This invention relates, in general, to input/output processing, and in particular, to measuring resource usage related to input/output processing.
In large computing systems, a measurement facility is often available that provides information about traffic through the input/output (I/O) infrastructure. Such information is useful for tuning program performance, load balancing, and for billing users based on resource usage.
As one particular example, in System z® machines offered by International Business Machines Corporation, utilities are provided to obtain information about traffic flowing through the I/O infrastructure, which is referred to as the channel subsystem. The channel subsystem provides a consistent interface for channel access across channel types and various I/O subsystem transports. This interface, referred to as the Start Subchannel Call instruction, is executed by firmware on behalf of the user. The firmware hides details of the physical channel from the user and is provided utilities, such as a measurement utility, to track resource usage.
With other I/O infrastructures, however, the details of the physical channel are exposed to the user and facilities provided by those infrastructures that hide the details are not available.
Certain I/O infrastructures, such as PCI Express, do not specify a standard interface for measuring subsystem activity. However, the ability to measure I/O traffic is a desired function. Therefore, in accordance with an aspect of the present invention, a measurement facility is provided for adapter functions, such as PCI functions.
The shortcomings of the prior art are overcome and advantages are provided through the provision of a computer program product for measuring resource usage in a computing environment. The computer program product includes a computer readable storage medium readable by a processing circuit and storing instructions for execution by the processing circuit for performing a method. The method includes, for instance, executing a Modify PCI Function Controls (MPFC) instruction including a function handle for identifying an adapter, the MPFC specifying a location in memory for tracking information; determining that an adapter function of the computing environment is being accessed via an instruction or requesting access of system memory coupled to the adapter function; tracking information specific to the adapter function, wherein the tracking information includes a count of determined accessing instructions or a count of determined requested accesses to memory, wherein the tracked information is on a per-adapter function basis; and storing the tracking information in the location in memory.
Methods and systems relating to one or more aspects of the present invention are also described and claimed herein. Further, services relating to one or more aspects of the present invention are also described and may be claimed herein.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
In accordance with an aspect of the present invention, a measurement facility is provided for capturing and presenting fine-grained usage information for an input/output (I/O) subsystem that includes adapters, such as PCI Express adapters. This information is useful for performance tuning, load balancing and usage-based charging, as examples. In one particular example, adapter specific I/O traffic is tracked on a per-adapter function basis and the results are dynamically presented to the user. For example, on a per-adapter function basis, adapter access instructions are tracked and direct memory access traffic is tallied. The access instructions are tracked by, for instance, firmware of a processor, and the direct memory access traffic is tallied by, for instance, hardware counters. The I/O subsystem dynamically presents the measurement values to the user by updating a control block at a user specified memory location. The measurements are device independent in that the types of devices (e.g., adapters) do not need to be known beforehand.
As used herein, the term adapter includes any type of adapter (e.g., storage adapter, network adapter, processing adapter, PCI adapter, cryptographic adapter, other type of input/output adapters, etc.). In one embodiment, an adapter includes one adapter function. However, in other embodiments, an adapter may include a plurality of adapter functions. One or more aspects of the present invention are applicable whether an adapter includes one adapter function or a plurality of adapter functions. Moreover, in the examples presented herein, adapter is used interchangeably with adapter function (e.g., PCI function) unless otherwise noted.
One embodiment of a computing environment to incorporate and use one or more aspects of the present invention is described with reference to
In one example, computing environment 100 includes one or more central processing units (CPUs) 102 coupled to a system memory 104 (a.k.a., main memory) via a memory controller 106. To access system memory 104, a central processing unit 102 issues a read or write request that includes an address used to access system memory. The address included in the request is typically not directly usable to access system memory, and therefore, it is translated to an address that is directly usable in accessing system memory. The address is translated via a translation mechanism (XLATE) 108. For example, the address is translated from a virtual address to a real or absolute address using, for instance, dynamic address translation (DAT).
The request, including the address (translated, if necessary), is received by memory controller 106. In one example, memory controller 106 is comprised of hardware and is used to arbitrate for access to the system memory and to maintain the memory's consistency. This arbitration is performed for requests received from CPUs 102, as well as for requests received from one or more adapters 110. Like the central processing units, the adapters issue requests to system memory 104 to gain access to the system memory.
In one example, adapter 110 is a Peripheral Component Interconnect (PCI) or PCI Express (PCIe) adapter that includes one or more PCI functions 111. A PCI function issues a request that is routed to an input/output hub 112 (e.g., a PCI hub) via one or more switches (e.g., PCIe switches) 114. In one example, the input/output hub is comprised of hardware, including one or more state machines, and is coupled to memory controller 106 via an I/O-to-memory bus 120.
The input/output hub includes, for instance, a root complex 116 that receives the request from a switch. The request includes an input/output address that is provided to an address translation and protection unit 118 which accesses information used for the request. As examples, the request may include an input/output address used to perform a direct memory access (DMA) operation or to request a message signaled interruption (MSI). Address translation and protection unit 118 accesses information used for the DMA or MSI request. As a particular example, for a DMA operation, information may be obtained to translate the address. The translated address is then forwarded to the memory controller to access system memory.
In one example, information used for the DMA or MSI request issued by an adapter function is obtained from a device table entry located in the I/O hub (e.g., in the address translation and protection unit). The device table entry includes information for the adapter function, and each adapter function has at least one device table entry associated therewith. For instance, there is one device table entry per address space assigned to the adapter function. For requests issued from adapter functions, a device table entry is located using a requestor ID (specifying, for instance, a bus number, device number and function number) provided in the request.
In addition to the adapters, and specifically the adapter functions, issuing requests, the adapters, particularly the adapter functions, can be accessed by processors 102. This access is via instructions issued by the processors. In this example, the instructions are specific to the I/O infrastructure. That is, since the I/O infrastructure is based on PCI or PCIe, the instructions are PCI instructions. Example PCI instructions include PCI Load, PCI Store, PCI Store Block, PCI Modify, and PCI Refresh Translations, to name a few. Although, in this example, the I/O infrastructure and instructions are based on PCI, in other embodiments, other infrastructures and corresponding instructions may be used.
For requests that are issued by processors to the adapter functions, a function table entry associated with the adapter function is referenced. The function table entry, which is stored in secure memory and located using a function handle, includes characteristics of the adapter function. In one example, the function handle includes an enable indicator indicating whether the handle is enabled; a function number that identifies the function (this is a static identifier and may be used as an index into the function table); and an instance number specifying the particular instance of this function handle.
In accordance with an aspect of the present invention, a capability is provided in which on a per-function basis (adapter function and function are used interchangeably herein) the execution of one or more PCI specific instructions are automatically counted, and the amount of data transferred to and from system memory by the adapter function is measured. Further, a capability is provided for periodically dynamically updating system memory with the current measurement values.
One embodiment of the logic to track PCI access instructions is described with reference to
Referring to
Thereafter, a determination is made as to whether execution of the main body of the instruction was successful, INQUIRY 202. This determination is made by, for example, checking status associated with the instruction (e.g., returned by the I/O hub). If execution was not successful, then instruction execution completes, STEP 204, and tracking is not provided, in this embodiment, for that instruction. (In other embodiments, failed instructions may also be counted.) However, if execution is successful, then a further determination is made as to whether measurement is enabled for this adapter function, INQUIRY 206. That is, in one example, measurement can be enabled on a per-adapter function basis by setting a measurement enable indicator in a control block associated with the adapter function. If measurement is not enabled, then once again instruction execution completes without any tracking, STEP 204.
However, if measurement is enabled for the function, then an instruction usage counter is retrieved for the function from secure memory, STEP 208. For instance, in one embodiment, there are a plurality of counters for each function. As shown in
Returning to
In addition to instruction tracking, in accordance with an aspect of the present invention, DMA operations are also tracked. In particular, data transfer amounts per function are tallied. Typically, DMA operations are not visible to the CPU using the previously-described instruction counting mechanisms, so an alternate technique is used. For instance, as shown in
Further details regarding the tracking of DMA operations are described with reference to
Based on the type of request, a counter for that type and for this function is selected and updated, STEP 458. In one example, this occurs concurrent with the DMA processing. This completes the tracking of the DMA request.
In addition to the above, in accordance with an aspect of the present invention, there is a measurement control block in system memory for each PCI function, which is dynamically updated periodically (e.g., every four seconds). For instance, the firmware automatically updates one or more control blocks for one or more adapter functions with a periodic sampling of measurement values for the functions. For instance, the firmware periodically reads the counters from the I/O hub and adds them to the accumulated count in the measurement control block.
One embodiment of a measurement control block 500 is depicted in
Again, each of the fields in the measurement block is dynamically updated at specified time intervals. The sample count field is incremented, and each of the other fields is updated by adding or replacing the value in the control block with its corresponding counter in secure memory.
In one particular example, a PCI function may have one or more address spaces defined for it, and therefore, the root complex would include a pair of read/write counters for each address space of the function. Similarly, the measurement block of that PCI function includes read/write pairs of counters for each of the address spaces.
To enable the measurement facility for a function, in one example, the operating system executes a measurement registration instruction referred to as a Modify PCI Function Controls instruction. Execution of this instruction is used to inform the I/O subsystem about the address in system memory for the measurement control block and also the key used to access that location. In one particular example, this instruction may also be tracked, and therefore, there would be a field in the measurement control block for this instruction, as well as a counter in secure memory (see, e.g., modify function counter 316).
