The present application is based on, and claims priority from JP Application Serial Number 2021-029746, filed Feb. 26, 2021, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a measurement method, a measurement device, a measurement system, and a measurement program.
JP-A-2009-237805 describes a displacement acquisition device including: a static component storage unit that stores a time series of a static component that is a component independent of motion of a railway vehicle in a time series of a displacement of a girder of a bridge accompanying passage of the railway vehicle; a displacement detection unit that detects a time series of a displacement of a girder of a bridge to be measured based on at least one of an acceleration measurement value and a velocity measurement value of the girder of the bridge to be measured accompanying passage of a railway vehicle to be measured; a dynamic component extraction unit that extracts a time series of a dynamic component that is a remaining component obtained by removing a static component that may include an error from the time series of the displacement detected by the displacement detection unit; a static component acquisition unit that acquires the time series of the static component from the static component storage unit; and a synthesis unit that synthesizes the time series of the dynamic component extracted by the dynamic component extraction unit and the time series of the static component acquired by the static component acquisition unit.
According to the displacement acquisition device described in JP-A-2009-237805, by removing the static component that may include an error from the time series of the displacement of the detected girder and replacing the static component with the stored static component, the time series of the displacement eliminating the error can be obtained.
However, in the displacement acquisition device described in JP-A-2009-237805, since approximability between the static component included in the time series of displacement of the detected girder and the stored static component greatly affects accuracy of the obtained time series of the displacement, when accuracy of the approximability is not sufficient, the accuracy of the time series of the displacement may decrease. In the displacement acquisition device described in JP-A-2009-237805, when a static component included in a time series of a displacement at a measurement time point changes due to a change in environment or the like, no unit is provided for recognizing a deviation between the static component and the stored static component, and it is not possible to know that there is a problem in the accuracy of the displacement. In the displacement acquisition device described in JP-A-2009-237805, it is necessary to store data of the static component for each classification of the railway vehicle and each classification of the bridge, and it is necessary to acquire and update the data, which complicates a configuration and makes it difficult to reduce a cost. Therefore, a method of reducing an error without preparing information for reducing an error such as static component data in advance is desired.
According to an aspect of the present disclosure, a measurement method includes: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; a correction data estimation step of estimating, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation step of generating measurement data by adding the drift noise reduction data and the correction data, in which the correction data estimation step includes: an interval specifying step of calculating a first peak and a second peak of the drift noise reduction data and specifying a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak, a first interval correction data generation step of generating first interval correction data by inverting a sign of the drift noise reduction data in the first interval, a second interval correction data generation step of generating second interval correction data in the second interval, a third interval correction data generation step of generating third interval correction data by inverting a sign of the drift noise reduction data in the third interval, and a correction data generation step of generating the correction data by adding the first interval correction data, the second interval correction data, and the third interval correction data, and the second interval correction data generation step includes: generating first line data linearly approximating the first interval correction data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generating second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generating third line data linearly approximating the third interval correction data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculating a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, and generating the second interval correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data.
According to an aspect of the present disclosure, a measurement method includes: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; an interval specifying step of calculating a first peak and a second peak of the drift noise reduction data and specifying a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak; a correction data estimation step of estimating, based on the drift noise reduction data, correction data in the second interval corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation step of generating measurement data by setting data in the first interval as 0, adding the drift noise reduction data and the correction data in the second interval, and setting data in the third interval as 0, in which the correction data estimation step includes: generating first interval inverted data by inverting a sign of the drift noise reduction data in the first interval, generating third interval inverted data by inverting a sign of the drift noise reduction data in the third interval, generating first line data linearly approximating the first interval inverted data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generating second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generating third line data linearly approximating the third interval inverted data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculating a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, and generating the correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data.
According to an aspect of the present disclosure, a measurement device includes: a high-pass filter processing unit configured to perform high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; a correction data estimation unit configured to estimate, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation unit configured to generate measurement data by adding the drift noise reduction data and the correction data, in which the correction data estimation unit is configured to: calculate a first peak and a second peak of the drift noise reduction data and specify a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak, generate first interval correction data by inverting a sign of the drift noise reduction data in the first interval, generate third interval correction data by inverting a sign of the drift noise reduction data in the third interval, generate first line data linearly approximating the first interval correction data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generate second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generate third line data linearly approximating the third interval correction data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculate a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, generate the second interval correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data, and generate the correction data by adding the first interval correction data, the second interval correction data, and the third interval correction data.
According to an aspect of the present disclosure, a measurement system includes: the measurement device according to the above aspect; and an observation device configured to observe an observation point, in which the target data is data based on observation data observed by the observation device.
According to an aspect of the present disclosure, a non-transitory computer-readable storage medium stores a measurement program, and the measurement program causes a computer to execute: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; a correction data estimation step of estimating, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation step of generating measurement data by adding the drift noise reduction data and the correction data, in which the correction data estimation step includes: an interval specifying step of calculating a first peak and a second peak of the drift noise reduction data and specifying a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak, a first interval correction data generation step of generating first interval correction data by inverting a sign of the drift noise reduction data in the first interval, a second interval correction data generation step of generating second interval correction data in the second interval, a third interval correction data generation step of generating third interval correction data by inverting a sign of the drift noise reduction data in the third interval, and a correction data generation step of generating the correction data by adding the first interval correction data, the second interval correction data, and the third interval correction data, and the second interval correction data generation step includes: generating first line data linearly approximating the first interval correction data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generating second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generating third line data linearly approximating the third interval correction data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculating a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, and generating the second interval correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data.
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments to be described below do not in any way limit contents of the present disclosure described in claims. Not all configurations to be described below are necessarily essential components of the present disclosure.
Hereinafter, a measurement system for implementing a measurement method according to the present embodiment will be described by taking a case where a structure is a superstructure of a bridge and a moving object is a railway vehicle as an example.
The bridge 5 includes the superstructure 7 and a substructure 8.
The measurement device 1 and the sensors 2 are coupled by, for example, a cable which is not shown and communicate with one another via a communication network such as a CAN. CAN is an abbreviation for controller area network. Alternatively, the measurement device 1 and the sensors 2 may communicate with each other via a wireless network.
For example, each sensor 2 outputs data for calculating a displacement of the superstructure 7 caused by a movement of a railway vehicle 6 which is a moving object. In the present embodiment, each of the sensors 2 is an acceleration sensor, and may be, for example, a crystal acceleration sensor or an MEMS acceleration sensor. MEMS is an abbreviation for micro electro mechanical systems.
In the present embodiment, each sensor 2 is installed at position of a central portion of the superstructure 7 in a longitudinal direction, specifically, at a central portion of the main girder G in the longitudinal direction. Each sensor 2 is not limited to being installed at the central portion of the superstructure 7 as long as each sensor 2 can detect an acceleration for calculating the displacement of the superstructure 7. When each sensor 2 is provided on the floor plate F of the superstructure 7, the sensor 2 may be damaged due to traveling of the railway vehicle 6, and the measurement accuracy may be affected by local deformation of the bridge floor 7a, so that in the example of
The floor plate F, the main girder G, and the like of the superstructure 7 are bent in a vertical direction due to a load of the railway vehicle 6 traveling on the superstructure 7. Each sensor 2 detects an acceleration of the bending of the floor plate F or the main girder G caused by the load of the railway vehicle 6 traveling on the superstructure 7.
The measurement device 1 calculates the bending displacement of the superstructure 7 caused by the traveling of the railway vehicle 6 based on acceleration data output from the sensors 2. The measurement device 1 is installed on, for example, the bridge abutment 8b.
The measurement device 1 and the monitoring device 3 can communicate with each other via, for example, a wireless network of a mobile phone and a communication network 4 such as the Internet. The measurement device 1 transmits information on the displacement of the superstructure 7 caused by the traveling of the railway vehicle 6 to the monitoring device 3. The monitoring device 3 may store the information in a storage device (not illustrated), and may perform, for example, processing such as monitoring of the railway vehicle 6 and abnormality determination of the superstructure 7 based on the information.
In the present embodiment, the bridge 5 is a railroad bridge, and is, for example, a steel bridge, a girder bridge, or an RC bridge. The RC is an abbreviation for reinforced-concrete.
As shown in
The number and installation positions of the sensors 2 are not limited to the examples shown in
The measurement device 1 acquires an acceleration in a direction intersecting the surface of the superstructure 7 on which the railway vehicle 6 moves, based on the acceleration data output from the sensor 2. The surface of the superstructure 7 on which the railway vehicle 6 moves is defined by a direction in which the railway vehicle 6 moves, that is, an X direction which is the longitudinal direction of the superstructure 7, and a direction orthogonal to the direction in which the railway vehicle 6 moves, that is, a Y direction which is a width direction of the superstructure 7. Since the observation point R is bent in a direction orthogonal to the X direction and the Y direction due to the traveling of the railway vehicle 6, it is desirable that the measurement device 1 acquires the acceleration in a direction orthogonal to the X direction and the Y direction, that is, a Z direction which is a normal direction of the floor plate F, in order to accurately calculate a magnitude of the acceleration of the bending.
