The embodiments described herein are generally related to systems and methods for enhancing wireless communications by improving wireless gain. More particularly, the embodiments are related to infrastructure supporting a deployable wireless Fresnel lens as a signal enhancement to improve wireless communications of communications equipment including wireless portable electronic devices.
In U.S. Pat. No. 8,384,614 B1 (“614 patent”), issued Feb. 26, 2013, National Aeronautics and Space Administration (NASA) inventors disclosed a means to address the need for improved signal communications systems and for an improved Fresnel lens to increase the signal to noise ratio (SNR) ratio in wireless communication links, thereby improving the range and performance of wireless devices. The '614 patent details how to solve address these needs using an improved Fresnel lens, which basically utilizes concepts of a Fresnel lens and incorporate them for use between wireless communications transmitters and receivers as an antenna enhancement to pass wanted signals while suppressing or eliminating unwanted signals. The '614 patent in incorporated herein by reference in its entirety for its teaching.
NASA inventors found that portable, wireless communication devices often require an increased SNR. The need can arise from increased range, higher data rates, and compromised channels—e.g., RF interference and rain fade. Increased SNR can also be required in urban environments because of urban blockage, either on foot or in an automobile, where buildings and materials cause exacerbated fading conditions. Natural disasters can further diminish the operational effectiveness of traditional methods of communication thereby creating a need for increased SNR. For example, hurricanes and earthquakes can damage transmission links, such as mobile phone towers, requiring an increased range of communication for remaining undamaged communication links to maintain geographic coverage. Highly critical government communication applications can also require increased SNR. Individuals, such as boaters, hunters, campers, or stranded motorists, would benefit from an increase in the SNR of their wireless portable communication devices, such as radios, pagers, and mobile phones.
Despite the brilliant teachings of the '614 patent, a need still exists for improved means to effectively support the deployment of Fresnel lenses as an antenna transmission/receiving enhancement and improve the effectiveness of communications equipment, and thereby also improving the range and performance of wireless portable electronic devices.
An apparatus and method for supporting a mobile device in front of a Fresnel lens operating as a passive enhancement for antennas associated with electronic communications devices and enhancing the gain of wireless signals by antennas, such as the Fresnel lens taught by the '614 patent, is described.
In a first embodiment, at least one ring clamp is configured to be attached to a support member that is disposed about at least a portion of a screen of the Fresnel lens. The at least one ring clamp can be further attached to supporting structure that can further support and deploy the Fresnel lens in a position for optimal signal enhancement. The support structure can be provided in the form of a support stand with legs. The legs can include suction cups or magnets to retain the support structure on metal or smooth surfaces.
In another embodiment, two ring clamps are provided that are configured to be attached to opposite sides of a support member that is disposed in a circle about at least a portion of a screen of the passive antennae that includes one or more electrically conductive regions disposed thereon. The two ring clamps each can be further attached to supporting structure that can further support and deploy the passive antennae in a position for optimal signal enhancement. The support structure can be provided in the form of a support stand with a plurality of legs. The legs can include suction cups or magnets to retain it on metal or smooth surfaces.
In at least one specific embodiment, the apparatus can include a support structure including at least one ring clamp assembly that can be coupled to one end of a support stand and configured to support a passive antenna by its support member associated with the passive antenna and that is disposed about at least a portion of a screen including conductive region disposed thereon. The screen can have one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.
In at least one specific embodiment, the method for enhancing the gain of a wireless signal can include activating a wireless communication link to produce a wireless signal. The method can also include placing a Fresnel lens in the transmission path. The Fresnel lens can include a screen having one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The Fresnel lens can also include two support members disposed about two separated portions of the screen. A ratchet mechanism integrated with the support members couple to the Fresnel lens and enable the Fresnel lens to be rotated back and forth to achieve optimum operation. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections. The method can also include amplifying the wireless signal with the Fresnel lens by cancelling out at least a portion of one or more out-of-phase regions of the wireless signal.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
8A 8C depict top right, right, top, and front perspectives of support structure for a Fresnel lens, according to one or more embodiments described.
A detailed description will now be provided. Each of the appended claims defines a distinct embodiment of the invention, which for infringement purposes is recognized as including equivalents to the various elements or limitations specified in the claims. Depending on the context, all references below to the “invention” may in some cases refer to certain specific embodiments only. In other cases, it will be recognized that references to the “invention” will refer to subject matter recited in one or more, but not necessarily all, of the claims. Each of the embodiments will now be described in greater detail below, including specific embodiments, versions and examples, but the inventions are not limited to these embodiments, versions or examples, which are included to enable a person having ordinary skill in the art to make and use the inventions when the information in this patent is combined with available information and technology.