Further details regarding the Modify PCI Function Controls instruction are described herein. Referring to
In one embodiment, Field 1 designates a general register that includes various information. As shown in
In one embodiment, the function handle includes, for instance, an enable indicator indicating whether the handle is enabled, a function number that identifies an adapter function (this is a static identifier and may be used to index into a function table); and an instance number specifying the particular instance of this function handle. There is one function handle for each adapter function, and it is used to locate a function table entry (FTE) within the function table. Each function table entry includes operational parameters and/or other information associated with its adapter function. As one example, a function table entry includes:
In one example, the busy indicator, permanent error state indicator, and recovery initiated indicator are set based on monitoring performed by the firmware. Further, the permission indicator is set, for instance, based on policy; and the BAR information is based on configuration information discovered during a bus walk by the processor (e.g., firmware of the processor). Other fields may be set based on configuration, initialization, and/or events. In other embodiments, the function table entry may include more, less or different information. The information included may depend on the operations supported by or enabled for the adapter function.
Referring to
Further details regarding a function information block (FIB) are described with reference to
The function information block designated in the Modify PCI Function Controls instruction is used to modify a selected device table entry, a function table entry and/or other firmware controls associated with the adapter function designated in the instruction. By modifying the device table entry, function table entry and/or other firmware controls, certain services are provided for the adapter. These services include, for instance, adapter interruptions; address translations; reset error state; reset load/store blocked; set function measurement parameters; and set interception control.
One embodiment of the logic associated with the Modify PCI Function Controls instruction is described with reference to
In one example, the operating system provides the following operands to the instruction (e.g., in one or more registers designated by the instruction): the PCI function handle; the DMA address space identifier; an operation control; and an address of the function information block.
Referring to
Otherwise, a determination is made as to whether one or more of the operands are aligned, INQUIRY 708. For instance, a determination is made as to whether the address of the function information block is on a double word boundary. In one example, this is optional. If the operands are not aligned, then an exception condition is provided, STEP 710. Otherwise, a determination is made as to whether the function information block is accessible, INQUIRY 712. If not, then an exception condition is provided, STEP 714. Otherwise, a determination is made as to whether the handle provided in the operands of the Modify PCI Function Controls instruction is enabled, INQUIRY 716. In one example, this determination is made by checking an enable indicator in the handle. If the handle is not enabled, then an exception condition is provided, STEP 718.
If the handle is enabled, then the handle is used to locate a function table entry, STEP 720. That is, at least a portion of the handle is used as an index into the function table to locate the function table entry corresponding to the adapter function for which operational parameters are to be established.
A determination is made as to whether the function table entry was found, INQUIRY 722. If not, then an exception condition is provided, STEP 724. Otherwise, if the configuration issuing the instruction is a guest, INQUIRY 726, then an exception condition (e.g., interception to the host) is provided, STEP 728. This inquiry may be ignored if the configuration is not a guest or other authorizations may be checked, if designated.
A determination is then made as to whether the function is enabled, INQUIRY 730. In one example, this determination is made by checking an enable indicator in the function table entry. If it is not enabled, then an exception condition is provided, STEP 732.
If the function is enabled, then a determination is made as to whether recovery is active, INQUIRY 734. If recovery is active as determined by a recovery indicator in the function table entry, then an exception condition is provided, STEP 736. However, if recovery is not active, then a further determination is made as to whether the function is busy, INQUIRY 738. This determination is made by checking the busy indicator in the function table entry. If the function is busy, then a busy condition is provided, STEP 740. With the busy condition, the instruction can be retried, instead of dropped.
If the function is not busy, then a further determination is made as to whether the function information block format is valid, INQUIRY 742. For instance, the format field of the FIB is checked to determine if this format is supported by the system. If it is invalid, then an exception condition is provided, STEP 744. If the function information block format is valid, then a further determination is made as to whether the operation control specified in the operands of the instruction is valid, INQUIRY 746. That is, is the operation control one of the specified operation controls for this instruction. If it is invalid, then an exception condition is provided, STEP 748. However, if the operation control is valid, then processing continues with the specific operation control being specified.
One operation that may be specified by the operation control is a set PCI function measurement parameters operation used for maintaining measurements. With this operation, the PCI function parameters relevant to PCI function measurement are set from the function information block. If the function measurement block address field contains a non-zero address, then PCI function measurement is enabled. However, if the function measurement block address field contains zeros, then PCI function measurement is disabled. In one example, the operands for this operation obtained from the function information block include the function measurement block address and function measurement block key. Implied operands include the number of DMA address spaces, which is obtained from the function table entry.
One embodiment of the logic associated with this operation is described with reference to
Returning to INQUIRY 800, if the function measurement block address is not zero, then a further determination is made as to whether the function measurement block for all device table entries spans a 4 k boundary, INQUIRY 806. In one example, 4 k block spanning is determined by adding the function measurement block address, fixed function measurement block size plus DMA address space specific extensions for each DMA address space. If the function measurement block spans a 4K boundary, then an exception condition is provided, STEP 808. Otherwise, the function measurement parameters in the function table entry (e.g., FMBA and FMBK) are set from the function measurement block address and function measurement block key parameters of the function information block, STEP 812. Further, the DMA counters in the I/O hub are cleared and enabled, and measurement is enabled.
Additionally, further details regarding PCI Load, PCI Store and PCI Store Block are provided.
Referring initially to
In one example, Field 1 designates a general register, and as depicted in
In one embodiment, Field 2 designates a pair of general registers that include various information. As shown in
In one embodiment, the bytes loaded from the adapter function are to be contained within an integral boundary in the adapter function's designated PCI address space. When the address space field designates a memory address space, the integral boundary size is, for instance, a double word. When the address space field designates an I/O address space or a configuration address space, the integral boundary size is, for instance, a word.
One embodiment of the logic associated with a PCI Load instruction is described with reference to
To issue the instruction, the operating system provides the following operands to the instruction (e.g., in one or more registers designated by the instruction): the PCI function handle, the PCI address space (PCIAS), the offset into the PCI address space, and the length of the data to be loaded. Upon successful completion of the PCI Load instruction, the data is loaded in the location (e.g., register) designated by the instruction.
Referring to
If the handle is enabled, then the handle is used to locate a function table entry, STEP 1012. That is, at least a portion of the handle is used as an index into the function table to locate the function table entry corresponding to the adapter function from which data is to be loaded.
Thereafter, if the configuration issuing the instruction is a guest, a determination is made as to whether the function is configured for use by a guest, INQUIRY 1014. If it is not authorized, then an exception condition is provided, STEP 1016. This inquiry may be ignored if the configuration is not a guest or other authorizations may be checked, if designated.
A determination is then made as to whether the function is enabled, INQUIRY 1018. In one example, this determination is made by checking an enable indicator in the function table entry. If it is not enabled, then an exception condition is provided, STEP 1020.
If the function is enabled, then a determination is made as to whether the address space is valid, INQUIRY 1022. For instance, is the specified address space a designated address space of the adapter function and one that is appropriate for this instruction. If the address space is invalid, then an exception condition is provided, STEP 1024. Otherwise, a determination is made as to whether load/store is blocked, INQUIRY 1026. In one example, this determination is made by checking the status indicator in the function table entry. If load/store is blocked, then an exception condition is provided, STEP 1028.
However, if load/store is not blocked, a determination is made as to whether recovery is active, INQUIRY 1030. In one example, this determination is made by checking the recovery initiated indicator in the function table entry. If recovery is active, then an exception condition is provided, STEP 1032. Otherwise, a determination is made as to whether the function is busy, INQUIRY 1034. This determination is made by checking the busy indicator in the function table entry. If the function is busy, then a busy condition is provided, STEP 1036. With a busy condition, the instruction can be retried, instead of dropped.
If the function is not busy, then a further determination is made as to whether the offset specified in the instruction is valid, INQUIRY 1038. That is, is the offset in combination with the length of the operation within the base and length of the address space, as specified in the function table entry. If not, then an exception condition is provided, STEP 1040. However, if the offset is valid, then a determination is made as to whether the length is valid, INQUIRY 1042. That is, subject to the address space type, offset within the address space, and an integral boundary size is the length valid. If not, then an exception condition is provided, STEP 1044. Otherwise, processing continues with the load instruction. (In one embodiment, the firmware performs the above checks.)
Continuing with
For example, the firmware obtains the requestor ID from the function table entry pointed to by the function handle provided in the instruction operands. Further, the firmware determines based on information in the function table entry (e.g., the internal routing information) the hub to receive this request. That is, an environment may have one or more hubs and the firmware determines the hub coupled to the adapter function. It then forwards the request to the hub. The hub generates a configuration read request packet that flows out on the PCI bus to the adapter function identified by the RID in the function table entry. The configuration read request includes the RID and offset (i.e., data address) that are used to fetch the data, as described below.
Returning to INQUIRY 1050, if the designated address space is not a configuration space, then once again the firmware performs various processing to provide the request to the hub, STEP 1054. The firmware uses the handle to select a function table entry and from that entry it obtains information to locate the appropriate hub. It also calculates a data address to be used in the load operation. This address is calculated by adding the BAR starting address (with the BAR being that associated with the address space identifier provided in the instruction) obtained from the function table entry to the offset provided in the instruction. This calculated data address is provided to the hub. The hub then takes that address and includes it in a request packet, such as a DMA read request packet, that flows out over the PCI bus to the adapter function.
Responsive to receiving the request either via STEP 1052 or STEP 1054, the adapter function fetches the requested data from the specified location (i.e., at the data address) and returns that data in a response to the request, STEP 1056. The response is forwarded from the adapter function to the I/O hub. Responsive to receiving the response, the hub forwards the response to the initiating processor. The initiating processor then takes the data from the response packet and loads it in the designated location specified in the instruction (e.g., field 1). The PCI Load operation concludes with an indication of success (e.g., setting a condition code of zero).