In order to detect the acceleration of the bending at the observation point R caused by the traveling of the railway vehicle 6, the sensor 2 is installed such that one of three detection axes, which are the x axis, the y axis, and the z axis, intersects the X direction and the Y direction. In
However, when the sensor 2 is installed on the superstructure 7, an installation location may be inclined. In the measurement device 1, even if one of the three detection axes of the sensor 2 is not installed in the normal direction of the floor plate F, since the direction is substantially oriented in the normal direction, an error is small and thus can be ignored. The measurement device 1 can correct a detection error, caused by the inclination of the sensor 2, by a three-axis combined acceleration that is obtained by combining the accelerations in the x axis, the y axis, and the z axis even if one of the three detection axes of the sensor 2 is not installed in the normal direction of the floor plate F. The sensor 2 may be a one-axis acceleration sensor that detects an acceleration generated in a direction at least substantially parallel to the vertical direction or an acceleration in the normal direction of the floor plate F.
Hereinafter, first, basic concept of the measurement method according to the present embodiment executed by the measurement device 1 will be described, and then the details thereof will be described.
First, target data to be process, which is displacement data obtained based on the acceleration data output from the sensor 2 is represented by Ms(k), and
When data obtained by performing high-pass filter processing on the target data Ms(k) is represented by fHP(Ms(k)) and data obtained by performing low-pass filter processing on the target data Ms(k) is represented by fLP(Ms(k)), a relationship of the target data Ms(k), the data fHP (Ms(k)), and the data fLP(Ms(k)) is expressed by Equation (1).
M
s(k)=fHP(Ms(k))+fLP(Ms(k)) (1)
A relationship of the frequency characteristic F{Ms(k)} of the target data Ms(k), a frequency characteristic F{fHP (Ms(k))} of the data fHP (Ms(k)), and a frequency characteristic F{fLP (Ms(k))} of the data fLP (Ms(k)) is expressed by Equation (2).
F{M
s(k)}=F{fHP(Ms(k))}+F{fLP(MS(k))} (2)
Here, as in Equation (3), it is assumed that the target data Ms(k) obtained based on the acceleration data includes a significant signal M(k) and a drift noise e(k).
M
s(k)=M(k)+e(k) (3)
The drift noise e(k) is mainly not a signal input to the sensor 2, but an error signal generated inside the sensor 2, such as a zero-point error, a drift caused by a temperature change, or a drift caused by nonlinear sensitivity. The drift noise e(k) is a variation of a long period as compared with a signal input to the sensor 2, and has an energy distribution in a low frequency range.
It is assumed that, when the high-pass filter processing is performed on the target data Ms(k), the drift noise e (k) that has an energy distribution in the low frequency range is sufficiently reduced, and the data fHP(Ms(k)) obtained after the high-pass filter processing is substantially equal to data fHP(M(k)) obtained by performing high-pass filter processing on the signal M(k), as in Equation (4).
f
HP(Ms(k))≈fHP(M(k)) (4)
Since signal component in the low frequency range of the signal M(k) is also lost by the high-pass filter processing, in order to compensate for this signal component, the data fLPM(k) obtained by performing low-pass filter processing on signal M(k) is estimated based on data fHP(Ms(k)) obtained by performing high-pass filter processing on the target data Ms(k). As in Equation (5), it is assumed that the data fLP(M(k)) obtained by performing low-pass filter processing on the signal M (k) is substantially equal to data ALP (fHP (Ms(k))) obtained by estimating the data fLP(M(k)), which is obtained by performing low-pass filter processing on the signal M(k), based on the data fHP(Ms(k)) obtained by performing high-pass filter processing on the target data Ms(k).
f
LP(M(k))≈ALP(fHP(Ms(k))) (5)
When it is assumed that the signal M(k) is equal to a sum of the data fHP(M(k)) obtained by performing high-pass filter processing on the signal M(k) and the data fLP(M(k)) obtained by performing low-pass filter processing on the signal M(k), as in Equation (6), Equation (7) is obtained based on Equation (4), Equation (5), and Equation (6).
M(k)=fHP(M(k))+fLP(M(k)) (6)
M(k)≈M′(k)=fHP(Ms(k))+ALP(fHP(Ms(k))) (7)
Since the data fHP(Ms(k)) in which the drift noise e(k) is reduced is obtained by performing high-pass filter processing on the target data Ms(k), the data fLP(M(k)) obtained by performing low-pass filter processing on the signal M(k) is estimated based on the data fHP(Ms(k)), and the signal M(k) in which the drift noise e(k) is reduced can be obtained by adding the data fHP(Ms(k)) and the estimated data.
Hereinafter, a case where the target data Ms(k) is displacement data will be described as an example, and a procedure of estimating the data fLP(M(k)), that is obtained by performing low-pass filter processing on the signal M(k), based on the data fHP(Ms(k)) obtained by performing high-pass filter processing on the target data Ms(k) will be described.
First, a unit pulse waveform obtained by simplifying a deflection displacement of the superstructure 7 of the bridge 5 when the railway vehicle 6 passes through the superstructure 7 is assumed as the target data Ms(k), as in Equation (8). In Equation (8), k is an integer of 0 or more.
It is assumed that the relationship of the target data Ms(k), the data fHP(Ms(k)) obtained by performing high-pass filter processing on the target data Ms(k), and the data fLP(Ms(k)) obtained by performing low-pass filter processing on the target data Ms(k) is as shown in Equation (1). For example, when the low-pass filter processing is moving average processing, Equation (9) is obtained based on Equation (1). At this time, data k is located at a center of a moving average interval 2p+1.
In Equation (9), p is an integer of 1 or more, and since it is desired to provide a flat portion in the data fLP(Ms(k)) obtained by performing low-pass filter processing on the target data Ms(k), p<(ka−kb)/2 is satisfied.
With reference to
As shown in
A slope of an interval from kb−p to kb+p of the data fLP(Ms(k)) is −b, and an amplitude B of the interval from ka+p to kb−p is −1.
On the other hand, as shown in
A slope of an interval from kb to kb+p of the data fHP (Ms(k)) is −a, and an amplitude A of k=ka−1 is calculated by Equation (12).
By substituting Equation (8) into Equation (12), the amplitude A is calculated as in Equation (13).
According to Equation (13), when p is sufficiently large, the amplitude A is ½.
Here, the unit pulse waveform represented by Equation (8) and assumed as the target data Ms(k) does not include the drift noise e (k). Therefore, the data fLP (Ms(k)) obtained by performing low-pass filter processing on the target data Ms(k) is equal to the data fLP (M(k)) obtained by performing low-pass filter processing on the signal M(k), according to Equation (3). Therefore, a comparison between the data fHP(Ms(k)) and the data fLP(Ms(k)) is a comparison between the data fHP(Ms(k)) and the data fLP(M(k)), and by measuring the slope a and the amplitude A of the data fHP (Ms(k)), the data fLP(M(k)) obtained by performing low-pass filter processing on the signal M(k) in which the drift noise e (k) is removed can be estimated based on the target data Ms(k).
Actually, the target data Ms(k) which is displacement data of the deflection when the railway vehicle 6 passes through the superstructure 7 of the bridge 5 includes data of a waveform that projects in a positive direction or a negative direction and is different from the unit pulse waveform, but the data fLP(M(k)) obtained by performing low-pass filter processing on the signal M(k) can be estimated based on the estimation method described above. For example, the waveform that projects in the positive direction or the negative direction is a rectangular waveform, a trapezoidal waveform, or a sine half-wave waveform.
First, the measurement device 1 integrates the acceleration data As(k) output from the acceleration sensor to generate the velocity data Vs(k) as in Equation (14), and further integrates the velocity data Vs(k) to generate the target data Ms(k) as in Equation (15). In Equation (14) and Equation (15), ΔT is a time interval of data.
V
s(k)=As(k)ΔT+Vs(k−1) (14)
M
s(k)=Vs(k)ΔT+Ms(k−1) (15)
Next, the measurement device 1 generates the displacement data MU(k), that is obtained by performing high-pass filter processing on the target data Ms(k) in order to reduce the drift noise, as in Equation (16).
MU(k)=fHP(Ms(k)) (16)
Next, based on the displacement data MU(k), the measurement device 1 estimates data fLP(M(k)) obtained by performing low-pass filter processing on the signal M(k), that is, correction data MCC(k) corresponding to a difference between the displacement data MU(k) and data obtained by removing the drift noise from the target data Ms(k).
As shown in
As shown in Equation (17), the correction data MCC(k) is obtained as a sum of first interval correction data MCC1(k) which is correction data of the first interval T1, second interval correction data MCC2(k) which is correction data of the second interval T2, and third interval correction data MCC3(k) which is correction data of the third interval T3.
