The invention relates to a measurement arrangement having a measurement unit for detection of an operating variable of a machine, and having a control unit, which is connected to the measurement unit by means of a bidirectional digital data link, for controlling the machine, wherein the measurement unit has sensor means for detection of at least one analog measurement signal for the operating variable, and an evaluation unit for digitizing and evaluation of the analog measurement signal, as well as, at least partially, a monitoring unit for threshold-value checking of the analog measurement signal, and the data link is designed for transmission of digital measurement and/or monitoring information, transmitted by the evaluation unit and the monitoring unit, from the measurement unit to the control unit, and for transmission of a digital control command in order to initiate a self-test of the monitoring unit, from the control unit to the measurement unit.
By way of example, a measurement arrangement such as this is known from DE 102 44 583 A1. In this known measurement arrangement, a position of a moving part of a processing machine is detected as an operating variable. The instantaneous position of the part which, for example, is in the form of a linearly or rotationally moving rotor is required in the control unit in order to control the processing machine. In order to improve the reliability, the position is often detected redundantly. However, only a single measurement unit is provided in the measurement arrangement according to DE 102 44 583 A1, and comprises one monitoring unit in order to ensure the required reliability. The latter checks whether the analog measurement signals produced by the sensor means are within specific limits. In addition, the control unit can initiate a self-test of the monitoring unit, in which the analog measurement signals are replaced by a test potential such that, for example an upper threshold value is exceeded and the monitoring unit can be checked for its serviceability at that time. The provision of the test potential requires an additional voltage source. On the one hand, this is costly, on the other hand it does not allow comprehensive checking of the serviceability of the monitoring unit.
The object of the invention is therefore to specify a measurement arrangement of the type referred to initially, which allows simple and nevertheless reliable checking of the measurement unit and in particular of the monitoring unit.
This object is achieved by the features of independent claim 1. In the measurement arrangement according to the invention, modification means are provided for specific amplification or attenuation of the analog measurement signal supplied as a test signal to the monitoring unit during the self-test.
The amplification or attenuation, as provided according to the invention, of the analog measurement signal during the self-test can be provided in a simple manner and thus at very low cost. In particular, the modification means according to the invention can be implemented by making use of component elements which are provided in any case in the measurement unit. For this purpose, the latter does need to be modified or upgraded slightly.
The serviceability of the monitoring unit can be checked more comprehensively by means of an appropriately amplified or attenuated analog measurement signal than by application of a test potential as is known from the prior art. The known method completely ignores dynamic processes. In contrast, the dynamics of the analog measurement signal are also included for self-testing of the monitoring unit in the measurement arrangement according to the invention.
Advantageous refinements of the measurement arrangement according to the invention result from the features of the claims which are dependent on claim 1.
In one advantageous variant, the modification means are designed for multistage or continuous amplification or attenuation of the analog measurement signal. This also results in more accurate checking of the serviceability of the monitoring unit. For example, this makes it possible accurately to determine the lower and/or upper threshold value from which the monitoring unit responds, and sends a fault message to the control unit, by means of successive setting of different attenuation or gain factors or by means of a selected time profile for the attenuation or gain factor. This allows an incipient malfunction, which at this stage is still not critical, of the monitoring unit to be identified at a very early stage, thus allowing countermeasures to be initiated more objectively and in particular also at an appropriate time.
Furthermore, it is preferably possible for the modification means to comprise a switchable-gain amplifier. This allows the level of the analog measurement signal to be influenced very easily and in a desired manner during the self-test. In particular, a resistor which can be connected or a resistor bank which can be connected can additionally be provided on an amplifier which is provided in any case, in order to vary the gain factor.
In another advantageous variant, the sensor means comprise an optical sine/cosine transmitter having at least one light source and the modification means comprise a light source drive unit for variable setting of the light intensity produced by the light source or sources. A sine/cosine transmitter such as this in particular has two optical sampling units which produce two approximately sinusoidal analog output signals with a phase offset of 90°. The sums of their squares have a constant value, which is governed by the light intensity or intensities of the one or possibly two light source or sources that is or are used. When this sum signal is evaluated, its level can be influenced without any problems via the light intensities which are predetermined on the input side. On the basis of the variation, which can be accomplished easily, of the transmission light intensity or intensities of the light source or sources, the monitoring unit thus specifically has a signal level applied to it which is so low or so high that, when the monitoring unit is operating correctly, it sends a fault message to the control unit.
It is also advantageous for the monitoring unit to be subdivided, with a part being arranged in the control unit. Instead of a single fault bit, the measurement unit can then transmit the signal level as determined during the self-test, via the digital data link, to the control unit. In the part of the monitoring unit arranged there, it is possible in particular to check, including the measurement information obtained by the evaluation unit, whether on the one hand, the monitoring unit is still serviceable and on the other hand, whether the instantaneous values of the analog measurement signal are within the permissible limits. The latter check can otherwise not be carried out during the time period of the self-test.
Further features, advantages and details of the invention will become evident from the following description of exemplary embodiments, with reference to the drawing, in which:
Mutually corresponding parts are provided with the same reference symbols in
The main components of the measurement arrangement 1 are a measurement unit 2 and a control unit 3, which can communicate with one another by means of a bidirectional digital data link 4. In this case, the data link 4 may be cable-based or configured on a wire-free basis. In addition to the actual data channel 5 it comprises in each case a transmitting/receiving module 6 and 7, respectively, on the measurement unit 2 and the control unit 3.