In addition to a load instruction that retrieves data from an adapter function and stores it in a designated location, another instruction that may be executed is a store instruction. The store instruction stores data at a specified location in the adapter function. One embodiment of a PCI Store instruction is described with reference to
In one example, Field 1 designates a general register, and as depicted in
In one embodiment, Field 2 designates a pair of general registers that include various information. As shown in
On embodiment of the logic associated with a PCI Store instruction is described with reference to
To issue the instruction, the operating system provides the following operands to the instruction (e.g., in one or more registers designated by the instruction): the PCI function handle, the PCI address space (PCIAS), the offset into the PCI address space, the length of the data to be stored, and a pointer to the data to be stored. Upon successful completion of the PCI Store instruction, the data is stored in the location designated by the instruction.
Referring to
If the handle is enabled, then the handle is used to locate a function table entry, STEP 1212. That is, at least a portion of the handle is used as an index into the function table to locate the function table entry corresponding to the adapter function at which data is to be stored.
Thereafter, if the configuration issuing the instruction is a guest, a determination is made as to whether the function is configured for use by a guest, INQUIRY 1214. If it is not authorized, then an exception condition is provided, STEP 1216. This inquiry may be ignored if the configuration is not a guest or other authorizations may be checked, if designated.
A determination is then made as to whether the function is enabled, INQUIRY 1218. In one example, this determination is made by checking an enable indicator in the function table entry. If it is not enabled, then an exception condition is provided, STEP 1220.
If the function is enabled, then a determination is made as to whether the address space is valid, INQUIRY 1222. For instance, is the specified address space a designated address space of the adapter function and one that is appropriate for this instruction. If the address space is invalid, then an exception condition is provided, STEP 1224. Otherwise, a determination is made as to whether load/store is blocked, INQUIRY 1226. In one example, this determination is made by checking the status indicator in the function table entry. If load/store is blocked, then an exception condition is provided, STEP 1228.
However, if the load/store is not blocked, a determination is made as to whether recovery is active, INQUIRY 1230. In one example, this determination is made by checking the recovery initiated indicator in the function table entry. If recovery is active, then an exception condition is provided, STEP 1232. Otherwise, a determination is made as to whether the function is busy, INQUIRY 1234. This determination is made by checking the busy indicator in the function table entry. If the function is busy, then a busy condition is provided, STEP 1236. With a busy condition, the instruction can be retried, instead of dropped.
If the function is not busy, then a further determination is made as to whether the offset specified in the instruction is valid, INQUIRY 1238. That is, is the offset in combination with the length of the operation within the base and length of the address space, as specified in the function table entry. If not, then an exception condition is provided, STEP 1240. However, if the offset is valid, then a determination is made as to whether the length is valid, INQUIRY 1242. That is, subject to the address space type, offset within the address space, and an integral boundary size is the length valid. If not, then an exception condition is provided, STEP 1244. Otherwise, processing continues with the store instruction. (In one embodiment, the firmware performs the above checks.)
Continuing with
For example, the firmware obtains the requestor id from the function table entry pointed to by the function handle provided in the instruction operands. Further, the firmware determines based on information in the function table entry (e.g., the internal routing information) the hub to receive this request. That is, an environment may have one or more hubs and the firmware determines the hub coupled to the adapter function. It then forwards the request to the hub. The hub generates a configuration write request packet that flows out on the PCI bus to the adapter function identified by the RID in the function table entry. The configuration write request includes the RID and offset (i.e., data address) that are used to store the data, as described below.
Returning to INQUIRY 1250, if the designated address space is not a configuration space, then once again the firmware performs various processing to provide the request to the hub, STEP 1254. The firmware uses the handle to select a function table entry and from that entry it obtains information to locate the appropriate hub. It also calculates a data address to be used in the store operation. This address is calculated by adding the BAR starting address obtained from the function table entry to the offset provided in the instruction. This calculated data address is provided to the hub. The hub then takes that address and includes it in a request packet, such as a DMA write request packet, that flows out over the PCI bus to the adapter function.
Responsive to receiving the request either via STEP 1252 or STEP 1254, the adapter function stores the requested data at the specified location (i.e., at the data address), STEP 1256. The PCI Store operation concludes with an indication of success (e.g., setting a condition code of zero).
In addition to the load and store instructions, which typically load or store a maximum of, e.g., 8 bytes, another instruction that may be executed is a store block instruction. The store block instruction stores larger blocks of data (e.g., 16, 32, 64, 128 or 256 bytes) at a specified location in the adapter function; the block sizes are not necessarily limited to powers of two in size. In one example, the specified location is in a memory space of the adapter function (not an I/O or configuration space).
One embodiment of a PCI Store Block instruction is described with reference to
In one embodiment, Field 1 designates a general register that includes various information. As shown in
In one example, Field 2 designates a general register, and as depicted in
In one example, Field 3, as depicted in
One embodiment of the logic associated with a PCI Store Block instruction is described with reference to
To issue the instruction, the operating system provides the following operands to the instruction (e.g., in one or more registers designated by the instruction): the PCI function handle, the PCI address space (PCIAS), the offset into the PCI address space, the length of the data to be stored, and a pointer to the data to be stored. The pointer operand may comprise both a register and a signed or unsigned displacement. Upon successful completion of the PCI Store Block instruction, the data is stored in the location in the adapter designated by the instruction.
Referring to
If the handle is enabled, then the handle is used to locate a function table entry, STEP 1412. That is, at least a portion of the handle is used as an index into the function table to locate the function table entry corresponding to the adapter function at which data is to be stored.
Thereafter, if the configuration issuing the instruction is a guest, a determination is made as to whether the function is configured for use by a guest, INQUIRY 1414. If it is not authorized, then an exception condition is provided, STEP 1416. This inquiry may be ignored if the configuration is not a guest or other authorizations may be checked, if designated.
A determination is then made as to whether the function is enabled, INQUIRY 1418. In one example, this determination is made by checking an enable indicator in the function table entry. If it is not enabled, then an exception condition is provided, STEP 1420.
If the function is enabled, then a determination is made as to whether the address space is valid, INQUIRY 1422. For instance, is the specified address space a designated address space of the adapter function and one that is appropriate for this instruction (i.e., a memory space). If the address space is invalid, then an exception condition is provided, STEP 1424. Otherwise, a determination is made as to whether load/store is blocked, INQUIRY 1426. In one example, this determination is made by checking the status indicator in the function table entry. If load/store is blocked, then an exception condition is provided, STEP 1428.
However, if the load/store is not blocked, a determination is made as to whether recovery is active, INQUIRY 1430. In one example, this determination is made by checking the recovery initiated indicator in the function table entry. If recovery is active, then an exception condition is provided, STEP 1432. Otherwise, a determination is made as to whether the function is busy, INQUIRY 1434. This determination is made by checking the busy indicator in the function table entry. If the function is busy, then a busy condition is provided, STEP 1436. With a busy condition, the instruction can be retried, instead of dropped.
If the function is not busy, then a further determination is made as to whether the offset specified in the instruction is valid, INQUIRY 1438. That is, is the offset in combination with the length of the operation within the base and length of the address space, as specified in the function table entry. If not, then an exception condition is provided, STEP 1440. However, if the offset is valid, then a determination is made as to whether the length is valid, INQUIRY 1442. That is, subject to the address space type, offset within the address space, and an integral boundary size is the length valid. If not, then an exception condition is provided, STEP 1444. Otherwise, processing continues with the store block instruction. (In one embodiment, the firmware performs the above checks.)
Continuing with
For example, the firmware uses the handle to select a function table entry and from that entry it obtains information to locate the appropriate hub. It also calculates a data address to be used in the store block operation. This address is calculated by adding the BAR starting address (with the BAR being identified by the address space identifier) obtained from the function table entry to the offset provided in the instruction. This calculated data address is provided to the hub. In addition, the data referenced by the address provided in the instruction is fetched from system memory and provided to the I/O hub. The hub then takes that address and data and includes it in a request packet, such as a DMA write request packet, that flows out over the PCI bus to the adapter function.
Responsive to receiving the request, the adapter function stores the requested data at the specified location (i.e., at the data address), STEP 1456. The PCI Store Block operation concludes with an indication of success (e.g., setting a condition code of zero).
Described in detail above is a measurement facility in which PCI specific I/O traffic is tracked on a per function basis and the results are dynamically presented to the user (e.g., operating system, device driver of the operating system, other program, etc.). Specifically, on a per function basis, access instructions are tracked and direct memory access traffic is tallied. The measurements are device independent in which the types of devices do not need to be known beforehand.
The measurement facility provided herein enables tracking of resource usage in I/O subsystems that provide instructions to allow a program (e.g., operating system) direct access to the adapter functions. Resource usage is tracked without using debug tools and without having the operating system or the application instrumenting code to record such usage. The facility provided herein is integrated into the processor, thus being common to all operating systems and enabling the results to be available dynamically. Similarly, for measuring data transfer amounts, the capability is integrated into the I/O infrastructure with the results being available dynamically.
In one example, the measurement facility is enabled on a per function basis. Further, dynamically, the measurement values are pushed into user space on a per function basis, instead of having the user programs query for such information.
In the embodiments described herein, the adapters are PCI adapters. PCI, as used herein, refers to any adapters implemented according to a PCI-based specification as defined by the Peripheral Component Interconnect Special Interest Group (PCI-SIG), including but not limited to, PCI or PCIe. In one particular example, the Peripheral Component Interconnect Express (PCIe) is a component level interconnect standard that defines a bi-directional communication protocol for transactions between I/O adapters and host systems. PCIe communications are encapsulated in packets according to the PCIe standard for transmission on a PCIe bus. Transactions originating at I/O adapters and ending at host systems are referred to as upbound transactions. Transactions originating at host systems and terminating at I/O adapters are referred to as downbound transactions. The PCIe topology is based on point-to-point unidirectional links that are paired (e.g., one upbound link, one downbound link) to form the PCIe bus. The PCIe standard is maintained and published by the PCI-SIG.