M
CC(k)=MCC1(k)+MCC2(k)+MCC3(k) (17)
The first interval correction data MCC1(k) is obtained according to Equation (18) using data MU′ (k) obtained by inverting a sign of the displacement data MU (k). Similarly, the third interval correction data MCC3(k) is obtained according to Equation (19) using the data MU′ (k) obtained by inverting the sign of the displacement data MU(k).
The second interval correction data MCC2(k) is obtained as follows. First, the measurement device 1 generates first line data L1(k) linearly approximating the first interval correction data MCC1(k) smaller than a product −mu1cTH of a first coefficient cTH and a value −mu1 obtained by inverting a sign of an amplitude mu1 of the first peak p1=(k1, mu1). Here, since an optimum value of the first coefficient cTH varies depending on the superstructure 7, the structure of the railway vehicle 6, and the like, the first coefficient cTH is determined in advance in a range of 0<cTH<1 by performing evaluation before measurement, for example.
The first line data L1(k) linearly approximating the first interval correction data MCC1(k) from k=ka to k1 with respect to ka satisfying Equation (20) is represented by Equation (21).
M
CC1(ka)≅−mu1cTH (20)
L1(k)=s1k+i1 (21)
In Equation (21), the coefficients s1 and i1 that minimize the error between the first line data L1(k) and the first interval correction data MCC1(k) are obtained by Equations (22) and (23) using a least-squares method.
Similarly, the measurement device 1 generates third line data L3(k) linearly approximating the third interval correction data MCC3(k) smaller than a product −mu1cTH of the first coefficient cTH and a value −mu2 obtained by inverting a sign of an amplitude mu2 of the second peak p2=(k2, mu2). For example, it is assumed that the third line data L3(k) linearly approximating the third interval correction data MCC3(k) from k=k2 to kb with respect to kb satisfying Equation (24) is represented by Equation (25).
M
CC3(kb)≅−mu2cTh (24)
L3(k)=s3k+i3 (25)
In Equation (25), the coefficients s3 and i3 that minimize the error between the third line data L3(k) and the third interval correction data MCC3(k) are obtained by Equations (26) and (27) using the least-squares method.
Next, the measurement device 1 generates second line data L2(k)=cLLC(k) obtained by multiplying a line LC(k) passing through the first peak p1=(k1, mu1) and the second peak p2=(k2, mu2) by a second coefficient cL. The line LC(k) passing through the first peak p1=(k1, mu1) and the second peak p2=(k2, mu2) is obtained by Equation (28).
The second line data L2(k) obtained by multiplying the line LC(k) by the second coefficient cL is represented by Equation (29).
L2(k)=s2k+i2=cLLC(k) (29)
When the amplitude of the target data Ms(k) changes more gently than the unit pulse waveform, the amplitude B of the data fLP(Ms(k)) obtained by performing low-pass filter processing on the target data Ms(k) tends to be larger than the amplitude A of k=k−a of the data fHP (Ms(k)) obtained by performing high-pass filter processing on the target data Ms(k). Therefore, instead of −2 which is an amplitude coefficient in the high-pass filter processing of the unit pulse waveform, the second coefficient cL including this correction is provided. Here, since an optimum value of the second coefficient cTH varies depending on the superstructure 7, the structure of the railway vehicle 6, and the like, the second coefficient cL is determined in advance in a range of −4<cL≤−2 by performing evaluation before measurement, for example.
Next, the measurement device 1 calculates a first intersection point p3 between the first line data L1(k) and the second line data L2(k) and a second intersection point p4 between the second line data L2(k) and the third line data L3(k).
The first intersection point p3 is obtained by Equation (30) from Equation (31).
The second intersection point p4 is obtained by Equation (32) from Equation (33).
Then, as in Equation (34), the measurement device 1 generates the second interval correction data MCC2(k) in the second interval T2 by using data before the first intersection point p3 as the first line data L1(k), data from the first intersection point p3 to the second intersection point p4 as the second line data L2(k), and data after the second intersection point p4 as the third line data L3(k).
The correction data MCC(k) is obtained as in Equation (35) by substituting Equation (18), Equation (19), and Equation (34) into Equation (17).
Then, as in Equation (36), the displacement data MU (k) and the correction data MCC(k) are added to obtain the measurement data RU(k) which is the displacement data in which the drift noise is reduced.
RU(k)=MU(k)+MCC(k) (36)
Equation (37) is obtained by substituting Equation (35) into Equation (36).
Equation (37) is transformed into Equation (38).
According to Equation (38), the measurement data RU(k) is 0 in the interval of k≤k1 which is the first interval T1 and the interval of k2≤k which is the second interval T2, and the measurement data RU(k) from which the drift noise is removed is obtained.
In order to confirm an effect of removing the drift noise by the measurement method of the present embodiment, a waveform obtained by adding a drift noise D(k) to a displacement waveform UO(k) as in Equation (39) is used as an evaluation waveform U(k).
U(k)=UO(k)+D(k) (39)
Using the evaluation waveform U(k) as the target data Ms(k), the measurement data RU(k) obtained by Equations (16) to (38) is compared with the displacement waveform UO(k).
As shown in
The rectangular waveform includes not only an accurate rectangular waveform but also a waveform approximate to the rectangular waveform. Similarly, the trapezoidal waveform includes not only an accurate trapezoidal waveform but also a waveform approximate to the trapezoidal waveform. Similarly, the sine half-wave waveform includes not only an accurate sine half-wave waveform but also a waveform approximate to the sine half-wave waveform.
Next, in a high-pass filter processing step S2, the measurement device 1 performs high-pass filter processing on the target data Ms(k) including the drift noise and generated in step S1, so as to generate the displacement data MU(k) as drift noise reduction data in which the drift noise is reduced, as in Equation (16). The high-pass filter processing of the target data Ms(k) may be processing of subtracting data, that is obtained by performing low-pass filter processing on the target data Ms(k), from the target data Ms(k), as in Equation (9) above. The low-pass filter processing may be moving average processing or FIR filter processing. The FIR is an abbreviation for finite impulse response. That is, the high-pass filter processing of the target data Ms(k) may be processing of subtracting data, that is obtained by performing moving average processing or FIR filter processing on the target data Ms(k), from the target data Ms(k). In the present embodiment, a frequency of the drift noise included in the target data Ms(k) is lower than a minimum value of a natural vibration frequency of the superstructure 7. The minimum value of the natural vibration frequency of the superstructure 7 is, for example, a frequency of the superstructure 7 of a first-order vibration mode in the longitudinal direction. By setting a cutoff frequency of the high-pass filter processing to be higher than the frequency of the drift noise of the superstructure 7 and lower than the minimum value of the natural vibration frequency, the drift noise in the generated displacement data MU(k) is reduced without reducing a signal component and a harmonic component of the natural vibration frequency of the superstructure 7. For example, the frequency of the drift noise may be less than 1 Hz, and the cutoff frequency of the high-pass filter processing may be 1 Hz or more.
Next, in a correction data estimation step S3, the measurement device 1 estimates, based on the displacement data MU(k) generated in step S2, the correction data MCC(k) corresponding to a difference between the displacement data MU(k) and the data obtained by removing the drift noise from the target data Ms(k). Specifically, the measurement device 1 generates the correction data MCC(k) by performing calculations of Equations (17) to (35).
Next, in a measurement data generation step S4, the measurement device 1 adds the displacement data MU(k) generated in step S2 and the correction data MCC(k) generated in step S3 to generate the measurement data RU(k), as in Equation (36).
Next, in a measurement data output step S5, the measurement device 1 outputs the measurement data RU(k) generated in step S4 to the monitoring device 3. Specifically, the measurement device 1 transmits the measurement data RU(k) to the monitoring device 3 via the communication network 4.
Then, in step S6, the measurement device 1 repeats the processing of steps S1 to S5 until the measurement of the displacement of the superstructure 7 of the bridge 5 is completed.
As shown in
Next, in a first interval correction data generation step S32, the measurement device 1 inverts a sign of the displacement data MU(k) in the first interval T1 to generate the first interval correction data MCC1(k), as in Equation (18).
Next, in a third interval correction data generation step S33, the measurement device 1 inverts a sign of the displacement data MU(k) in the third interval T3 to generate the third interval correction data MCC3(k), as in Equation (19).
Next, in a second interval correction data generation step S34, the measurement device 1 generates the second interval correction data MCC2(k) in the second interval T2.
Finally, in a correction data generation step S35, the measurement device 1 adds the first interval correction data MCC1(k) generated in step S32, the second interval correction data MCC2(k) generated in step S34, and the third interval correction data MCC3(k) generated in step S33, as in Equation (17).
As shown in
Next, in step S342, the measurement device 1 generates the second line data L2(k)=cLLC(k) obtained by multiplying the line LC(k) passing through the first peak p1 and the second peak p2 by the second coefficient cL, according to Equations (28) and (29). For example, the second coefficient cL is larger than −4 and equal to or less than −2.
