novocastra), and beta-actin (clone AC-74; Sigma Aldrich A 5316).


Results

Given the functional interaction between USP9X and ERα, we next tested whether ERα and USP9X physically interact. We expressed human ERα in Phoenix cells. Cells were lysed in mild detergent and the lysate was immunoprecipitated with anti-USP9X antibody or anti-ERα antibody and Western blotting was performed. As shown in FIG. 3A, exogenously expressed human ERα forms a complex with endogenous USP9X. Importantly, FIG. 3B shows that in the ERα-positive ZR-75-1 cells endogenous ERα also co-immunoprecipitates with endogenous USP9X, demonstrating the existence of a physical complex of these proteins under physiological conditions, which was recently also shown by mass spectrometry by Stanisic et al. (Stanisic et al., 2009. J Biol Chem 284: 16135-45).


Example 4
USP9X Loss Selectively Enhances ERα/Chromatin Interactions Upon 4OH-Tamoxifen Treatment
Materials and Methods
Chromatin Immunoprecipitations

Chromatin Immunoprecipitations (ChIP) were performed as described before (Schmidt et al., 2009. Methods 48: 240-8). For each ChIP, 10 μg of antibody was used, and 100 μl of Protein A magnetic beads (Invitrogen). The antibody used was raised against ERα (SC-543; Santa Cruz).


Next Gen Sequencing and Enrichment Analysis

ChIP DNA was amplified as described (Schmidt et al., 2009. Methods 48: 240-8). Sequences were generated by the Illumina Hiseq 2000 genome analyser (using 50 bp reads), and aligned to the Human Reference Genome (assembly hg19, February 2009). Enriched regions of the genome were identified by comparing the ChIP samples to mixed input using the MACS peak caller (Zhang et al., 2008. Genome Biol 9: R137) version 1.3.7.1.


Motif Analysis, Heatmaps and Genomic Distributions of Binding Events

ChIP-seq data snapshots were generated using the Integrative Genome Viewer IGV 2.1 (www.broadinstitute.org/igv/). Motif analyses were performed through the Cistrome (cistrome.org), applying the SeqPos motif tool (He et al., 2010. Nat Genet 42: 343-7). The genomic distributions of binding sites were analysed using the cis-regulatory element annotation system (CEAS) (Ji et al., 2006. Nucleic Acids Res 34: W551-4). The genes closest to the binding site on both strands were analysed. If the binding region is within a gene, CEAS software indicates whether it is in a 5′UTR, a 3′UTR, a coding exon, or an intron. Promoter is defined as 3 kb upstream from RefSeq 5′ start. If a binding site is >3 kb away from the RefSeq transcription start site, it is considered distal intergenic.


Statistical Analysis

Normalised mRNA expression data for three patient series were downloaded from GEO: GSE6532 (Loi et al., 2007. J Clin Oncol 25: 1239-46), GSE22219 (Buffa et al., 2011. Cancer Res 71: 5635-45), and GSE2034 (Wang et al., 2005. Lancet 365: 671-9). From these, two sets of ERα-positive, tamoxifen-treated patients (Loi, n=250; Buffa, n=134), and one set of ERα-positive untreated patients (Wang, n=209) were extracted, for which followup was available. Probes in the Buffa and Wang data were median-centered before further processing. The Loi data had already been median-centered. The 526 genes of the USP9X knockdown tamoxifen signature were mapped to the corresponding microarray platforms by selecting all probes for matching genes, and ignoring genes not present on the array. For the Loi data, this selected 949 probe sets represent 488 different genes. For the Buffa data, 363 probes were selected representing 295 genes and for the Wang data, 792 probe sets representing 391 genes were available. 254 of the signature genes were present on all three array platforms. Patients were stratified into two groups by applying a hierarchical complete linkage clustering using Pearson correlation distance, and dividing by the first split of the clustering. Significant differences in distant metastasis free survival time between these two groups were tested for using the log-rank test. Survival times longer than ten years were right-censored. The array platform used for the untreated Wang data provides a subset of the probes available for the treated Loi data (792 out of 949).


To verify that this difference does not affect the comparison between treated and untreated, the Loi samples were additionally clustered based on this subset only. This clustering was found still to stratify patients according to prognosis (log-rank p=1.3×10-5). The directionality of USP9X knockdown tamoxifen classification genes in the good and poor outcome patient groups is shown in Table 1.