Other applications filed on the same day include: U.S. Ser. No. 12/821,170, filed Jun. 23, 2010, entitled “Translation Of Input/Output Addresses To Memory Addresses,” Craddock et al.; U.S. Ser. No. 12/821,171, filed Jun. 23, 2010, entitled “Runtime Determination Of Translation Formats For Adapter Functions,” Craddock et al.; U.S. Ser. No. 12/821,172, filed Jun. 23, 2010, entitled “Resizing Address Spaces Concurrent To Accessing The Address Spaces,” Craddock et al.; U.S. Ser. No. 12/821,174, filed Jun. 23, 2010, entitled “Multiple Address Spaces Per Adapter,” Craddock et al.; U.S. Ser. No. 12/821,175, filed Jun. 23, 2010, entitled “Converting A Message Signaled Interruption Into An I/O Adapter Event Notification,” Craddock et al.; U.S. Ser. No. 12/821,177, filed Jun. 23, 2010, entitled “Converting A Message Signaled Interruption Into An I/O Adapter Event Notification To A Guest Operating System,” Brice et al.; U.S. Ser. No. 12/821,178, filed Jun. 23, 2010, entitled “Identification Of Types Of Sources Of Adapter Interruptions,” Craddock et al.; U.S. Ser. No. 12/821,179, filed Jun. 23, 2010, entitled “Controlling A Rate At Which Adapter Interruption Requests Are Processed,” Belmar et al.; U.S. Ser. No. 12/821,181, filed Jun. 23, 2010, entitled “Controlling The Selectively Setting Of Operational Parameters For An Adapter,” Craddock et al.; U.S. Ser. No. 12/821,182, filed Jun. 23, 2010, entitled “Load Instruction for Communicating with Adapters,” Craddock et al.; U.S. Ser. No. 12/821,184, filed Jun. 23, 2010, entitled “Controlling Access By A Configuration To An Adapter Function,” Craddock et al.; U.S. Ser. No. 12/821,185, filed Jun. 23, 2010, entitled “Discovery By Operating System Of Information Relating To Adapter Functions Accessible To The Operating System,” Coneski et al.; U.S. Ser. No. 12/821,187, filed Jun. 23, 2010, entitled “Enable/Disable Adapters Of A Computing Environment,” Coneski et al.; U.S. Ser. No. 12/821,190, filed Jun. 23, 2010, entitled “Guest Access To Address Spaces Of Adapter,” Craddock et al.; U.S. Ser. No. 12/821,191, filed Jun. 23, 2010, entitled “Managing Processing Associated With Hardware Events,” Coneski et al.; U.S. Ser. No. 12/821,192, filed Jun. 23, 2010, entitled “Operating System Notification Of Actions To Be Taken Responsive To Adapter Events,” Craddock et al.; U.S. Ser. No. 12/821,194, filed Jun. 23, 2010, entitled “Store/Store Block Instructions for Communicating with Adapters,” Craddock et al.; U.S. Ser. No. 12/821,224, filed Jun. 21, 2010, entitled “Associating Input/Output Device Requests With Memory Associated With A Logical Partition,” Craddock et al.; U.S. Ser. No. 12/821,247, filed Jun. 23, 2010, entitled “Scalable I/O Adapter Function Level Error Detection, Isolation, And Reporting,” Craddock et al.; U.S. Ser. No. 12/821,256, filed Jun. 23, 2010, entitled “Switch Failover Control In A Multiprocessor Computer System,” Bayer et al.; U.S. Ser. No. 12/821,242, filed Jun. 23, 2010, entitled “A System And Method For Downbound I/O Expansion Request And Response Processing In A PCIe Architecture,” Gregg et al.; U.S. Ser. No. 12/821,243, filed Jun. 23, 2010, entitled “Upbound Input/Output Expansion Request And Response Processing In A PCIe Architecture,” Gregg et al.; U.S. Ser. No. 12/821,245, filed Jun. 23, 2010, entitled “A System And Method For Routing I/O Expansion Requests And Responses In A PCIe Architecture,” Lais et al.; U.S. Ser. No. 12/821,239, filed Jun. 23, 2010, entitled “Input/Output (I/O) Expansion Response Processing In A Peripheral Component Interconnect Express (PCIe) Environment,” Gregg et al.; U.S. Ser. No. 12/821,271, filed Jun. 23, 2010 entitled “Memory Error Isolation And Recovery In A Multiprocessor Computer System,” Check et al.; and U.S. Ser. No. 12/821,248, filed Jun. 23, 2010, entitled “Connected Input/Output Hub Management,” Bayer et al., each of which is hereby incorporated herein by reference in its entirety.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system”. Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Referring now to
Program code embodied on a computer readable medium may be transmitted using an appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language, such as Java, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language, assembler or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
In addition to the above, one or more aspects of the present invention may be provided, offered, deployed, managed, serviced, etc. by a service provider who offers management of customer environments. For instance, the service provider can create, maintain, support, etc. computer code and/or a computer infrastructure that performs one or more aspects of the present invention for one or more customers. In return, the service provider may receive payment from the customer under a subscription and/or fee agreement, as examples. Additionally or alternatively, the service provider may receive payment from the sale of advertising content to one or more third parties.
In one aspect of the present invention, an application may be deployed for performing one or more aspects of the present invention. As one example, the deploying of an application comprises providing computer infrastructure operable to perform one or more aspects of the present invention.
As a further aspect of the present invention, a computing infrastructure may be deployed comprising integrating computer readable code into a computing system, in which the code in combination with the computing system is capable of performing one or more aspects of the present invention.
As yet a further aspect of the present invention, a process for integrating computing infrastructure comprising integrating computer readable code into a computer system may be provided. The computer system comprises a computer readable medium, in which the computer medium comprises one or more aspects of the present invention. The code in combination with the computer system is capable of performing one or more aspects of the present invention.
Although various embodiments are described above, these are only examples. For example, computing environments of other architectures can incorporate and use one or more aspects of the present invention. As examples, servers other than System z® servers, such as Power Systems servers or other servers offered by International Business Machines Corporation, or servers of other companies can include, use and/or benefit from one or more aspects of the present invention. Further, although in the example herein, the adapters and PCI hub are considered a part of the server, in other embodiments, they do not have to necessarily be considered a part of the server, but can simply be considered as being coupled to system memory and/or other components of a computing environment. The computing environment need not be a server. Further, in other examples, the computing environment may be logically partitioned, and in such example, the counters are associated with a particular logical partition. Yet further, although the adapters are PCI based, one or more aspects of the present invention are usable with other adapters or other I/O components. Adapter and PCI adapter are just examples. Moreover, there may be more, less or different information tracked. Many variations are possible.
Further, other types of computing environments can benefit from one or more aspects of the present invention. As an example, a data processing system suitable for storing and/or executing program code is usable that includes at least two processors coupled directly or indirectly to memory elements through a system bus. The memory elements include, for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.
Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be coupled to the system either directly or through intervening I/O controllers. Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modems, and Ethernet cards are just a few of the available types of network adapters.
Referring to
As noted, a computer system includes information in local (or main) storage, as well as addressing, protection, and reference and change recording. Some aspects of addressing include the format of addresses, the concept of address spaces, the various types of addresses, and the manner in which one type of address is translated to another type of address. Some of main storage includes permanently assigned storage locations. Main storage provides the system with directly addressable fast-access storage of data. Both data and programs are to be loaded into main storage (from input devices) before they can be processed.
Main storage may include one or more smaller, faster-access buffer storages, sometimes called caches. A cache is typically physically associated with a CPU or an I/O processor. The effects, except on performance, of the physical construction and use of distinct storage media are generally not observable by the program.
Separate caches may be maintained for instructions and for data operands. Information within a cache is maintained in contiguous bytes on an integral boundary called a cache block or cache line (or line, for short). A model may provide an EXTRACT CACHE ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which effects the prefetching of storage into the data or instruction cache or the releasing of data from the cache.
Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits. An eight-bit unit is called a byte, which is the basic building block of all information formats. Each byte location in storage is identified by a unique nonnegative integer, which is the address of that byte location or, simply, the byte address. Adjacent byte locations have consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence. Addresses are unsigned binary integers and are 24, 31, or 64 bits.
Information is transmitted between storage and a CPU or a channel subsystem one byte, or a group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture®, a group of bytes in storage is addressed by the leftmost byte of the group. The number of bytes in the group is either implied or explicitly specified by the operation to be performed. When used in a CPU operation, a group of bytes is called a field. Within each group of bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right sequence. In the z/Architecture®, the leftmost bits are sometimes referred to as the “high-order” bits and the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however. Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, e.g., the z/Architecture®). The bits in an address may be numbered 8-31 or 40-63 for 24-bit addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit addresses. Within any other fixed-length format of multiple bytes, the bits making up the format are consecutively numbered starting from 0. For purposes of error detection, and in preferably for correction, one or more check bits may be transmitted with each byte or with a group of bytes. Such check bits are generated automatically by the machine and cannot be directly controlled by the program. Storage capacities are expressed in number of bytes. When the length of a storage-operand field is implied by the operation code of an instruction, the field is said to have a fixed length, which can be one, two, four, eight, or sixteen bytes. Larger fields may be implied for some instructions. When the length of a storage-operand field is not implied but is stated explicitly, the field is said to have a variable length. Variable-length operands can vary in length by increments of one byte (or with some instructions, in multiples of two bytes or other multiples). When information is placed in storage, the contents of only those byte locations are replaced that are included in the designated field, even though the width of the physical path to storage may be greater than the length of the field being stored.