Next, in step S343, the measurement device 1 generates the third line data L3(k) linearly approximating the third interval correction data MCC3(k) smaller than the product −mu2cTH of the first coefficient cTH and the value −mu2 obtained by inverting the sign of the amplitude mu2 of the second peak p2=(k2, mu2), according to Equations (25), (26), and (27).
Next, in step S344, according to Equations (31) and (33), the measurement device 1 calculates the first intersection point p3 between the first line data L1(k) and the second line data L2(k) and the second intersection point p4 between the second line data L2(k) and the third line data L3(k).
Finally, as in Equation (34), in step S345, the measurement device 1 generates the second interval correction data MCC2(k) in the second interval T2 by using data before the first intersection point p3 as the first line data L1(k), data from the first intersection point p3 to the second intersection point p4 as the second line data L2(k), and data after the second intersection point p4 as the third line data L3(k).
As shown in
The storage unit 24 is a memory that stores various programs, data, and the like for the processor 23 to perform calculation processing and control processing. The storage unit 24 stores programs, data, and the like for the processor 23 to implement predetermined application functions.
The acceleration sensor 22 detects an acceleration generated in each axial direction of the three axes.
The processor 23 controls the acceleration sensor 22 by executing an observation program 241 stored in the storage unit 24, generates observation data 242 based on the acceleration detected by the acceleration sensor 22, and stores the generated observation data 242 in the storage unit 24. In the present embodiment, the observation data 242 is the acceleration data As(k).
The communication unit 21 transmits the observation data 242 stored in the storage unit 24 to the measurement device 1 under the control of the processor 23.
As shown in
The first communication unit 11 receives the observation data 242 from the sensor 2, and outputs the received observation data 242 to the processor 13. As described above, the observation data 242 is the acceleration data As(k).
The storage unit 14 is a memory that stores programs, data, and the like for the processor 13 to perform the calculation processing and the control processing. The storage unit 14 stores programs, data, and the like for the processor 13 to implement predetermined application functions. The processor 13 may receive various programs, data, and the like via the communication network 4 and store the programs, data, and the like in the storage unit 14.
The processor 13 acquires the observation data 242 received by the first communication unit 11, and stores the observation data 242 in the storage unit 14 as observation data 142. Then, the processor 13 generates measurement data 143 based on the observation data 142 stored in the storage unit 14, and stores a generated measurement data 143 in the storage unit 14. In the present embodiment, the measurement data 143 is the measurement data RU(k).
In the present embodiment, the processor 13 functions as a target data generation unit 131, a high-pass filter processing unit 132, a correction data estimation unit 133, a measurement data generation unit 134, and a measurement data output unit 135 by executing a measurement program 141 stored in the storage unit 14. That is, the processor 13 includes the target data generation unit 131, the high-pass filter processing unit 132, the correction data estimation unit 133, the measurement data generation unit 134, and the measurement data output unit 135.
The target data generation unit 131 reads the observation data 142 stored in the storage unit 14, and generates the target data Ms(k) based on the acceleration data As(k) that is the observation data 142. Specifically, the target data generation unit 131 generates the target data Ms(k) by performing calculations of Equations (14) and (15). That is, the target data generation unit 131 performs the processing of the target data generation step S1 in
The high-pass filter processing unit 132 performs high-pass filter processing on the target data Ms(k), that includes the drift noise and is generated by the target data generation unit 131, to generate the displacement data MU(k) as drift noise reduction data in which the drift noise is reduced, as in Equation (16). That is, the high-pass filter processing unit 132 performs the processing of the high-pass filter processing step S2 in
The correction data estimation unit 133 generates, based on the displacement data MU(k) generated by the high-pass filter processing unit 132, the correction data MCC(k) corresponding to the difference between the displacement data MU(k) and the data obtained by removing the drift noise from the target data Ms(k). The correction data estimation unit 133 generates the correction data MCC(k) by performing calculations of Equations (17) to (35).
Specifically, first, the correction data estimation unit 133 calculates the first peak p1=(k1, mu1), and the second peak p2=(k2, mu2) of the displacement data MU(k), and specifies the first interval T1 before the first peak p1, the second interval T2 between the first peak p1 and the second peak p2, and the third interval T3 after the second peak p2. That is, the correction data estimation unit 133 performs the processing of the interval specifying step S31 in
Next, the correction data estimation unit 133 inverts the sign of the displacement data MU(k) in the first interval T1 to generate the first interval correction data MCC1(k), as in Equation (18). That is, the correction data estimation unit 133 performs the processing of the first interval correction data generation step S32 in
Next, the correction data estimation unit 133 inverts the sign of the displacement data MU(k) in the third interval T3 to generate the third interval correction data MCC3(k), as in Equation (19). That is, the correction data estimation unit 133 performs the processing of the third interval correction data generation step S33 in
Next, according to Equation (21), Equation (22), and Equation (23), the correction data estimation unit 133 generates the first line data L1(k) linearly approximating the first interval correction data MCC1(k) smaller than the product −mu1cTH of the first coefficient cTH and the value −mu1 obtained by inverting the sign of the amplitude mu1 of the first peak p1=(k1, mu1). That is, the correction data estimation unit 133 performs the processing of step S341 in
Next, the correction data estimation unit 133 generates the second line data L2(k)=cLLC(k) obtained by multiplying the line LC(k) passing through the first peak p1 and the second peak p2 by the second coefficient cL, using Equation (28). That is, the correction data estimation unit 133 performs the processing of step S342 in
Next, the correction data estimation unit 133 generates the third line data L3(k) linearly approximating the third interval correction data MCC3(k) smaller than the product −mu2cTH of the first coefficient cTH and the value −mu2 obtained by inverting the sign of the amplitude mu2 of the second peak p2=(k2, mu2), according to Equations (25), (26), and (27). That is, the correction data estimation unit 133 performs the processing of step S343 in
Next, according to Equations (31) and (33), the correction data estimation unit 133 calculates the first intersection point p3 between the first line data L1(k) and the second line data L2(k) and the second intersection point p4 between the second line data L2(k) and the third line data L3(k). That is, the correction data estimation unit 133 performs the processing of step S344 in
Next, as in Equation (34), the correction data estimation unit 133 generates the second interval correction data MCC2(k) in the second interval T2 by using data before the first intersection point p3 as the first line data L1(k), data from the first intersection point p3 to the second intersection point p4 as the second line data L2(k), and data after the second intersection point p4 as the third line data L3(k). That is, the correction data estimation unit 133 performs the processing of step S345 in
Finally, the correction data estimation unit 133 adds the first interval correction data MCC1(k), the second interval correction data MCC2(k), and the third interval correction data MCC3(k) to generate the correction data MCC(k), as in Equation (17). That is, the correction data estimation unit 133 performs the processing of the correction data generation step S35 in
As described above, the correction data estimation unit 133 performs the processing of the correction data estimation step S3 in
The measurement data generation unit 134 generates the measurement data RU(k) by adding the displacement data MU(k) generated by the high-pass filter processing unit 132 and the correction data MCC(k) generated by the correction data estimation unit 133, as in Equation (36). That is, the measurement data generation unit 134 performs the processing of the measurement data generation step S4 in
The measurement data output unit 135 reads the measurement data 143 stored in the storage unit 14 and outputs the measurement data 143 to the monitoring device 3. Then, the second communication unit 12 transmits the measurement data 143 stored in the storage unit 14 to the monitoring device 3 via the communication network 4 under the control of the measurement data output unit 135. That is, the measurement data output unit 135 performs the processing of the measurement data output step S5 in
As described above, the measurement program 141 is a program that causes the measurement device 1, which is a computer, to execute each procedure of the flowchart shown in
As shown in
The communication unit 31 receives the measurement data 143 from the measurement device 1 and outputs the received measurement data 143 to the processor 32. As described above, the measurement data 143 is the measurement data RU(k).
The display unit 33 displays various types of information under the control of the processor 32. The display unit 33 may be, for example, a liquid crystal display or an organic EL display. The EL is an abbreviation for Electro Luminescence.
The operation unit 34 outputs operation data corresponding to an operation of a user to the processor 32. The operation unit 34 may be, for example, an input device such as a mouse, a keyboard, or a microphone.
The storage unit 35 is a memory that stores various programs, data, and the like for the processor 32 to perform calculation processing and control processing. The storage unit 35 stores programs, data, and the like for the processor 32 to implement predetermined application functions.
The processor 32 acquires the measurement data 143 received by the communication unit 31, generates evaluation information by evaluating a temporal change in the displacement of the superstructure 7 based on the acquired measurement data 143, and displays the generated evaluation information on the display unit 33.
In the present embodiment, the processor 32 functions as a measurement data acquisition unit 321 and a monitoring unit 322 by executing a monitoring program 351 stored in the storage unit 35. That is, the processor 32 includes the measurement data acquisition unit 321 and the monitoring unit 322.