Results
Knockdown of USP9X Give Rise to Both Tamoxifen Resistance and ERα-Responsive Gene Activation.

The effects of USP9X knockdown on ERα/chromatin interactions were tested for hormone-depleted (vehicle), estradiol and tamoxifen-conditions, using chromatin immunoprecipitation, followed by high-throughput sequencing (ChIP-seq). ZR-75-1 cell lines stably expressing pRS-USP9X or pRS-GFP (control) were plated in hormone depleted medium for 72 hours. Typically, ERα ChIP-seq experiments are performed after a treatment for 45 minutes with ligand (Carroll et al., 2005. Cell 122: 33-43; Hurtado et al., 2011. Nat Genet 43: 27-33). Since USP9X suppression causes long-term resistance to tamoxifen, we were interested in ERα biology after prolonged ligand treatment and the effects of USP9X knockdown thereon. Therefore, the cells were treated with vehicle, estradiol or 4OH-tamoxifen for 48 hours before the ChIP assay.


In control cells, estradiol treatment greatly enhanced ERα/chromatin interactions, while this was far less pronounced when treating the cells with 4OH-tamoxifen. USP9X knockdown had no effect on ERα/chromatin interactions in vehicle and estradiol treated cells, but significantly increased chromatin binding intensity upon 4OH-tamoxifen treatment as exemplified in FIG. 4A. The stabilization of ERα/chromatin interactions in the presence of 4OH-tamoxifen could be generalized throughout the genome, as depicted in a heat map visualization (FIG. 4B) and expressed in a quantified format in a 2D graph (FIG. 4C). This increased intensity of ERα/chromatin interactions in 4OH-tamoxifen-treated cells also translated into a significant increase in the number of chromatin binding events, representing a subset of the estradiol-induced binding patterns under the same conditions (FIG. 4D). Comparing control with USP9XKD under the same ligand conditions showed a relative selectivity for gained sites, both for estradiol and 4OH-tamoxifen conditions, while this was not the case for vehicle-treated cells (FIG. 4E).


ERα rarely binds promoters (5%), and the vast majority of ERα binding events are found at distal enhancers (Carroll et al., 2005. Cell 122: 33-43.38). We could confirm these data for estradiol and 4OH-tamoxifen conditions, both in control and USP9XKD cells (FIG. 4F). Vehicle-treated cells showed enrichment of ERα binding to promoters as was found before (Zwart et al., 2011. EMBO J 30: 4764-76), which was not influenced by knockdown of USP9X. The gained ERα binding events for USP9XKD cells under tamoxifen conditions showed identical distributions as found for estradiol and tamoxifen-treated control cells. De novo DNA motif enrichment analyses provided ESR motifs, and ERα binding sites that were selectively induced by USP9X knockdown in the presence of 4OH-tamoxifen, and were practically identical to those shared between control cells and USP9XKD cells (FIG. 4G).


Collectively, these data show that USP9X knockdown induces ERα binding events, selectively in the presence of 4OH-tamoxifen, that represent a subset of estradiol-induced sites and do not deviate in normal ERα behaviour with respect to genomic distributions and DNA motif enrichment.


Example 5
RNA Expression Analysis

Transcriptome sequencing analysis of the cell line ZR-75-1 with stable USP9X knockdown or a control vector were performed using RNA-Seq. The reads (14-30 million 50 bp single-end) were mapped to the human reference genome (hg19) using TopHat (Trapnell et al., 2009. Bioinformatics 25: 1105-1127), which allows to span exon-exon splice junctions. TopHat was supplied with a known set of gene models (Ensembl version 64). The open-source tool HTSeq-Count was used to obtain gene expressions. This tool generates a list of the total number of uniquely mapped sequencing reads for each gene that is present in the provided Gene Transfer Format (GTF) file. In order to identify differentially expressed genes, the random sampling model in the R package DEGseq (Wang et al., 2010. Bioinformatics 26: 136-8.28) was used. We have taken a p-value of 0.05 as a cut-off to determine whether a gene is significantly differentially expressed. The input of this method is the absolute number of reads for a gene, which is the output of HTSeq-count. Genes with no expression across both samples in the comparison were discarded from the dataset. The expression levels of the remaining genes were added with 1 in order to avoid negative values after log 2 transformation during the normalization step within this method.