Reference to “Fresnel lens” throughout this detailed description should be interpreted to refer to a passive enhancement for antennas associated with electronic communications devices and enhancing the gain of wireless signals received by the antennas, such as the Fresnel lens taught by the '614 patent.
Referring to
The Fresnel lens 100 can include one or more screens 150. As used herein, the term “screen” refers to a monolithic body, sheet, or membrane having a thickness that is less than its length and width. The screen 150 can have any shape or combination of geometrical shapes. The shape of the screen 150 can be symmetric or asymmetric. Illustrative shapes can include, but are not limited to, square, rectangular, triangular, circular, elliptical, pentagonal, hexagonal, other polygonal shapes, non-uniform shapes, or a combination thereof. The screen 150 shown in
The screen 150 can have one or more electrically conductive regions 130 and one or more non-conductive regions (two are shown 160, 161). The one or more electrically conductive regions 130 can be disposed adjacent to at least one of the non-conductive regions 160, 161. The one or more electrically conductive regions 130 can be a ring shaped conductive region and can be disposed between an inner non-conductive region 161 and an outer non-conductive region 160. As used herein, the term “conductive” is used interchangeably with the term “electrically conductive.” The electrically conductive region 130 can be woven into or otherwise disposed within the screen 150. In another example, the electrically conductive region 130 can be formed by disposing an electrically conductive material or layer on a surface of the screen 150, attaching the electrically conductive material or layer to the surface of the screen 150, embedding the electrically conductive material at least partially within the screen 150, or any combination thereof.
The outer non-conductive region 160 and the inner non-conductive region 161 can be formed by disposing a non-conductive material or layer on the surface of the screen 150, attaching a non-conductive or insulating material to the surface of the screen 150, embedding the non-conductive material at least partially within the screen 150, or any combination thereof, where the screen 150 is non-conductive. Alternatively, the outer non-conductive region 160 and the inner non-conductive region 161 can be or can include the portion of the screen 150 that does not include the electrically conductive region 130.
The electrically conductive material used in the electrically conductive region 130 can be made of or include an electrically conductive fabric, which can include any kind of electronic textile or “e-textile”. E-textiles can include any textile that can be applied to the physical manipulation of electrical or electromagnetic signals or radiation; most often, this is associated with devices that incorporate one or more electronic devices. Electronic textiles can provide several advantages for portable Fresnel lenses and applications thereof. Electronic textiles are often lightweight with low mass. In addition, they can be both foldable and flexible. E-textiles may be constructed from materials that are resistant to the elements and/or extreme environments. For example, NOMEX®, having excellent thermal, chemical, and radiation resistance, can be used as a base nonconductive e-textile material element. As such, when electrically conductive region 130 includes e-textiles, the Fresnel lens 100 can be lightweight, low mass, foldable, flexible, and/or resistant to the elements. Metals that can be used in the construction of electronic textiles can include, but are not limited to, copper, nickel, gold, silver, steal, zinc, tin, tungsten, iron, iridium, aluminum, alloys thereof, or other conductive elements. Metalized fiber strands can include polymers coated with metal. Other conducting fabric strands can include electrically conducting polymers or plastics. Electronic textiles can include multiple metalized fibers wrapped together to form electrically conductive strands. Electronic textiles can include nano-tubes or other nano-particles that have advanced electronic function. In another embodiment, the electrically conductive region 130 can be made using metal meshes, such as a copper wire or gold wire mesh.
Just as there can be many different means to creating conductive fabrics for use with c-textiles, numerous non-conductive materials can be used in conjunction with the aforementioned conductive materials. Suitable non-conductive materials can include, but is not limited to, nylon, NOMEX®, KEVLAR®, aromatic polyamide polymers, polyester, cotton, Rip-stop nylon, canvas, other common textiles or materials having bulk electrical properties fitting the description a good non-conductor, or combinations thereof. The non-conductive material can be in the form of a web having air or a vacuum dispersed through non-conductive strands.
The conductivity of the electrically conductive region 130 and conductivity of the non-conductive region 160 can be reversed. For example, the electrically conductive region 130 can be a non-conductive region made of non-conductive fabric, and the non-conductive regions 160, 161 can be conductive regions made of all or mostly conductive fabric. The non-conductive regions can also be the same material with the conductive region affixed near the center of the material defining the non-conductive regions after its placement.