The measurement data acquisition unit 321 acquires the measurement data 143 received by the communication unit 31, and adds the acquired measurement data 143 to a measurement data sequence 352 stored in the storage unit 35.
The monitoring unit 322 statistically evaluates the temporal change in the displacement of the superstructure 7 based on the measurement data sequence 352 stored in the storage unit 35. Then, the monitoring unit 322 generates evaluation information indicating the evaluation result, and displays the generated evaluation information on the display unit 33. The user can monitor a state of the superstructure 7 based on the evaluation information displayed on the display unit 33.
The monitoring unit 322 may perform processing such as monitoring of the railway vehicle 6 and abnormality determination of the superstructure 7 based on the measurement data sequence 352 stored in the storage unit 35.
The processor 32 transmits, based on the operation data output from the operation unit 34, information for adjusting operation states of the measurement device 1 and the sensor 2 to the measurement device 1 via the communication unit 31. The operation state of the measurement device 1 is adjusted according to the information received via the second communication unit 12. In addition, the measurement device 1 transmits information for adjusting the operation state of the sensor 2 received via the second communication unit 12 to the sensor 2 via the first communication unit 11. The operation state of the sensor 2 is adjusted according to the information received via the communication unit 21.
In the processors 13, 23, and 32, for example, the functions of the respective units may be implemented by individual hardware, or the functions of the respective units may be implemented by integrated hardware. For example, the processors 13, 23, and 32 include hardware, and the hardware may include at least one of a circuit that processes a digital signal and a circuit that processes an analog signal. The processors 13, 23, and 32 may be a CPU, a GPU, a DSP, or the like. The CPU is an abbreviation for central processing unit, the GPU is an abbreviation for graphics processing unit, and the DSP is an abbreviation for digital signal processor. The processors 13, 23, and 32 may be configured as custom ICs such as ASICs so as to implement the functions of the respective units, or may implement the functions of the respective units by a CPU and an ASIC. The ASIC is an abbreviation for application specific integrated circuit, and the IC is an abbreviation for integrated circuit.
The storage units 14, 24, and 35 are configured by, for example, various IC memories such as a ROM, a flash ROM, and a RAM, and a recording medium such as a hard disk, a memory card, and the like. ROM is an abbreviation for read only memory, RAM is an abbreviation for random access memory, and IC is an abbreviation for integrated circuit. The storage units 14, 24, and 35 include a non-volatile information storage device that is a computer-readable device or a medium, and various programs, data, and the like may be stored in the information storage device. The information storage device may be an optical disk such as an optical disk DVD or a CD, a hard disk drive, or various memories such as a card type memory or a ROM.
Although only one sensor 2 is shown in
In the measurement method of the first embodiment described above, the measurement device 1 generates the displacement data MU(k), in which the drift noise is reduced, using the target data Ms(k) to be processed, and estimates the correction data MCC(k) based on the displacement data MU(k). Further, since the correction data MCC(k) corresponds to the difference between the displacement data MU(k) and the data obtained by removing the drift noise from the displacement data Ms(k), the correction data MCC(k) includes the significant signal component removed by high-pass filter processing. Therefore, according to the measurement method of the first embodiment, the measurement device 1 can generate the measurement data RU(k), in which the drift noise is reduced with respect to the target data Ms(k), by adding the displacement data MU(k) and the correction data MCC(k). According to the measurement method of the first embodiment, the measurement device 1 generates the displacement data MU(k) and the correction data MCC(k) using the target data Ms(k) to be processed, adds the displacement data MU(k) and the correction data MCC(k), and thereby the measurement device 1 can generate the measurement data RU(k), in which the drift noise is reduced, without preparing information for reducing the drift noise in advance. Therefore, by using the measurement method of the first embodiment, accurate measurement data RU(k) can be obtained regardless of a change in environment, and cost reduction can be achieved.
According to the measurement method of the first embodiment, since the measurement device 1 can specify the first interval T1, the second interval T2, and the third interval T3, and can generate the appropriate first interval correction data MCC1(k), second interval correction data MCC2(k) and third interval correction data MCC3(k) based on a feature of the displacement data MU(k) in which the drift noise is reduced with respect to the target data Ms(k), it is possible to improve the estimation accuracy of the correction data MCC(k) generated by adding the first interval correction data MCC1(k), the second interval correction data MCC2(k), and the third interval correction data MCC3(k). In particular, since the measurement device 1 can generate the first line data L1(k), the second line data L2(k), and the third line data L3(k) with high accuracy by setting the first coefficient cTH and the second coefficient CL to appropriate values, the measurement device 1 can generate the second interval correction data MCC2(k) with high accuracy based on the first line data L1(k), the second line data L2(k), and the third line data L3(k).
According to the measurement method of the first embodiment, the measurement device 1 performs processing of subtracting the data, that is obtained by performing moving average processing or FIR filter processing on the target data Ms(k), from the target data Ms(k) as the high-pass filter processing to be performed on the target data Ms(k), and thus the high-pass filter processing can be easily performed. Further, in the moving average processing or the FIR filter processing, since a group delay of each signal component included in the target data Ms(k) is constant, the correction data MCC(k) can be estimated with high accuracy.
In the measurement method of the first embodiment, the target data Ms(k) to be processed is data of the displacement of the superstructure 7 caused by the railway vehicle 6 moving on the superstructure 7 of the bridge 5. Therefore, according to the measurement method of the first embodiment, since the measurement device 1 generates the measurement data RU(k) which is the data of the displacement of the superstructure 7 caused by the movement of the railway vehicle 6 and in which the drift noise is reduced, it is possible to accurately measure the displacement of the superstructure 7 of the bridge 5.
According to the measurement method of the first embodiment, since the measurement device 1 generates the target data Ms(k) to be processed obtained by twice integrating the acceleration in the direction intersecting the surface of the superstructure 7 detected by the sensor 2 installed in the superstructure 7, it is possible to accurately measure the displacement of the superstructure 7.
In the measurement method of the first embodiment, since the frequency of the drift noise included in the target data Ms(k) is lower than the minimum value of the natural vibration frequency of the superstructure 7, the cutoff frequency of the high-pass filter processing for the target data Ms(k) can be set higher than the frequency of the drift noise of the superstructure 7 and lower than the minimum value of the natural vibration frequency. Therefore, according to the measurement method of the first embodiment, the drift noise can be reduced without reducing the signal component and the harmonic component of the natural vibration frequency of the superstructure 7 in the generated measurement data RU(k). In the measurement method of the first embodiment, since the target data Ms(k) to be processed includes data of a waveform that projects in the positive direction or the negative direction, for example, data of a rectangular waveform, a trapezoidal waveform, or a sine half-wave waveform, the measurement device 1 can generate more appropriate correction data MCC(k) based on features of these waveforms, so that it is possible to improve the estimation accuracy of the generated correction data MCC(k).
Hereinafter, in a second embodiment, the same components as those in the first embodiment will be denoted by the same reference numerals, repetitive description as that in the first embodiment will be omitted or simplified, and contents different from those in the first embodiment will be mainly described.
In the measurement method of the first embodiment, the measurement device 1 generates the correction data MCC(k) by adding the first interval correction data MCC1(k), the second interval correction data MCC2(k), and the third interval correction data MCC3(k), and generates the measurement data RU(k) by adding the displacement data MU(k), and the correction data MCC(k). On the other hand, the measurement data RU(k) obtained by adding the displacement data MU(k) and the correction data MCC(k) as in Equation (38) is always 0 in the first interval T1 and the third interval T3. Therefore, in a measurement method of the second embodiment, the measurement device 1 generates the correction data MCC2(k) in the second interval T2 without generating the first interval correction data MCC1(k) and the third interval correction data MCC3(k). Then, as shown in Equation (40), the measurement device 1 generates the measurement data RU(k) by setting, as 0, data in the interval of k≤k1 which is the first interval T1 and data in the interval of k2≤k which is the third interval T3, and adding the displacement data MU(k) and the correction data MCC2(k) in the interval of k1<k<k2 which is the second interval T2.
In Equation (38), since the correction data MCC(k) matches the second interval correction data MCC2(k) in the interval of k1<k<k2, a calculation result of Equation (38) matches a calculation result of Equation (40).