Results
USP9X and Global Gene Expression Analyses

Our ChIP-seq analyses indicate that USP9X knockdown selectively increases ERα/chromatin interactions in the presence of tamoxifen that are normally found for estradiol conditions. We therefore asked whether USP9X knockdown in tamoxifen-treated cells would also give rise to a typical estradiol-responsive gene set. To address this, we performed RNAseq on ZR-75-1 cells stably expressing pRS-USP9X or pRS-GFP (control) that—after hormone depletion for 72 hours—were treated for 48 hours with vehicle, estradiol or 4OHtamoxifen. Comparing gene expression in both cell lines, we found that estradiol-treatment led to an altered expression of 8794 genes as compared to vehicle, while after 4OHtamoxifen treatment 1906 genes were differentially expressed. All altered transcripts under 4OH-tamoxifen conditions represented a subset of the estradiol-responsive genes (FIG. 5A, left panel). 4OH-tamoxifen treatment in USP9XKD cells as compared to 4OH-tamoxifen treated control cells resulted in an altered expression of 6210 transcripts, 4336 of which were shared with estradiol-induction in control cells (FIG. 5A, right panel). The differentially expressed genes in 4OH-tamoxifen-treated USP9XKD cells specifically showed an increase in number (FIG. 5B) and intensity (FIG. 5C) of proximal ERα binding events.


The majority of genes that are differentially expressed upon tamoxifen treatment in the USP9XKD cells were shared with estradiol induction. ERα-positive breast tumors are hallmarked by a selective and specific enrichment of so-called ‘luminal-signature genes’ (Perou et al., 2000. Nature 406: 747-52). Therefore, the USP9X knockdown tamoxifen gene set, which was shared with the estradiol responsive gene list and which also showed enhanced proximal ERα binding events, (526 out of 4336 genes, see FIG. 5B right two columns), was tested for enrichment of ‘luminal’ over ‘basal’ genes, using the genes as defined by Perou et al (Perou et al., 2000. Nature 406: 747-52). A clear enrichment of luminal genes was found relative to basal signature genes, consistent with the notion that USP9X knockdown enhances ERα signaling (FIG. 5D).


Example 6
A USP9X Knockdown Tamoxifen Gene Expression Signature Identifies Breast Cancer Patients with a Poor Outcome after Adjuvant Tamoxifen Treatment

The RNA-seq analyses revealed that the majority of genes that were differentially expressed upon tamoxifen treatment in the USP9XKD cells were a subgroup of estradiol induced genes (4336 out of 8794). Furthermore, integrating these results with the ChIP-seq data showed that a subgroup of these genes (526 out of 4336) is enriched for proximal ERα binding events. This particular subgroup of genes is expected to represent a direct ERα target gene signature in contrast to the (potentially indirectly regulated) genes that were not enriched for ERα binding. Since these directly ERα regulated genes would also be the genes that are directly affected under tamoxifen resistant conditions, differential expression of these particular genes in breast tumors could hallmark tamoxifen unresponsiveness.


To test this hypothesis, we investigated whether these genes were differentially expressed in a publically available data set of 250 patients with primary ERα positive breast cancer with known outcome (Loi et al., 2007. J Clin Oncol 25: 1239-46). All these patients received adjuvant tamoxifen. For relevant clinicopathological parameters, see Table 2. As visualised in a heatmap (FIG. 5E), unsupervised clustering on the basis of our gene signature resulted in the identification of two distinct subgroups of patients. These subgroups of patients were subsequently analysed for differential distant metastasis-free survival after adjuvant tamoxifen treatment. FIG. 5F left panel shows that this gene set identifies a subgroup of breast cancer patients with a poor outcome after tamoxifen treatment (p=9.4×10-5). This data could be validated using a second cohort of ERα positive breast cancer patients (n=134) who received adjuvant tamoxifen treatment (Buffa et al., 2011. Cancer Res 71: 5635-45). FIG. 5F, middle panel, shows that our classifier successfully identified tamoxifen-treated breast cancer patients with a poor outcome (p=6.5×10-4). We then tested our signature on a cohort of primary ERα positive breast cancer patients (n=209) (Wang et al., 2005, Lancet 365: 671-9) who did not receive any adjuvant endocrine treatment. Importantly, in these patients, the USP9X knockdown tamoxifen gene expression signature did not correlate with outcome, indicating that the gene signature is not a prognostic signature (FIG. 5F right panel).