The Fresnel lens 100 can further include a support member 110 that can be at least partially disposed about the screen 150. The support member 110 is preferably located about or along a perimeter 115 of the screen 150 to provide support or rigidity to the screen 150. The support member 110 can be a single component or body or can include multiple pieces or sections that are joined together. In one embodiment, the support member 110 is a single component that makes a complete loop, i.e., the support member 110 is connected at a first and second end thereof. Because the screen 150 is flexible and deformable, the shape of the support member 110 disposed about the perimeter 115 can define the shape of the Fresnel lens 100. In addition, the support member 110 can stretch the screen 150 and can keep it substantially flat or planar.
The screen 150 and therefore, the Fresnel lens 100 can be configured to be deployable. The term “deployable” as used herein refers to the ability of the screen and therefore, the Fresnel lens, to spread out or extend. The screen 150 and therefore, the Fresnel lens 100 can have an open, extended, spread out, or un-collapsed configuration, where the open configuration of the screen 150 and therefore, the Fresnel lens 100 can have a plurality of shapes, including, but not limited to, generally circular, generally elliptical, generally square, generally triangular, or other shape as required to suit an application or function in which it is used. For example, the Fresnel lens 100 can be non-planar having spherical or parabolic shape. As depicted in
Referring to
The in-phase radiation can be defined by a first Fresnel zone region 305 and a third Fresnel zone region 311, and the out-of-phase radiation can be defined by a second Fresnel zone region 306 and a fourth Fresnel zone region 312. As shown, the first Fresnel zone region 305 can bound in-phase radiation and the second Fresnel zone region 306 can bound out-of-phase radiation. Placing the Fresnel lens 100 at the predetermined distance 307 and at a predetermined angle 308 relative to a transmission or receiver source can result in gain enhancement, focusing of radiated energy from the transmission source 301, signal improvement at the receiver 302 relative to that of a communication link without the Fresnel lens 100, or any combination. This result can be accomplished, at least in part, by cancelling the out-of-phase radiation in Fresnel zone region 306. The predetermined angle 308 may be any angle whereby the Fresnel lens 100 is orthogonal to the transmission path. For example, the electrically conductive region 130 can diffract, reflect, interfere with, block, or cancel out the out-of-phase radiation in Fresnel zone 306 to enhance transmission gain and improve SNR in the communication link 300. As such, the Fresnel lens 100 does not require a direct wired connection to the transmission source 301 nor a source of power, i.e., a plug or battery, to perform gain enhancement in the communication link 300.
The Fresnel lens 100 can have a plurality of shapes in the compact configuration, including, but not limited to, generally polygonal, generally elliptical, generally square, generally triangular, or other shape as required. As depicted in
As mentioned in the description with respect to
Referring to
Referring to
Referring to
Referring to
A mobile device 1007 can be left unattended while operating near the Fresnel lens 100 when utilizing the mobile device holder 1100. Use of the mobile device holder would be ideal in situation where, for example, the mobile device 1007 is a portable wireless data communications hotspot that is being used to supply data to other devices (e.g., smartphones, tablets, computers) located near the mobile device 1007. This can be a scenario at a campground or worksite within the field where multiple devices require a data communications connection.
The mobile device retainer 1120 can be provided using a pocket formed at the center using nonconductive material, or with hardware that can securely hold a mobile device 1007 at the center of the mobile device holder 1100. The mobile device holder 1100 can be positioned so that it is held against the surface of the Fresnel lens 100, and so that mobile device holder support member 1110 of the mobile device holder 1100 touches support member 110 of the Fresnel lens 100. The mobile device holder 1100 can be secured to the Fresnel lens 100 at the points of contact between mobile device holder support member 1110 and support member 110. The mobile device holder support member 1110 and support member 110. Can be secured against each other using, for example, clips, hook and loop material (that can be fabricated at the perimeters of each of the Fresnel lens and mobile device holder 1100), buttons, or other fasteners, metallic or nonmetallic. In the situation where a shape of the mobile device holder 1110 and Fresnel len 100 do not match, attachment can occur where the perimeters touch. Such would be the case where, for example, a circular mobile device holder 1110 is being used with a rectangular Fresnel lens 100, like the Fresnel lens 100 illustrated in
Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges from any lower limit to any upper limit are contemplated unless otherwise indicated. Certain lower limits, upper limits, and ranges appear in one or more claims below. All numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art. As used herein in the claim(s), when used in conjunction with the word “comprising”, the words “a” or “an” mean one or more.
Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
The present application claims priority as a continuation of U.S. Provisional Application No. 63/333,550, filed Apr. 21, 2022 and entitled “Means For Supporting A Deployable Wireless Fresnel Lens”, which is herein incorporated by references in its entirety.
Number | Date | Country | |
---|---|---|---|
63333550 | Apr 2022 | US |