As shown in
Next, in a high-pass filter processing step S120, the measurement device 1 performs high-pass filter processing on the target data Ms(k) including the drift noise and generated in step S110, so as to generate the displacement data MU(k) as drift noise reduction data in which the drift noise is reduced, as in Equation (16). The processing of the high-pass filter processing step S120 is the same as the processing of the high-pass filter processing step S2 in
Next, in an interval specifying step S130, the measurement device 1 calculates the first peak p1=(k1, mu1), and the second peak p2=(k2, mu2) of the displacement data MU(k) generated in step S120, and specifies the first interval T1 before the first peak p1, the second interval T2 between the first peak p1 and the second peak p2, and the third interval T3 after the second peak p2. That is, the first interval T1 is an interval of k≤k1, the second interval T2 is an interval of k1<k<k2, and the third interval T3 is an interval of k2≤k. The processing of the interval specifying step S130 is the same as the processing of the interval specifying step S31 of
Next, in a correction data estimation step S140, the measurement device 1 generates, based on the displacement data MU(k) generated in step S120, the correction data MCC2(k) corresponding to the difference between the displacement data MU(k) and the data obtained by removing the drift noise from the displacement data Ms(k) in the second interval T2. Specifically, the measurement device 1 generates the correction data MCC2(k) by performing calculations of Equations (20) to (34).
Next, in a measurement data generation step S150, the measurement device 1 sets data in the first interval T1 as 0, adds the displacement data MU(k) generated in step S120 and the correction data MCC2(k) generated in step S140 in the second interval T2, and sets data in the third interval T3 as 0, as in Equation (40), to generate the measurement data RU(k).
Next, in a measurement data output step S160, the measurement device 1 outputs the measurement data RU(k) generated in step S150 to the monitoring device 3. Specifically, the measurement device 1 transmits the measurement data RU(k) to the monitoring device 3 via the communication network 4. The processing of the measurement data output step S160 is the same as the processing of the measurement data output step S5 of
Then, in step S170, the measurement device 1 repeats the processing of steps S110 to S160 until the measurement of the displacement of the superstructure 7 of the bridge 5 is completed.
As shown in
Next, in step S142, the measurement device 1 inverts a sign of the displacement data MU(k) in the third interval T3 to generate third interval inverted data MCC3(k) in the same manner as in Equation (19) for obtaining the third interval correction data MCC3(k).
Next, in step S143, according to Equation (21), Equation (22), and Equation (23), the measurement device 1 generates first line data L1(k) linearly approximating the first interval inverted data MCC1(k) smaller than the product −mu1cTH of the first coefficient cTH and the value −mu1 obtained by inverting the sign of the amplitude mu1 of the first peak p1=(k1, mu1). Here, the first coefficient cTH is larger than 0 and smaller than 1.
Next, in step S144, the measurement device 1 generates the second line data L2(k)=cLLC(k) obtained by multiplying the line LC(k) passing through the first peak p1 and the second peak p2 by the second coefficient cL, according to Equation (28). For example, the second coefficient cL is larger than −4 and equal to or less than −2.
Next, in step S145, the measurement device 1 generates the third line data L3(k) linearly approximating third interval inverted data MCC3(k) smaller than the product −mu2cTH of the first coefficient cTH and the value −mu2 obtained by inverting the sign of the amplitude mu2 of the second peak p2=(k2, mu2), according to Equations (25), (26), and (27).
Next, in step S146, according to Equations (31) and (33), the measurement device 1 calculates the first intersection point p3 between the first line data L1(k) and the second line data L2(k) and the second intersection point p4 between the second line data L2(k) and the third line data L3(k).
Finally, in step S147, as in Equation (34), the measurement device 1 generates the correction data MCC2(k) in the second interval T2 by using data before the first intersection point p3 as the first line data L1(k), data from the first intersection point p3 to the second intersection point p4 as the second line data L2(k), and data after the second intersection point p4 as the third line data L3(k).
In the present embodiment, the processor 13 functions as a target data generation unit 131, a high-pass filter processing unit 132, a correction data estimation unit 133, a measurement data generation unit 134, a measurement data output unit 135 and an interval specifying unit 136 by executing the measurement program 141 stored in the storage unit 14. That is, the processor 13 includes the target data generation unit 131, the high-pass filter processing unit 132, the correction data estimation unit 133, the measurement data generation unit 134, the measurement data output unit 135, and the interval specifying unit 136.
The functions of the target data generation unit 131, the low-pass filter processing unit 132, and the measurement data output unit 135 are similar as those in the first embodiment, and thus description thereof will be omitted. The target data generation unit 131 performs the processing of the target data generation step S110 in
Next, the interval specifying unit 136 calculates the first peak p1=(k1, mu1) and the second peak p2=(k2, mu2) of the generated displacement data MU(k) generated by the high-pass filter processing unit 132, and specifies the first interval T1 before the first peak p1, the second interval T2 between the first peak p1 and the second peak p2, and the third interval T3 after the second peak p2. That is, the interval specifying unit 136 performs the processing of the interval specifying step S130 in
The correction data estimation unit 133 generates, based on the displacement data MU(k) generated by the high-pass filter processing unit 132, the correction data MCC2(k) in the second interval T2 corresponding to the difference between the displacement data MU(k) and the data obtained by removing the drift noise from the target data Ms(k). The correction data estimation unit 133 generates the correction data MCC2(k) by performing calculations of Equations (20) to (34).
Specifically, first, the correction data estimation unit 133 inverts the sign of the displacement data MU(k) in the first interval T1 to generate the first interval inverted data MCC1(k) in the same manner as in Equation (18) for obtaining the first interval correction data MCC1(k). That is, the correction data estimation unit 133 performs the processing of step S141 in
Next, the correction data estimation unit 133 inverts the sign of the displacement data MU(k) in the third interval T3 to generate the third interval inverted data MCC3(k) in the same manner as in Equation (19) for obtaining the third interval correction data MCC3(k). That is, the correction data estimation unit 133 performs the processing of step S142 in
Next, according to Equation (21), Equation (22), and Equation (23), the correction data estimation unit 133 generates the first line data L1(k) linearly approximating the first interval inverted data MCC1(k) smaller than the product −mu1cTH of the first coefficient cTH and the value −mu1 obtained by inverting the sign of the amplitude mu1 of the first peak p1=(k1, mu1). That is, the correction data estimation unit 133 performs the processing of step S143 in
Next, the correction data estimation unit 133 generates the second line data L2(k)=cLLC(k) obtained by multiplying the line LC(k) passing through the first peak p1 and the second peak p2 by the second coefficient cL, according to Equation (28). That is, the correction data estimation unit 133 performs the processing of step S144 in
Next, the correction data estimation unit 133 generates the third line data L3(k) linearly approximating the third interval inverted data MCC3(k) smaller than the product −mu2cTH of the first coefficient cTH and the value −mu2 obtained by inverting the sign of the amplitude mu2 of the second peak p2=(k2, mu2), according to Equations (25), (26), and (27). That is, the correction data estimation unit 133 performs the processing of step S145 in
Next, according to Equations (31) and (33), the correction data estimation unit 133 calculates the first intersection point p3 between the first line data L1(k) and the second line data L2(k) and the second intersection point p4 between the second line data L2(k) and the third line data L3(k). That is, the correction data estimation unit 133 performs the processing of step S146 in
Finally, as in Equation (34), the correction data estimation unit 133 generates the correction data MCC2(k) in the second interval T2 by using data before the first intersection point p3 as the first line data L1(k), data from the first intersection point p3 to the second intersection point p4 as the second line data L2(k), and data after the second intersection point p4 as the third line data L3(k). That is, the correction data estimation unit 133 performs the processing of step S147 in
As described above, the correction data estimation unit 133 performs the processing of the correction data estimation step S140 in
The measurement data generation unit 134 sets data in the first interval T1 as 0, adds the displacement data MU(k) generated by the high-pass filter processing unit 132 and the correction data MCC2(k) generated by the correction data estimation unit 133 in the second interval T2, and sets the third interval T3 as 0, so as to generate the measurement data RU(k), as in Equation (40). That is, the measurement data generation unit 134 performs the processing of the measurement data generation step S150 in
As described above, the measurement program 141 is a program that causes the measurement device 1, which is a computer, to execute each procedure of the flowchart shown in
In the measurement method of the second embodiment described above, the measurement device 1 generates the displacement data MU(k), in which the drift noise is reduced, using the target data Ms(k) to be processed, and specifies the first interval T1, the second interval T2, and the third interval T3 and estimates the correction data MCC(k) in the second interval T2, based on a feature of the displacement data MU(k). Since in the second interval T2, the correction data MCC(k) corresponds to the difference between the displacement data MU(k) and the data obtained by removing the drift noise from the target data Ms(k), the correction data MCC(k) includes the significant signal component removed by the high-pass filter processing. Therefore, according to the measurement method of the second embodiment, the measurement device 1 can generate the measurement data RU(k) in which the drift noise is reduced with respect to the target data Ms(k) by setting data in the first interval T1 and data in the third interval T3 as 0, and adding the displacement data MU(k) and the correction data MCC(k) in the second interval T2. According to the measurement method of the second embodiment, the measurement device 1 generates the displacement data MU(k) and the correction data MCC2(k) using the target data Ms(k) to be processed, adds the displacement data MU(k) and the correction data MCC2(k) in the second interval T2, and thereby the measurement device 1 can generate the measurement data RU(k), in which the drift noise is reduced, without preparing information for reducing the drift noise in advance. Therefore, by using the measurement method of the second embodiment, accurate measurement data RU(k) can be obtained regardless of a change in environment, and cost reduction can be achieved.