As sensor means, the measurement unit 2 contains a two-channel optical sine/cosine transmitter 8, whose light sources 9 and 10 are connected to a light source drive unit 11. Photoreceivers 12 and 13 of the sine/cosine transmitter 8 are connected to an evaluation unit 14 and to a monitoring unit 15. The light source drive unit 11, the evaluation unit 14 and the monitoring unit 15 each have a data link to the transmitting/receiving module 6.
The method of operation and particular advantages of the measurement arrangement 1 will be described in more detail in the following text.
The two light sources 9 and 10 produce optical sample signals L1 and L2, respectively, which are transmitted in the direction of a track 16, which is in the form of a periodic measurement scale. The track 16 is applied to the moving part, which is not illustrated in more detail, of the processing machine, whose instantaneous position is intended to be detected. The optical sample signals L1 and L2 are detected after reflection on or after passing through the track 16 by the photoreceivers 12 and 13, respectively and are converted to respective analog measurement signals A1 and A2. On the basis of the normal method of operation of the optical sine/cosine transmitter 8, the analog measurement signals A1 and A2 are each sinusoidal signals, which are offset in phase through 90° with respect to one another.
The analog measurement signals A1 and A2 are supplied to the evaluation unit 14, which digitizes them and also determines a digital measurement signal M, which contains measurement information about the instantaneous position of the track 16, and therefore of the moving part of the processing machine. The digital measurement signal M is transmitted via the data link 4 to the control unit 3.
Furthermore, the analog measurement signals A1 and A2 are also fed as test signals into the monitoring unit 15, which checks whether both measurement signals A1 and A2 are within normal and permissible limits. For example, a lower and an upper threshold value may be preset. If this threshold value check shows that the permissible range has been undershot or overshot by one of the two analog measurement signals A1 or A2 or by a combination signal derived from these two analog measurement signals A1 and A2, a digital fault message F is generated and sent via the data link 4 to the control unit 3. In particular, the digital fault message F may be a single fault bit.
In the exemplary embodiment shown in
sin2 x+cos2 x=1
this combination signal is a measure of the light intensities, provided on the input side, of the optical sample signals L1 and L2. These light intensities may be varied within certain limits by means of the light source drive unit 11. During normal operation, identical values which are predetermined at both light sources 9 and 10, are set for the light intensities of the optical sample signals L1 and L2.
The measurement unit 1 can be operated on request via the control unit 3 in a self-test mode. The serviceability of the monitoring unit 15 is checked during this self-test. For this purpose, the light source control unit 11, triggered by an appropriate control command from the control unit 13, sets the light intensities produced by the light sources 9 and 10 such that the combination signal checked in the monitoring unit 15 is below a lower threshold value or above an upper threshold value. If the monitoring unit 15 then does not transmit a fault message F to the control unit 3, the monitoring unit 15 is no longer operating correctly. The control unit 3 identifies this and initiates measures provided for a fault situation such as this.
In one alternative exemplary embodiment, instead of the fault message F which is in the form of a single bit, the level determined in the monitoring unit 15 is transmitted in digital form via the data link 4 to the control unit 3. In this alternative exemplary embodiment, the latter comprises in particular a part 17, which is illustrated by dashed lines in
The measurement arrangement 1 offers the further advantage that the light intensities of the optical sample signals L1 and L2 can be varied successively in order to check the lower and/or upper threshold value from which the monitoring unit 15 identifies a fault. If these threshold values vary over the course of time, this is identified at an early stage by means of the measurement arrangement 1 and the necessary steps can be initiated in good time.
In addition to a somewhat differently designed measurement unit 21, the measurement arrangement 18 once again contains the data link 4 and the control unit 3. In contrast to the measurement unit 2 in the measurement arrangement 1, a light source drive unit 22 for the measurement unit 21 cannot be influenced by the control unit 3—at least not for self-test purposes. The digital control command generated by the control unit 3 in order to initiate the self-test in contrast, in the measurement arrangement 18, influences the variable amplifiers 19 and 20, in particular their respectively variable gain factors. This operative connection is indicated in
The other components of the measurement unit 21 are unchanged from the measurement unit 2.
The variable amplifiers 19 and 20 can also be used to raise or lower the levels of the analog measurement signals A1 and A2 which are supplied as test signals to the monitoring unit 15 during the self-test, to such an extent that the lower and/or upper threshold values stored in the monitoring unit 15 are respectively undershot or overshot, and the fault message F is sent.
The variable amplifiers 19 and 20 can also be designed such that the respective gain factor can be varied in a plurality of steps or else continuously. As already described in conjunction with the measurement arrangement 1, this makes it possible to find out the level values from which the monitoring unit 15 will currently respond.
An alternative exemplary embodiment is likewise possible in the refinement of the measurement arrangement 18 shown in
The embodiment shown in
Both the measurement arrangement 1 and the measurement arrangement 2 are distinguished by very high reliability. This is achieved in particular by the checking of the monitoring unit 15 that is carried out during the self-test mode. Faults that occur thus can be reliably identified, and signaled to the control unit 3. Even in the case of particularly safety-relevant applications, there is therefore no need to provide redundant measured-value detection with two measurement units 2 and 21 operated in parallel.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 020 761.3 | May 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/055338 | 4/30/2008 | WO | 00 | 1/29/2009 |