Example 7
Material and Methods
Gene Expression Data

Gene expression data from five publically available studies were used for developing or validating the USP9X signature. All cohorts consist of ERα-positive, tamoxifen-treated breast cancer patients. Cohort 1 (GSE6532; Loi et al., 2007. J Clin Oncol 25: 1239-46) was used in our unsupervised clustering analysis to identify the two USP9X clusters. Furthermore, it was also used in the supervised gene selection procedures described below, and will henceforth be referred to as the training data. Data from four other studies were exclusively used for validating the trained classifier: cohort 2 (GSE12093; Zhang et al., 2009. Breast Cancer Res Treat 116: 303-9), cohort 3 (GSE26971; Filipits et al., 2011. Clin Cancer Res 17:6012-20), cohort 4 (GSE9195; Loi et al., 2008. BMC Genomics 9:239), and cohort 5 (GSE17705; Symmans et al., 2010. J Clin Oncol 28:4111-9). The complete data set for cohort 5 includes 102 samples that overlap with cohort 1. For the validation, we removed the overlapping samples from cohort 5.


Training the USP9X Classifier

The training data were used for supervised training of a classifier that assigns new tumor samples to one of the two USP9X clusters. The two clusters identified by the unsupervised clustering of the training data were used as the gold standard. For training the classifier, we used the nearest shrunken centroid (NSC) method (Tibshirani et al., 2002. Proc Natl Acad Sci USA 99:6567-72). In short, class centroids are estimated based on the within-class means of the signature genes. Then, a shrinkage parameter is tuned to shrink the within-class means towards the overall means per gene. Genes for which the within-class mean is fully shrunk to the overall mean do not discriminate between the two classes, and are therefore not used for classification. Because of this, tuning the shrinkage parameter yields an optimised subset of genes to use for classification. We tuned the NSC shrinkage parameter to maximise the cross-validated area under the ROC curve (AUC), using a 10-fold cross validation (CV) procedure. We tested this gene selection procedure on the training set in a nested cross validation set-up. Within each outer-CV iteration, the shrinkage parameter was tuned on 90% of the training samples using an internal CV as described above. Subsequently, the selected shrinkage parameter was used to classify the remaining 10% of the training samples. The cross-validated AUC of the outer-CV was 0.95, which confirms the validity of the gene selection procedure. Subsequently, we trained the final classifier by estimating class centroids and tuning the shrinkage parameter on the entire training set. The best cross-validated AUC performance was obtained by selecting 155.


Identification of a Minimal Gene Signature

We looked for even smaller sets of signature genes in a more stringent gene selection procedure. For this, we performed a similar CV procedure as above, but used L1-regularised logistic regression instead of NSC. This choice was made because L1 regularisation generally leads to sparser gene selections. We repeated the CV gene selection procedure 100,000 times, with randomly sampled fold assignments, and kept those genes that were selected in at least 99% of the iterations. Using this procedure, we selected 9 genes. Next, we tested for each subset of these 9 genes, whether clustering on the subset yields two clusters that show a significant difference in survival on the training set. A selection of 5 genes: MYBL2, IDH3A, CHSY1, BUB1B, CAPN2 gave rise to the largest survival differences among all subsets. However, most smaller subsets of these 5 do still separate good from poor survival to a large extent.


Results
Validation of the USP9X Classifier in Independent Patient Cohorts

The NSC classifier was trained on the training data, selecting 155 genes in the process. We subsequently used it to classify tumors from cohorts 2, 3, 4, and 5. None of these cohorts was used in training the classifier or selecting the genes. Survival curves for the classifications are shown in FIG. 6. The curves for cohort 1 are based on cross-validated predictions, i.e. the classifier used for classifying a tumor was not trained on data including that same tumor. On all cohorts but cohort 5, the two identified groups show a significant difference in survival. The results for cohort 5 show a strong trend towards significance but are hampered by the small number of events in this cohort.