According to the measurement method of the second embodiment, in order to generate the measurement data RU(k), the measurement device 1 does not need to generate the correction data MCC1(k) and MCC3(k) and add the displacement data MU(k), and the correction data MCC1(k) and MCC3(k) in the first interval T1 and the third interval T3, and thus the calculation amount is reduced.
According to the measurement method of the second embodiment, the measurement device 1 can generate more appropriate correction data MCC2(k) in the second interval T2 based on the feature of the displacement data MU(k) in which the drift noise is reduced with respect to the target data Ms(k), and thus the estimation accuracy of the generated correction data MCC2(k) can be improved. In particular, since the measurement device 1 can generate the first line data L1(k), the second line data L2(k), and the third line data L3(k) with high accuracy by setting the first coefficient cTH and the second coefficient CL to appropriate values, the measurement device 1 can generate the second interval correction data MCC2(k) with high accuracy based on the first line data L1(k), the second line data L2(k), and the third line data L3(k).
In addition, according to the measurement method of the second embodiment, it is possible to achieve the same effects as those of the measurement method of the first embodiment.
The present disclosure is not limited to the present embodiments, and various modifications can be made within the scope of the gist of the present disclosure.
In the above embodiments, the observation device is the sensor 2 that outputs the acceleration data As(k), and the target data is the target data Ms(k) obtained by integrating the acceleration data As(k) twice, but the observation device and the target data are not limited thereto. For example, the observation device may be a contact-type displacement meter, a ring-type displacement meter, a laser displacement meter, a pressure-sensitive sensor, an image processing-based displacement measurement device, or an optical fiber-based displacement measurement device, and the target data may be observation data observed by any of these observation devices. The contact-type displacement meter, the ring-type displacement meter, the laser displacement meter, the image processing-based displacement measurement device, or the optical fiber-based displacement measurement device measures a displacement of the observation point R caused by traveling of the railway vehicle 6. The pressure-sensitive sensor detects a change in stress at the observation point R caused by traveling of the railway vehicle 6. For example, the observation device may be a velocity sensor, and the target data may be data obtained by integrating the velocity detected by the velocity sensor. According to the measurement methods, the measurement device 1 can accurately measure the displacement of the superstructure 7 using the data of the displacement, the stress change, or the velocity.
As an example,
In the embodiments described above, the bridge 5 is a railroad bridge, and the moving object moving on the bridge 5 is the railway vehicle 6, but the bridge 5 may be a road bridge, and the moving object moving on the bridge 5 may be a vehicle such as an automobile, a road train, or a construction vehicle.
The bridge 5 is, for example, a steel bridge, a girder bridge, or an RC bridge.
Each sensor 2 is installed at position of a central portion of the superstructure 7 in a longitudinal direction, specifically, at a central portion of the main girder G in the longitudinal direction. Each sensor 2 is not limited to being installed at the central portion of the superstructure 7 as long as each sensor 2 can detect an acceleration for calculating the displacement of the superstructure 7. When each sensor 2 is provided on the floor plate F of the superstructure 7, the sensor 2 may be damaged due to traveling of the vehicle 6a, and the measurement accuracy may be affected by local deformation of the bridge floor 7a, so that in the example of
As shown in
The measurement device 1 calculates displacements of bending of the lanes L1 and L2 caused by the traveling of the vehicle 6a based on the acceleration data output from the sensors 2, and transmits information on the displacements of the lanes L1 and L2 to the monitoring device 3 via the communication network 4. The monitoring device 3 may store the information in a storage device (not illustrated), and may perform processing such as monitoring of the vehicle 6a and abnormality determination of the superstructure 7 based on the information, for example.
In the embodiments described above, each sensor 2 is provided at the main girder G of the superstructure 7, but the sensor may be provided on the surface of or inside the superstructure 7, at the lower surface of the floor plate F, at the bridge pier 8a, or the like. In the embodiments described above, the superstructure of the bridge is described as an example of the structure, but the present disclosure is not limited thereto, and it is sufficient that the structure is deformed due to the movement of the moving object.
A railway vehicle or a vehicle passing through a bridge is a vehicle that has a large weight and can be measured by BWIM. The BWIM is an abbreviation of bridge weigh in motion, and is a technology in which a bridge is regarded as a “scale”, deformation of the bridge is measured, and thereby the weight and the number of axles of the railway vehicle and vehicle passing through the bridge is measured. The superstructure of the bridge, which enables analysis of the weight of the railway vehicle or the vehicle, that travels on the bridge, based on a response such as deformation and strain, is a structure in which the BWIM functions. The BWIM system, which applies a physical process between an action on the superstructure of the bridge and the response, enables the measurement of the weight of the vehicle that travels on the bridge.
The embodiments and modifications described above are merely examples, and the present disclosure is not limited thereto. For example, it is also possible to appropriately combine the embodiments and modifications.
The present disclosure includes a configuration substantially the same as the configuration described in the embodiment, for example, a configuration having the same function, method and result, or a configuration having the same purpose and effect. The present disclosure includes a configuration obtained by replacing a non-essential portion of the configuration described in the embodiment. The present disclosure includes a configuration having the same operation and effect as the configuration described in the embodiments, or a configuration capable of achieving the same purpose. Further, the present disclosure includes a configuration in which a known technique is added to the configuration described in the embodiment.
The following contents are derived from the embodiments and modifications described above.
According to an aspect of the present disclosure, a measurement method includes: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; a correction data estimation step of estimating, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; a measurement data generation step of generating measurement data by adding the drift noise reduction data and the correction data, in which the correction data estimation includes: an interval specifying step of calculating a first peak and a second peak of the drift noise reduction data and specifying a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak, a first interval correction data generation step of generating first interval correction data by inverting a sign of the drift noise reduction data in the first interval, a second interval correction data generation step of generating second interval correction data in the second interval, a third interval correction data generation step of generating third interval correction data by inverting a sign of the drift noise reduction data in the third interval, and a correction data generation step of generating the correction data by adding the first interval correction data, the second interval correction data, and the third interval correction data, and the second interval correction data generation includes: generating first line data linearly approximating the first interval correction data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generating second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generating third line data linearly approximating the third interval correction data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculating a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, and generating the second interval correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data.
According to the measurement method, the drift noise reduction data in which the drift noise is reduced is generated using the target data to be processed, and the correction data is estimated based on the drift noise reduction data. Further, since the correction data corresponds to the difference between the drift noise reduction data and the data obtained by removing the drift noise from the target data, the correction data includes the significant signal component removed by the high-pass filter processing. Therefore, according to the measurement method, by adding the drift noise reduction data and the correction data, it is possible to generate the measurement data in which the drift noise is reduced with respect to the target data. According to the measurement method, by generating the drift noise reduction data and the correction data using the target data to be processed, and adding the drift noise reduction data and the correction data, the measurement data in which the drift noise is reduced can be generated without preparing information for reducing the drift noise in advance. Therefore, by using the measurement method, accurate measurement data can be obtained regardless of a change in environment, and cost reduction can be achieved.
According to the measurement method, the three intervals can be specified based on a feature of the drift noise reduction data in which the drift noise is reduced with respect to the target data, and more appropriate correction data can be generated in each interval, so that the estimation accuracy of the generated correction data can be improved. In particular, since the first line data, the second line data, and the third line data with high accuracy can be obtained by setting the first coefficient and the second coefficient to appropriate values, the correction data with high accuracy can be generated in the second interval.
According to an aspect of the present disclosure, a measurement method includes: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; an interval specifying step of calculating a first peak and a second peak of the drift noise reduction data and specifying a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak; a correction data estimation step of estimating, based on the drift noise reduction data, correction data in the second interval corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation step of generating measurement data by setting data in the first interval as 0, adding the drift noise reduction data and the correction data in the second interval, and setting data in the third interval as 0, in which the correction data estimation includes: generating first interval inverted data by inverting a sign of the drift noise reduction data in the first interval, generating third interval inverted data by inverting a sign of the drift noise reduction data in the third interval, generating first line data linearly approximating the first interval inverted data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generating second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generating third line data linearly approximating the third interval inverted data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculating a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, and generating the correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data.
According to the measurement method, drift noise reduction data in which drift noise is reduced is generated using target data to be processed, three intervals are specified based on characteristics of the drift noise reduction data, and correction data is estimated in the second interval. Further, in the second interval, since the correction data corresponds to the difference between the drift noise reduction data and the data obtained by subtracting the drift noise from the target data, the correction data includes the significant signal component removed by the high-pass filter processing. Therefore, according to the measurement method, in the second interval, by setting data in the first interval and data in the third interval as 0 and adding the drift noise reduction data and the correction data, it is possible to generate the measurement data in which the drift noise is reduced with respect to the target data. According to the measurement method, by generating the drift noise reduction data, and the correction data using the target data to be processed, and adding the drift noise reduction data, and the correction data in the second interval, the measurement data in which the drift noise is reduced can be generated without preparing information for reducing the drift noise in advance. Therefore, by using the measurement method, accurate measurement data can be obtained regardless of a change in environment, and cost reduction can be achieved.