Certain units of information are to be on an integral boundary in storage. A boundary is called integral for a unit of information when its storage address is a multiple of the length of the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytes on an integral boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is the basic building block of instructions. A word is a group of four consecutive bytes on a four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When storage addresses designate halfwords, words, doublewords, and quadwords, the binary representation of the address contains one, two, three, or four rightmost zero bits, respectively. Instructions are to be on two-byte integral boundaries. The storage operands of most instructions do not have boundary-alignment requirements.
On devices that implement separate caches for instructions and data operands, a significant delay may be experienced if the program stores into a cache line from which instructions are subsequently fetched, regardless of whether the store alters the instructions that are subsequently fetched.
In one embodiment, the invention may be practiced by software (sometimes referred to licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of which would be consistent with the present invention). Referring to
The software program code includes an operating system which controls the function and interaction of the various computer components and one or more application programs. Program code is normally paged from storage media device 5011 to the relatively higher-speed computer storage 5002 where it is available for processing by processor 5001. The techniques and methods for embodying software program code in memory, on physical media, and/or distributing software code via networks are well known and will not be further discussed herein. Program code, when created and stored on a tangible medium (including but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a “computer program product”. The computer program product medium is typically readable by a processing circuit preferably in a computer system for execution by the processing circuit.
The system 5021 may communicate with other computers or networks of computers by way of a network adapter capable of communicating 5028 with a network 5029. Example network adapters are communications channels, token ring, Ethernet or modems. Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD (cellular digital packet data) card. The system 5021 may be associated with such other computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system 5021 can be a client in a client/server arrangement with another computer, etc. All of these configurations, as well as the appropriate communications hardware and software, are known in the art.
Still referring to
Referring concurrently to
Alternatively, the programming code may be embodied in the memory 5025, and accessed by the processor 5026 using the processor bus. Such programming code includes an operating system which controls the function and interaction of the various computer components and one or more application programs 5032. Program code is normally paged from storage media 5027 to high-speed memory 5025 where it is available for processing by the processor 5026. The techniques and methods for embodying software programming code in memory, on physical media, and/or distributing software code via networks are well known and will not be further discussed herein. Program code, when created and stored on a tangible medium (including but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a “computer program product”. The computer program product medium is typically readable by a processing circuit preferably in a computer system for execution by the processing circuit.
The cache that is most readily available to the processor (normally faster and smaller than other caches of the processor) is the lowest (L1 or level one) cache and main store (main memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often divided into an instruction cache (I-Cache) holding machine instructions to be executed and a data cache (D-Cache) holding data operands.
Referring to
A program counter (instruction counter) 5061 keeps track of the address of the current instruction to be executed. A program counter in a z/Architecture® processor is 64 bits and can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is typically embodied in a PSW (program status word) of a computer such that it persists during context switching. Thus, a program in progress, having a program counter value, may be interrupted by, for example, the operating system (context switch from the program environment to the operating system environment). The PSW of the program maintains the program counter value while the program is not active, and the program counter (in the PSW) of the operating system is used while the operating system is executing. Typically, the program counter is incremented by an amount equal to the number of bytes of the current instruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed length while CISC (Complex Instruction Set Computing) instructions are typically variable length. Instructions of the IBM z/Architecture® are CISC instructions having a length of 2, 4 or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a branch taken operation of a branch instruction for example. In a context switch operation, the current program counter value is saved in the program status word along with other state information about the program being executed (such as condition codes), and a new program counter value is loaded pointing to an instruction of a new program module to be executed. A branch taken operation is performed in order to permit the program to make decisions or loop within the program by loading the result of the branch instruction into the program counter 5061.
Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the processor 5026. The fetch unit either fetches “next sequential instructions”, target instructions of branch taken instructions, or first instructions of a program following a context switch. Modern Instruction fetch units often employ prefetch techniques to speculatively prefetch instructions based on the likelihood that the prefetched instructions might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the next sequential instruction and additional bytes of further sequential instructions.
The fetched instructions are then executed by the processor 5026. In an embodiment, the fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit decodes the instruction(s) and forwards information about the decoded instruction(s) to appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive information about decoded arithmetic instructions from the instruction fetch unit 5055 and will perform arithmetic operations on operands according to the opcode of the instruction. Operands are provided to the execution unit 5057 preferably either from memory 5025, architected registers 5059 or from an immediate field of the instruction being executed. Results of the execution, when stored, are stored either in memory 5025, registers 5059 or in other machine hardware (such as control registers, PSW registers and the like).
A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the function of the instruction. Referring to
An ADD instruction for example would be executed in an execution unit 5057 having arithmetic and logical functionality while a floating point instruction for example would be executed in a floating point execution having specialized floating point capability. Preferably, an execution unit operates on operands identified by an instruction by performing an opcode defined function on the operands. For example, an ADD instruction may be executed by an execution unit 5057 on operands found in two registers 5059 identified by register fields of the instruction.
The execution unit 5057 performs the arithmetic addition on two operands and stores the result in a third operand where the third operand may be a third register or one of the two source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU) 5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And, Or and XOR as well as a variety of algebraic functions including any of add, subtract, multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating point. Data may be Big Endian (where the least significant byte is at the highest byte address) or Little Endian (where the least significant byte is at the lowest byte address) depending on architecture. The IBM z/Architecture® is Big Endian. Signed fields may be sign and magnitude, 1's complement or 2's complement depending on architecture. A 2's complement number is advantageous in that the ALU does not need to design a subtract capability since either a negative value or a positive value in 2's complement requires only an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-byte) block, for example.
Referring to
The execution of a group of instructions can be interrupted for a variety of reasons including a context switch initiated by an operating system, a program exception error causing a context switch, an I/O interruption signal causing a context switch or multi-threading activity of a plurality of programs (in a multi-threaded environment), for example. Preferably a context switch action saves state information about a currently executing program and then loads state information about another program being invoked. State information may be saved in hardware registers or in memory for example. State information preferably comprises a program counter value pointing to a next instruction to be executed, condition codes, memory translation information and architected register content. A context switch activity can be exercised by hardware circuits, application programs, operating system programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or in combination.
A processor accesses operands according to instruction defined methods. The instruction may provide an immediate operand using the value of a portion of the instruction, may provide one or more register fields explicitly pointing to either general purpose registers or special purpose registers (floating point registers for example). The instruction may utilize implied registers identified by an opcode field as operands. The instruction may utilize memory locations for operands. A memory location of an operand may be provided by a register, an immediate field, or a combination of registers and immediate field as exemplified by the z/Architecture® long displacement facility wherein the instruction defines a base register, an index register and an immediate field (displacement field) that are added together to provide the address of the operand in memory for example. Location herein typically implies a location in main memory (main storage) unless otherwise indicated.
Referring to
Preferably addresses that an application program “sees” are often referred to as virtual addresses. Virtual addresses are sometimes referred to as “logical addresses” and “effective addresses”. These virtual addresses are virtual in that they are redirected to physical memory location by one of a variety of dynamic address translation (DAT) technologies including, but not limited to, simply prefixing a virtual address with an offset value, translating the virtual address via one or more translation tables, the translation tables preferably comprising at least a segment table and a page table alone or in combination, preferably, the segment table having an entry pointing to the page table. In the z/Architecture®, a hierarchy of translation is provided including a region first table, a region second table, a region third table, a segment table and an optional page table. The performance of the address translation is often improved by utilizing a translation lookaside buffer (TLB) which comprises entries mapping a virtual address to an associated physical memory location. The entries are created when the DAT translates a virtual address using the translation tables. Subsequent use of the virtual address can then utilize the entry of the fast TLB rather than the slow sequential translation table accesses. TLB content may be managed by a variety of replacement algorithms including LRU (Least Recently used).
In the case where the processor is a processor of a multi-processor system, each processor has responsibility to keep shared resources, such as I/O, caches, TLBs and memory, interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining cache coherency. In a snoop environment, each cache line may be marked as being in any one of a shared state, an exclusive state, a changed state, an invalid state and the like in order to facilitate sharing.
I/O units 5054 (
Further, other types of computing environments can benefit from one or more aspects of the present invention. As an example, an environment may include an emulator (e.g., software or other emulation mechanisms), in which a particular architecture (including, for instance, instruction execution, architected functions, such as address translation, and architected registers) or a subset thereof is emulated (e.g., on a native computer system having a processor and memory). In such an environment, one or more emulation functions of the emulator can implement one or more aspects of the present invention, even though a computer executing the emulator may have a different architecture than the capabilities being emulated. As one example, in emulation mode, the specific instruction or operation being emulated is decoded, and an appropriate emulation function is built to implement the individual instruction or operation.
In an emulation environment, a host computer includes, for instance, a memory to store instructions and data; an instruction fetch unit to fetch instructions from memory and to optionally, provide local buffering for the fetched instruction; an instruction decode unit to receive the fetched instructions and to determine the type of instructions that have been fetched; and an instruction execution unit to execute the instructions. Execution may include loading data into a register from memory; storing data back to memory from a register; or performing some type of arithmetic or logical operation, as determined by the decode unit. In one example, each unit is implemented in software. For instance, the operations being performed by the units are implemented as one or more subroutines within emulator software.
More particularly, in a mainframe, architected machine instructions are used by programmers, usually today “C” programmers, often by way of a compiler application. These instructions stored in the storage medium may be executed natively in a z/Architecture® IBM® Server, or alternatively in machines executing other architectures. They can be emulated in the existing and in future IBM® mainframe servers and on other machines of IBM® (e.g., Power Systems servers and System x® Servers). They can be executed in machines running Linux on a wide variety of machines using hardware manufactured by IBM®, Intel®, AMD™, and others. Besides execution on that hardware under a z/Architecture®, Linux can be used as well as machines which use emulation by Hercules, UMX, or FSI (Fundamental Software, Inc), where generally execution is in an emulation mode. In emulation mode, emulation software is executed by a native processor to emulate the architecture of an emulated processor.