Validation of the Minimal Gene Signature in Independent Patient Cohorts

We also validated the minimal, 5 gene signature on the validation cohorts. A nearest centroid classifier for this signature was trained on the training data and subsequently used to classify the tumors in cohorts 2-5. The resulting survival curves are shown in FIG. 7. The performance of the minimal gene signature is mostly comparable to that of the 155-gene NSC classifier, although it is slightly better for some of the validation cohorts, and slightly worse for others.


Example 8
Materials and Methods
Establishing the Minimum Required Number of Genes

To establish the minimum signature size that still allows successful stratification of patients, we randomly sampled smaller subsets of genes, and evaluated their classification performance. For each gene set size between 2 and 50, we drew 200 random subsets from the 155 genes selected for the USP9X classifier. Nearest centroid classifiers based on the random subsets were evaluated in a 10-fold cross validation set-up. Next, the mean of the cross-validated areas under the ROC curve (AUC) were estimated per subset size.


Results

Mean AUCs per subset size are shown in FIG. 8 for two different evaluation criteria. One criterion is how well the random subsets are able to recover the USP9X classes defined by clustering on the larger signature. For this criterion, a mean AUC of 0.77 is achieved with random subsets of 5 genes. As the subset sizes grow towards 50, the mean AUC converges towards 0.95. The second criterion is how well the predicted classes separate poor survival from good survival. The figure shows the area under the time-dependent ROC curve evaluated at 5 years. With random subsets of 5 genes, an average AUC of 0.67 is achieved.

Claims
  • 1-13. (canceled)
  • 14. A method of typing a sample from a breast cancer patient that has been treated with tamoxifen, the method comprising: determining a level of expression for USP9X and/or for at least two genes that are selected from Table 1 in a relevant sample from the breast cancer patient that has been treated with tamoxifen, whereby the sample comprises expression products from a cancer cell of the patient;comparing said determined level of expression of USP9X or of the at least two genes to the level of expression of USP9X or the at least two genes in a reference;typing said sample as being responsive to treatment with tamoxifen or not, based on the comparison of the determined levels of expression.
  • 15. A method of typing a sample from a breast cancer patient according to claim 14, the method comprising: determining a level of expression for at least two genes that are selected from Table 1 in a relevant sample from the breast cancer patient, whereby the sample comprises expression products from a cancer cell of the patient;comparing said determined level of expression of the at least two genes to the level of expression of the at least two genes in a reference;typing said sample as being responsive to treatment with tamoxifen or not, based on the comparison of the determined levels of expression.
  • 16. The method according to claim 14, wherein the reference is a measure of the average level of said at least two genes in at least 10 independent individuals.
  • 17. The method according to claim 14, whereby the sample is typed by determining a level of RNA expression for at least five genes that are selected from Table 1 and comparing said determined RNA level of expression to the level of RNA expression of the at least five genes in a reference.
  • 18. The method according to claim 14, whereby a level of expression of at least ten genes from Table 1 is determined.
  • 19. The method according to claim 14, whereby a level of expression of all genes from Table 1 is determined.
  • 20. A method of assigning anti-estrogen receptor-directed therapy comprising tamoxifen to a breast cancer patient, comprising typing a sample from the breast cancer patient with a method according to claim 14; andassigning anti-estrogen receptor-directed therapy comprising tamoxifen to a patient of which the sample is typed as being responsive to treatment with tamoxifen.
  • 21. A method of assigning further antiER directed therapy or chemotherapy to a breast cancer patient, comprising typing a sample from the breast cancer patient with a method according to claim 14; andassigning chemotherapy to a patient of which the sample is typed as being non-responsive to treatment with tamoxifen.
  • 22. The method according to claim 21, whereby the further antiER directed therapy comprises the administration of a selective estrogen receptor modulator not being tamoxifen, an aromatase inhibitor, and/or GnRH or a GnRH-analogue.
  • 23. The method according to claim 21, whereby the chemotherapy comprises anastrozole.
  • 24. The method of claim 21, whereby the chemotherapy comprises administration of a platinum agent and/or a PARP inhibitor.
  • 25. The method of claim 21, whereby the chemotherapy comprises cisplatin.
  • 26. The method of claim 21, whereby the chemotherapy comprises ABT-888
Priority Claims (1)
Number Date Country Kind
13197871.0 Dec 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/NL2014/050870 12/17/2014 WO 00