According to the measurement method, based on a feature of the drift noise reduction data in which the drift noise with respect to the target data are reduced, and more appropriate correction data can be generated in the second interval, so that the estimation accuracy of the generated correction data can be improved. In particular, since the first line data, the second line data, and the third line data with high accuracy can be obtained by setting the first coefficient and the second coefficient to appropriate values, the correction data with high accuracy can be generated in the second interval.
According to the measurement method, in order to generate the measurement data, there is no need to generate the correction data and to add the drift noise reduction data and the correction data in the first interval and the third interval, so that the calculation amount is reduced.
In the measurement method of the above aspect, the first coefficient may be larger than 0 and smaller than 1.
In the measurement method of the above aspect, the second coefficient may be larger than −4 and equal to or less than −2.
In the measurement method of the above aspect, the high-pass filter processing may be processing of subtracting, from the target data, data obtained by performing moving average processing or FIR filter processing on the target data.
According to the measurement method, the high-pass filter processing can be performed easily, and in the moving average processing or the FIR filter processing, a group delay of each signal component included in the target data is constant, so that the correction data can be estimated with high accuracy.
In the measurement method of the above aspect, the target data may be data of a displacement of a structure caused by a moving object that moves on the structure.
According to the measurement method, since the data of the displacement of the structure caused by the movement of the moving object is obtained as the measurement data in which the drift noise is reduced, the displacement of the structure can be measured with high accuracy.
In the measurement method of the above aspect, the target data may be data obtained by integrating twice an acceleration in a direction intersecting a surface of the structure on which the moving object moves.
According to the measurement method, it is possible to accurately measure the displacement of the structure using the output data of the acceleration sensor installed at the structure.
In the measurement method of the above aspect, the target data may be observation data observed by a contact-type displacement meter, a ring-type displacement meter, a laser displacement meter, a pressure-sensitive sensor, an image processing-based displacement measurement device or an optical fiber-based displacement measurement device, or data obtained by integrating a velocity detected by a velocity sensor.
According to the measurement method, it is possible to accurately measure the displacement of the structure using the data of a displacement, a stress change, or a velocity.
In the measurement method of the above aspect, the structure may be a superstructure of a bridge.
According to the measurement method, it is possible to accurately measure a displacement of the superstructure of the bridge.
In the measurement method of the above aspect, a frequency of the drift noise may be lower than a minimum value of a natural vibration frequency of the superstructure.
According to the measurement method, by setting the cutoff frequency of the high-pass filter processing to be higher than the frequency of the drift noise of the superstructure and lower than the minimum value of the natural vibration frequency, the drift noise in the generated displacement data can be reduced without reducing the signal component and the harmonic component of the natural vibration frequency of the superstructure.
In the measurement method of the above aspect, the moving object may be a vehicle or a railway vehicle.
According to the measurement method, it is possible to accurately measure the displacement of the structure caused by movement of the vehicle or the railway vehicle.
In the measurement method of the above aspect, the target data may include data of a waveform that projects in a positive direction or a negative direction.
According to the measurement method, since more appropriate correction data can be generated based on a feature of the waveform that projects in the positive direction or the negative direction, it is possible to improve the estimation accuracy of the generated correction data.
In the measurement method of the above aspect, the waveform may be a rectangular waveform, a trapezoidal waveform, or a sine half-wave waveform.
According to the measurement method, since more appropriate correction data can be generated based on a feature of the rectangular waveform, the trapezoidal waveform or the sine half-wave waveform, it is possible to improve the estimation accuracy of the generated correction data.
According to an aspect of the present disclosure, a measurement device includes: a high-pass filter processing unit configured to perform high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; a correction data estimation unit configured to estimate, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation unit configured to generate measurement data by adding the drift noise reduction data and the correction data, in which the correction data estimation unit is configured to: calculate a first peak and a second peak of the drift noise reduction data and specify a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak, generate first interval correction data by inverting a sign of the drift noise reduction data in the first interval, generate third interval correction data by inverting a sign of the drift noise reduction data in the third interval, generate first line data linearly approximating the first interval correction data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generate second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generate third line data linearly approximating the third interval correction data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculate a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, generate the second interval correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data, and generate the correction data by adding the first interval correction data, the second interval correction data, and the third interval correction data.
According to the measurement device, the drift noise reduction data in which the drift noise is reduced is generated using the target data to be processed, and the correction data is estimated based on the drift noise reduction data. Further, since the correction data corresponds to the difference between the drift noise reduction data and the data obtained by removing the drift noise from the target data, the correction data includes the significant signal component removed by the high-pass filter processing. Therefore, according to the measurement device, by adding the drift noise reduction data and the correction data, it is possible to generate the measurement data in which the drift noise is reduced with respect to the target data. According to the measurement device, by generating the drift noise reduction data, and the correction data using the target data to be processed, and adding the drift noise reduction data, and the correction data, the measurement data in which the drift noise is reduced can be generated without preparing information for reducing the drift noise in advance. Therefore, by using the measurement device, accurate measurement data can be obtained regardless of a change in environment, and cost reduction can be achieved.
According to the measurement device, the three intervals can be specified based on a feature of the drift noise reduction data in which the drift noise is reduced with respect to the target data, and more appropriate correction data can be generated in each interval, so that the estimation accuracy of the generated correction data can be improved. In particular, since the first line data, the second line data, and the third line data with high accuracy can be obtained by setting the first coefficient and the second coefficient to appropriate values, the correction data with high accuracy can be generated in the second interval.
According to an aspect of the present disclosure, a measurement system includes: the measurement device according to the above aspect; and an observation device configured to observe an observation point, in which the target data is data based on observation data observed by the observation device.
According to an aspect of the present disclosure, a non-transitory computer-readable storage medium stores a measurement program, and the measurement program causes a computer to execute: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced; a correction data estimation step of estimating, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data; and a measurement data generation step of generating measurement data by adding the drift noise reduction data and the correction data, in which the correction data estimation step includes: an interval specifying step of calculating a first peak and a second peak of the drift noise reduction data and specifying a first interval before the first peak, a second interval between the first peak and the second peak, and a third interval after the second peak, a first interval correction data generation step of generating first interval correction data by inverting a sign of the drift noise reduction data in the first interval, a second interval correction data generation step of generating second interval correction data in the second interval, a third interval correction data generation step of generating third interval correction data by inverting a sign of the drift noise reduction data in the third interval, and a correction data generation step of generating the correction data by adding the first interval correction data, the second interval correction data, and the third interval correction data, and the second interval correction data generation includes: generating first line data linearly approximating the first interval correction data smaller than a product of a first coefficient and a value obtained by inverting a sign of an amplitude of the first peak, generating second line data obtained by multiplying a line passing through the first peak and the second peak by a second coefficient, generating third line data linearly approximating the third interval correction data smaller than a product of the first coefficient and a value obtained by inverting a sign of an amplitude of the second peak, calculating a first intersection point between the first line data and the second line data and a second intersection point between the second line data and the third line data, and generating the second interval correction data in the second interval by using data before the first intersection point as the first line data, data from the first intersection point to the second intersection point as the second line data, and data after the second intersection point as the third line data.
According to the measurement program, the drift noise reduction data in which the drift noise is reduced is generated using target data to be processed, and the correction data is estimated based on the drift noise reduction data. Further, since the correction data corresponds to the difference between the drift noise reduction data and the data obtained by removing the drift noise from the target data, the correction data includes the significant signal component removed by the high-pass filter processing. Therefore, according to the measurement program, by adding the drift noise reduction data and the correction data, it is possible to generate the measurement data in which the drift noise is reduced with respect to the target data. According to the measurement program, by generating the drift noise reduction data, and the correction data using the target data to be processed, and adding the drift noise reduction data, and the correction data, the measurement data in which the drift noise is reduced can be generated without preparing information for reducing the drift noise in advance. Therefore, by using the measurement program, accurate measurement data can be obtained regardless of a change in environment, and cost reduction can be achieved.
According to the measurement program, the three intervals can be specified based on a feature of the drift noise reduction data in which the drift noise is reduced with respect to the target data, and more appropriate correction data can be generated in each interval, so that the estimation accuracy of the generated correction data can be improved. In particular, since the first line data, the second line data, and the third line data with high accuracy can be obtained by setting the first coefficient and the second coefficient to appropriate values, the correction data with high accuracy can be generated in the second interval.
Number | Date | Country | Kind |
---|---|---|---|
2021-029746 | Feb 2021 | JP | national |