The native processor typically executes emulation software comprising either firmware or a native operating system to perform emulation of the emulated processor. The emulation software is responsible for fetching and executing instructions of the emulated processor architecture. The emulation software maintains an emulated program counter to keep track of instruction boundaries. The emulation software may fetch one or more emulated machine instructions at a time and convert the one or more emulated machine instructions to a corresponding group of native machine instructions for execution by the native processor. These converted instructions may be cached such that a faster conversion can be accomplished. Notwithstanding, the emulation software is to maintain the architecture rules of the emulated processor architecture so as to assure operating systems and applications written for the emulated processor operate correctly. Furthermore, the emulation software is to provide resources identified by the emulated processor architecture including, but not limited to, control registers, general purpose registers, floating point registers, dynamic address translation function including segment tables and page tables for example, interrupt mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected interfaces to I/O subsystems such that an operating system or an application program designed to run on the emulated processor, can be run on the native processor having the emulation software.
A specific instruction being emulated is decoded, and a subroutine is called to perform the function of the individual instruction. An emulation software function emulating a function of an emulated processor is implemented, for example, in a “C” subroutine or driver, or some other method of providing a driver for the specific hardware as will be within the skill of those in the art after understanding the description of the preferred embodiment. Various software and hardware emulation patents including, but not limited to U.S. Pat. No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausoleil et al.; and U.S. Pat. No. 6,009,261, entitled “Preprocessing of Stored Target Routines for Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Pat. No. 5,574,873, entitled “Decoding Guest Instruction to Directly Access Emulation Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Pat. No. 6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Pat. No. 6,463,582, entitled “Dynamic Optimizing Object Code Translator for Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by Lethin et al; and U.S. Pat. No. 5,790,825, entitled “Method for Emulating Guest Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by Eric Traut, each of which is hereby incorporated herein by reference in its entirety; and many others, illustrate a variety of known ways to achieve emulation of an instruction format architected for a different machine for a target machine available to those skilled in the art.
In
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiment with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
4028668 | Riikonen | Jun 1977 | A |
4323963 | Wu | Apr 1982 | A |
5053952 | Koopman, Jr. et al. | Oct 1991 | A |
5170472 | Cwiakala et al. | Dec 1992 | A |
5265240 | Galbraith et al. | Nov 1993 | A |
5282274 | Liu | Jan 1994 | A |
5430856 | Kinoshita | Jul 1995 | A |
5465332 | Deloye et al. | Nov 1995 | A |
5465355 | Cook et al. | Nov 1995 | A |
5535352 | Bridges et al. | Jul 1996 | A |
5551013 | Beausoleil et al. | Aug 1996 | A |
5574873 | Davidian | Nov 1996 | A |
5600805 | Fredericks et al. | Feb 1997 | A |
5617554 | Alpert et al. | Apr 1997 | A |
5742785 | Stone et al. | Apr 1998 | A |
5761448 | Adamson et al. | Jun 1998 | A |
5790825 | Traut | Aug 1998 | A |
5802590 | Draves | Sep 1998 | A |
5819053 | Goodrum et al. | Oct 1998 | A |
5822616 | Hirooka | Oct 1998 | A |
5826084 | Brooks et al. | Oct 1998 | A |
5838960 | Harriman, Jr. | Nov 1998 | A |
5870598 | White et al. | Feb 1999 | A |
5875463 | Crump et al. | Feb 1999 | A |
5901312 | Radko | May 1999 | A |
5960213 | Wilson | Sep 1999 | A |
5974440 | Brooks et al. | Oct 1999 | A |
6009261 | Scalzi et al. | Dec 1999 | A |
6023736 | Lambeth et al. | Feb 2000 | A |
6067595 | Lindenstruth | May 2000 | A |
6078970 | Nordstrom et al. | Jun 2000 | A |
6205530 | Kang | Mar 2001 | B1 |
6308255 | Gorishek, IV et al. | Oct 2001 | B1 |
6330647 | Jeddeloh et al. | Dec 2001 | B1 |
6330656 | Bealkowski et al. | Dec 2001 | B1 |
6349380 | Shahidzadeh et al. | Feb 2002 | B1 |
6408347 | Smith et al. | Jun 2002 | B1 |
6463582 | Lethin et al. | Oct 2002 | B1 |
6493741 | Emer et al. | Dec 2002 | B1 |
6519645 | Markos et al. | Feb 2003 | B2 |
6529978 | Eide et al. | Mar 2003 | B1 |
6557035 | McKnight | Apr 2003 | B1 |
6578191 | Boehme et al. | Jun 2003 | B1 |
6581130 | Brinkmann, Jr. et al. | Jun 2003 | B1 |
6615305 | Olesen et al. | Sep 2003 | B1 |
6629175 | Manning et al. | Sep 2003 | B1 |
6654818 | Thurber | Nov 2003 | B1 |
6658521 | Biran et al. | Dec 2003 | B1 |
6658599 | Linam et al. | Dec 2003 | B1 |
6704831 | Avery | Mar 2004 | B1 |
6715011 | Buckland et al. | Mar 2004 | B1 |
6721839 | Bauman et al. | Apr 2004 | B1 |
6751752 | Smith | Jun 2004 | B1 |
6772097 | Kromenaker et al. | Aug 2004 | B1 |
6772264 | Dayan et al. | Aug 2004 | B1 |
6792492 | Griffin | Sep 2004 | B1 |
6820164 | Holm et al. | Nov 2004 | B2 |
6901537 | Dawkins et al. | May 2005 | B2 |
6907510 | Bennett et al. | Jun 2005 | B2 |
6963940 | Glassen et al. | Nov 2005 | B1 |
6968446 | McGrath | Nov 2005 | B1 |
6970992 | Gurumoorthy et al. | Nov 2005 | B2 |
6978338 | Wang et al. | Dec 2005 | B2 |
6996638 | Brice, Jr. et al. | Feb 2006 | B2 |
7065598 | Connor et al. | Jun 2006 | B2 |
7107384 | Chen et al. | Sep 2006 | B1 |
7127599 | Brice, Jr. et al. | Oct 2006 | B2 |
7130938 | Brice, Jr. et al. | Oct 2006 | B2 |
7139940 | Arbeitman et al. | Nov 2006 | B2 |
7174550 | Brice, Jr. et al. | Feb 2007 | B2 |
7177961 | Brice, Jr. et al. | Feb 2007 | B2 |
7200704 | Njoku et al. | Apr 2007 | B2 |
7209994 | Klaiber et al. | Apr 2007 | B1 |
7225287 | Wooten | May 2007 | B2 |
7260664 | Arndt et al. | Aug 2007 | B2 |
7277968 | Brice, Jr. et al. | Oct 2007 | B2 |
7296120 | Corrigan et al. | Nov 2007 | B2 |
7302692 | Bae et al. | Nov 2007 | B2 |
7334107 | Schoinas et al. | Feb 2008 | B2 |
7340582 | Madukkarumukumana et al. | Mar 2008 | B2 |
7380041 | Belmar et al. | May 2008 | B2 |
7398343 | Marmash et al. | Jul 2008 | B1 |
7412488 | Jha et al. | Aug 2008 | B2 |
7418572 | Hepkin | Aug 2008 | B2 |
7420931 | Nanda et al. | Sep 2008 | B2 |
7444493 | Schoinas et al. | Oct 2008 | B2 |
7454548 | Belmar et al. | Nov 2008 | B2 |
7464191 | Arndt et al. | Dec 2008 | B2 |
7464209 | Armstrong et al. | Dec 2008 | B2 |
7475183 | Traut et al. | Jan 2009 | B2 |
7493425 | Arndt et al. | Feb 2009 | B2 |
7496707 | Freking et al. | Feb 2009 | B2 |
7502872 | Boyd et al. | Mar 2009 | B2 |
7506087 | Ho et al. | Mar 2009 | B2 |
7509391 | Chauvel et al. | Mar 2009 | B1 |
7529860 | Freimuth et al. | May 2009 | B2 |
7530071 | Billau et al. | May 2009 | B2 |
7546406 | Armstrong et al. | Jun 2009 | B2 |
7546487 | Marisetty et al. | Jun 2009 | B2 |
7549090 | Bailey et al. | Jun 2009 | B2 |
7552298 | Bestler | Jun 2009 | B2 |
7562366 | Pope et al. | Jul 2009 | B2 |
7567567 | Muller et al. | Jul 2009 | B2 |
7587531 | Brice, Jr. et al. | Sep 2009 | B2 |
7600053 | Carlson et al. | Oct 2009 | B2 |
7606965 | Njoku et al. | Oct 2009 | B2 |
7613847 | Kjos et al. | Nov 2009 | B2 |
7617340 | Gregg | Nov 2009 | B2 |
7617345 | Clark et al. | Nov 2009 | B2 |
7623460 | Miyazaki | Nov 2009 | B2 |
7624235 | Wadhawan et al. | Nov 2009 | B2 |
7627723 | Buck et al. | Dec 2009 | B1 |
7631097 | Moch et al. | Dec 2009 | B2 |
7886086 | Sharma et al. | Feb 2011 | B2 |
8505032 | Craddock et al. | Aug 2013 | B2 |
20010021971 | Gibson et al. | Sep 2001 | A1 |
20020152334 | Holm et al. | Oct 2002 | A1 |
20020161907 | Moon | Oct 2002 | A1 |
20030056155 | Austen et al. | Mar 2003 | A1 |
20030074541 | Plambeck | Apr 2003 | A1 |
20040015622 | Avery | Jan 2004 | A1 |
20040025166 | Adlung et al. | Feb 2004 | A1 |
20040049600 | Boyd et al. | Mar 2004 | A1 |
20040064618 | Farrell et al. | Apr 2004 | A1 |
20040073905 | Emer et al. | Apr 2004 | A1 |
20040117534 | Parry et al. | Jun 2004 | A1 |
20040139304 | Arimilli et al. | Jul 2004 | A1 |
20040139305 | Arimilli et al. | Jul 2004 | A1 |
20040199700 | Clayton | Oct 2004 | A1 |
20040236880 | Barrett | Nov 2004 | A1 |
20050033895 | Lueck et al. | Feb 2005 | A1 |
20050071472 | Arndt et al. | Mar 2005 | A1 |
20050114586 | Brice, Jr. et al. | May 2005 | A1 |
20050114623 | Craddock et al. | May 2005 | A1 |
20050257100 | Anglin et al. | Nov 2005 | A1 |
20050289271 | Martinez et al. | Dec 2005 | A1 |
20060005083 | Genden et al. | Jan 2006 | A1 |
20060064618 | Wu et al. | Mar 2006 | A1 |
20060101181 | Post et al. | May 2006 | A1 |
20060130071 | Martin et al. | Jun 2006 | A1 |
20060195617 | Arndt et al. | Aug 2006 | A1 |
20060195644 | Arndt et al. | Aug 2006 | A1 |
20060230208 | Gregg et al. | Oct 2006 | A1 |
20060253619 | Torudbakken et al. | Nov 2006 | A1 |
20060281630 | Bailey et al. | Dec 2006 | A1 |
20060288130 | Madukkarumukumana et al. | Dec 2006 | A1 |
20070028087 | Yu et al. | Feb 2007 | A1 |
20070073955 | Murray et al. | Mar 2007 | A1 |
20070097871 | Boyd et al. | May 2007 | A1 |
20070136554 | Biran et al. | Jun 2007 | A1 |
20070168636 | Hummel et al. | Jul 2007 | A1 |
20070168643 | Hummel et al. | Jul 2007 | A1 |
20070168644 | Hummel et al. | Jul 2007 | A1 |
20070168934 | Chandrasekharan et al. | Jul 2007 | A1 |
20070174723 | Cardona et al. | Jul 2007 | A1 |
20070186074 | Bradford et al. | Aug 2007 | A1 |
20070226386 | Sharp et al. | Sep 2007 | A1 |
20070234018 | Feiste | Oct 2007 | A1 |
20070245041 | Hua et al. | Oct 2007 | A1 |
20070260768 | Bender et al. | Nov 2007 | A1 |
20070271559 | Easton et al. | Nov 2007 | A1 |
20080091851 | Sierra | Apr 2008 | A1 |
20080091868 | Mizrachi et al. | Apr 2008 | A1 |
20080091915 | Moertl et al. | Apr 2008 | A1 |
20080098197 | Craddock et al. | Apr 2008 | A1 |
20080114734 | Suwabe | May 2008 | A1 |
20080114906 | Hummel et al. | May 2008 | A1 |
20080126648 | Brownlow et al. | May 2008 | A1 |
20080126652 | Vembu et al. | May 2008 | A1 |
20080148295 | Freimuth et al. | Jun 2008 | A1 |
20080168208 | Gregg | Jul 2008 | A1 |
20080222406 | Tabuchi | Sep 2008 | A1 |
20080235425 | Belmar et al. | Sep 2008 | A1 |
20080263391 | Blinick et al. | Oct 2008 | A1 |
20080270853 | Chagoly et al. | Oct 2008 | A1 |
20090024823 | Ko et al. | Jan 2009 | A1 |
20090049220 | Conti et al. | Feb 2009 | A1 |
20090070760 | Khatri et al. | Mar 2009 | A1 |
20090089780 | Johnson et al. | Apr 2009 | A1 |
20090125666 | Freking et al. | May 2009 | A1 |
20090144462 | Arndt et al. | Jun 2009 | A1 |
20090144731 | Brown et al. | Jun 2009 | A1 |
20090172211 | Perry et al. | Jul 2009 | A1 |
20090182966 | Greiner et al. | Jul 2009 | A1 |
20090182969 | Norgaard et al. | Jul 2009 | A1 |
20090210646 | Bauman et al. | Aug 2009 | A1 |
20090222814 | Astrand | Sep 2009 | A1 |
20090240849 | Corneli et al. | Sep 2009 | A1 |
20090249039 | Hook et al. | Oct 2009 | A1 |
20090276774 | Kinoshita | Nov 2009 | A1 |
20090276775 | Brown et al. | Nov 2009 | A1 |
20090328035 | Ganguly | Dec 2009 | A1 |
20100005234 | Ganga et al. | Jan 2010 | A1 |
20110099289 | Poggesi et al. | Apr 2011 | A1 |
20110138219 | Walton et al. | Jun 2011 | A1 |
20120239973 | Walton et al. | Sep 2012 | A1 |
20130067194 | Craddock et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
0076921 | Apr 1983 | EP |
0552873 | Jul 1993 | EP |
0902355 | Mar 1999 | EP |
0955585 | Nov 1999 | EP |
1096376 | Feb 2001 | EP |
1489491 | Dec 2004 | EP |
57191826 | Nov 1982 | JP |
359081724 | May 1984 | JP |
362079557 | Apr 1987 | JP |
405053973 | Mar 1993 | JP |
510996 | Apr 1993 | JP |
W09600940 | Jun 1995 | WO |
W09938074 | Jul 1999 | WO |
WO 0241157 | May 2002 | WO |
Entry |
---|
PCI Local Bus Specification Rev 3.0 Cover and p. 39, 44, 48-49, and 58 Aug. 12, 2002. |
International Search Report and Written Opinion for PCT/EP2010/067039 dated Feb. 25, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067036 dated Feb. 14, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067030 dated Feb. 7, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067020 dated Apr. 5, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067025 dated Apr. 13, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067024 dated Apr. 27, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067019 dated Apr. 26, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067021 dated Apr. 28, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067043 dated Apr. 21, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067041 dated Apr. 26, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067031 dated Apr. 26, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067034 dated May 18, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067023 dated Jun. 15, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067032 dated May 27, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067038 dated Jun. 15, 2011. |
“Chapter 6: Configuration Space” in PCI-SIG: “PCI Local Bus Specification Revision 3.0”, Feb. 2004, pp. 213-254. |
Rennet, P. et al., “Programmable Interrupt Vectors in Processors,” IBM Technical Disclosure Bulletin, vol. 25, No. 5, Oct. 1, 1982, pp. 2641-2642. |
Plambeck et al., “Development and Attributes of z/Architecture,” IBM Journal of Research and Development, IBM Corporation, vol. 46, No. 4/05, Jul. 1, 2002, pp. 367-379. |
“z/Architecture Principles of Operation, Chapter 3”, Feb. 2008, pp. 1-71. |
Gehringer, E. F., et al., “Virtual Memory Systems,” CSC-506—Architecture of Parallel Computers Computer Science Department, College of Engineering, North Carolina, Dec. 31, 1999, XP002631523. |
“z/Architecture—Principles of Operation,” IBM Publication No. SA22-7832-05, Sixth Edition, Apr. 2007, Chapter 10, 10-1-10-138. |
“PCI Local Bus Specification,” Mar. 29, 2002, pp. 1-328. |
“Decreased Latency Across PCI Express With I/O Virtualization Via a Hint Interface,” IPCOM000185226D, Jul. 16, 2009, pp. 1-2. |
Office Action for U.S. Appl. No. 12/821,182 dated Oct. 13, 2011. |
McGee, H.T., “Technique for Resetting a Single Channel Path Under Operator Control in IBM System/370XA,” IBM Technical Disclosure Bulletin, vol. 26, No. 10B, Mar. 1984. |
Kamil et al., “Discussion #8 Topics: Paging, Multilevel Paging,” Mar. 2004, pp. 1-3. |
Office Action for U.S. Appl. No. 12/821,172 dated Dec. 12, 2011. |
Office Action for U.S. Appl. No. 12/821,185 dated Dec. 20, 2011. |
U.S. Appl. No. 12/708,284, “Load Pair Disjoint Facility and Instruction Therefore,” filed Jun. 24, 2010. |
U.S. Appl. No. 12/820,735, “High-Word Facility for Extending the Number of General Purpose Registers Available to Instructions,” filed Jun. 22, 2010. |
U.S. Appl. No. 12/820,768, “Instructions for Performing an Operation on Two Operands and Subsequently Storing an Original Value of Operand,” filed Jun. 22, 2010. |
U.S. Appl. No. 12/821,224, “Associating Input/Output Device Requests With Memory Associated With a Logical Partition,” filed Jun. 21, 2010. |
U.S. Appl. No. 12/821,239, “Input/Output (I/O) Expansion Response Processing in a Peripheral Component Interconnect Express (PCIE) Environment,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,242, “A System and Method for Downbound I/O Expansion Request and Response Processing in a PCIe Architecture,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,243, “Upbound Input/Output Expansion Request and Response Processing in a PCIE Architecture,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,245, “A System and Method for Routing I/O Expansion Requests and Responses in a PCIE Architecture,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,247, “Scalable 110 Adapter Function Level Error Detection, Isolation, and Reporting,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,248, “Connected Input/Output HUB Management,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,256, “Switch Failover Control in a Multiprocessor Computer System,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,271, “Memory Error Isolation and Recovery in a Multiprocessor Computer System,” filed Jun. 23, 2010. |
U.S. Appl. No. 12/822,358, “Function Virtualization Facility for Function Query of a Processor,” filed Jun. 24, 2010. |
U.S. Appl. No. 12/822,368, “Function Virtualization Facility for Blocking Instruction Function of a Multi-Function Instruction of a Virtual Processor,” filed Jun. 24, 2010. |
Craddock et al., U.S. Appl. No. 12/821,170, “Translation of Input/Output Address to Memory Addresses” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,171, “Runtime Determination of Translation Formats for Adapter Functions,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,172, “Resizing Address Spaces Concurrent to Accessing the Address Spaces,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,174, “Multiple Address Spaces Per Adapter,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,175, “Converting a Message Signaled Interruption Into an I/O Adapter Event Notification,” filed Jun. 23, 2010. |
Brice et al., U.S. Appl. No. 12/821,177, “Converting a Message Signaled Interruption Into an I/O Adapter Event Notification to a Guest Operating System,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,178, “Identification of Types of Sources of Adapter Interruptions,” filed Jun. 23, 2010. |
Belmar et al., U.S. Appl. No. 12/821,179, “Controlling a Rate At Which Adapter Interruption Requests Are Processed,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,181, “Controlling the Selectively Setting of Operational Parameters for an Adapter,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,182, “Load Instruction for Communicating With Adapters,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,184, “Controlling Access by a Configuration to an Adapter Function,” filed Jun. 23, 2010. |
Coneski et al., U.S. Appl. No. 12/821,185, “Discovery by Operating System of Information Relating to Adapter Functions Accessible to the Operating System,” filed Jun. 23, 2010. |
Coneski et al., U.S. Appl. No. 12/821,187, “Enable/Disable Adapters of a Computing Environment,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,190, “Guest Access to Address Spaces of Adapter,” filed Jun. 23, 2010. |
Coneski et al., U.S. Appl. No. 12/821,191, “Managing Processing Associated With Hardware Events,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,192, “Operating System Notification of Actions to Be Taken Responsive to Adapter Events,” filed Jun. 23, 2010. |
Craddock et al., U.S. Appl. No. 12/821,194, “Store/Store Block Instructions for Communicating With Adapters,” filed Jun. 23, 2010. |
Paulsen, Eric; “Local Memory Coaxes Top Speed from SCSI Masters,” Electronic Design, V. 41, Apr. 15, 1993, pp. 76-6+. |
Ganapathy, Narayanan; “General Purpose Operating System Support for Multiple Page Sizes,” USENIX Annual Technical Conference (No. 98), 1998, pp. 91-104. |
Talluri et al., “A New Page Table for 64-bit Address Spaces,” ACM SIGOPS Operating Systems Review, vol. 29, Issue 5 (Dec. 1995), pp. 194-200. |
“Large Page Support in the Linux Kernel,” http://lwn.net/Articles/6969/ <retrieved on Jan. 26, 2010>. |
Crawford, Catherine H. et al., “Accelerating Computing with the Cell Broadband Engine Processor,” May 2008, CF '08, May 5-7, 2008, Ischia, Italy, pp. 3-11. |
Baumann, Andrew, et al., “The Multikernel: A New OS Architecture for Scalable Multicore Systems,” Oct. 2009, SOSP '09, Oct. 11-14, 2009, Big Sky, Montana, USA, pp. 29-43. |
Swift, Michael M. et al., “Improving the Reliability of Commodity Operating Systems,” ACM Transactions on Computer Systems, vol. 23, No. 1, Feb. 2005, pp. 77-110. |
Xu, Min et al., “Towards a VMM-based Usage Control Framework for OS Kernel Integrity Protection,” SACMAT '07, Jun. 20-22, 2007, Sophia Antipolis, France, pp. 71-80. |
Huang, Wei et al., “A Case for High Performance Computing with Virtual Machines,” ISC '06, Jun. 3 28 30, Carins, Queensland, Australia, pp. 125-134, Jun. 3, 2006. |
Mysore, Shashidhar et al., “Understanding and Visualizing Full Systems with Data Flow Tomography,” SPOLOS '08, Mar. 1-5, 2008, Seattle, Washington, USA, pp. 211-221. |
“DMA Engines Bring Multicast to PCI Express Systems,” http://electronicdesign.com, Aug. 13, 2009, 3 pages. |
“Xen Wiki,” http://wiki.xensource.com/xenwiki/VTdHowTo, 5 pages, Apr. 16, 2010. |
Vaidyanathan, K., et al., “Exploiting RDMA Operations for Providing Efficient Fine-Grained Resource Monitoring in Cluster-based Servers,” 1-4244-0328—Jun. 2006, 10 pages. |
“IBM Enhances the IBM eServer zSeries 990 Family of Servers,” Hardware Announcement, Oct. 7, 2003, pp. 1-11. |
“Intel® Virtualization Technology for Directed I/O,” Intel® Technology Journal, vol. 10, Issue 3, Aug. 10, 2006. |
“I/O Virtualization and AMD's IOMMU,” AMD Developer Central, http://developer.amd.com/documentation/articles/pages/892006101.aspx, Aug. 9, 2006. |
“z/Architecture Principles of Operation,” IBM Publication No. SA22-7832-07, Feb. 2009. |
“z/VM: Running Guest Operating Systems,” IBM Publication No. SC24-5997-02, Oct. 2001. |
“z/VM: General Information Manual,” IBM Publication No. GC24-5991-05, May 2003. |
Winwood, Simon, et al., “Multiple Page Size Support in the Linux Kernel”, Proceedings of Ottawa Linux Symposium, 2002. |
“z/Architecture Principles of Operation,” Chapter 17, pp. 17-1-17-30, IBM Publication No. SA22-7832-07, Feb. 2009. |
“Intel® Itanium® Architecture Software Developer's Manual,” vol. 2, Rev. 2.2, Jan. 2006. |
Office Action for U.S. Appl. No. 12/821,174 dated Jan. 19, 2012. |
Final Office Action for U.S. Appl. No. 12/821,184 dated Jan. 24, 2012. |
Office Action for U.S. Appl. No. 12/821,187 dated Feb. 28, 2012. |
Final Office Action for U.S. Appl. No. 12/821,171 dated Mar. 29, 2012. |
Final Office Action for U.S. Appl. No. 12/821,185 dated Jun. 6, 2012. |
“Atari PCI BIOS and Device Drive Specification 1.13,” Chapters 2, 3, 4 and 6; [online], internet archive dates Dec. 12, 2007 and Feb. 8, 2007; retrieved on May 24, 2012, 13 pages <URL:http://kunden.wvnet.at/fichti/docs/pcibios-2.htm; pcibios-3.htm; pcibios-4.htm, pcibios-6.htm>. |
“PCI Device Access Under 32-bit PM DOS from Open Watcom,” [online], internet archive date Jul. 19, 2006; retrieved May 26, 2012, 14 pages <URL:http://www.openwatcom.org/index.php/PCI—Device—acces—under—32-Bit—PM—DOS>. |
Device Identification Strings from OSR online; [online], internet archive date Mar. 13, 2005; retrieved May 26, 2012, 3 pages <URL:http//www.osronline.com/ddkx/install/idstrings—8tt3.htm>. |
Office Action for U.S. Appl. No. 12/821,190 dated Jun. 12, 2012. |
Office Action for U.S. Appl. No. 12/821,174 dated Jun. 15, 2012. |
International Search Report and Written Opinion for PCT/EP2010/067035 dated Mar. 8, 2011. |
Final Office Action for U.S. Appl. No. 12/821,187 dated Jul. 16, 2012. |
Office Action for U.S. Appl. No. 12/821,191 dated Jul. 18, 2012. |
Office Action for U.S. Appl. No. 12/821,171 dated Jul. 19, 2012. |
Office Action for U.S. Appl. No. 12/821,192 dated Oct. 11, 2012. |
International Search Report and Written Opinion for PCT/EP2010/067029 dated Mar. 2, 2011. |
“IBM System/390 I/O Call Reporting Process,” IBM Technical Disclosure Bulletin, vol. 36, No. 1, Jan. 1993, pp. 164-169, XP000222812. |
“Means for Channel Subsystem-Initiated Communication,” IBM Technical Disclosure Bulletin, vol. 33, No. 12, May 1991, p. 169, XP000121623. |
International Search Report and Written Opinion for PCT/EP2010/067028 dated Mar. 8, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067042 dated Apr. 28, 2011. |
Communication Pursuant to Article 94(3) EPC for Application No. 10 776 350.0-2212 dated Oct. 31, 2012. |
Final Office Action for U.S. Appl. No. 12/821,174 dated Nov. 13, 2012. |
Office Action for U.S. Appl. No. 12/821,170 dated Feb. 1, 2013, pp. 1-28. |
Office Action for U.S. Appl. No. 13/672,028 dated Feb. 1, 2013, pp. 1-20. |
Communication Pursuant to Article 94(3) EPC for Application No. 10 784 272.6-1243 dated Feb. 6, 2013, pp. 1-7. |
Final Office Action for U.S. Appl. No. 12/821,171 dated Mar. 18, 2013, pp. 1-11. |
Office Action for U.S. Appl. No. 12/821,181 dated Mar. 26, 2013, pp. 1-37. |
Notice of Allowance for U.S. Appl. No. 12/821,172 dated Apr. 30, 2013, pp. 1-30. |
Communication Pursuant to Article 94(3) EPC for Application No. 10 776 345.0-1956, dated May 31, 2013, pp. 1-6. |
Communication Pursuant to Article 94(3) EPC for Application No. 10 778 994.3-1960, dated Jul. 3, 2013, pp. 1-7. |
Office Action for U.S. Appl. No. 12/821,190 dated Sep. 4, 2013, pp. 1-6. |
Number | Date | Country | |
---|---|---|---|
20110320643 A1 | Dec 2011 | US |