The present invention relates to video quality of service, and more particularly to the measurement of blurring in video sequences due to video processing.
A number of different factors influence the visual quality of a digital video sequence. Numerous subjective studies have shown that the amount of blurring in the video sequence is one of the factors that has the strongest influence on overall visual quality. Therefore the ability to objectively measure the amount of blurring in the video sequence is a key element in a video quality metric. A codec developer or compression service provider may use this information to modify the compression process and make informed decisions regarding the various tradeoffs needed to deliver quality digital video services.
Although studies have been done in blur identification, most blur identification approaches, such as spectrum, bispectrum and maximum likelihood based approaches, were developed under the assumption of uniform blur or under the restriction of only tolerating the existence of white Gaussian noise. The blurring effect resulting from block Discrete Cosine Transform (DCT) based compression may vary from one block to another due to different quantization parameters used for coding different macroblocks. Additionally noise originated from quantization of DCT components is not independent in the spatial domain, but contributes to blocking errors and high frequency noise around edges. Blur distortion in MPEG and H.263 video sequences is caused by DCT quantization. When the quantization truncates the high frequency DCT coefficients completely, the loss appears as blur in the video sequence. Because quantization level changes across block boundaries, the resulting blur as well as quantization noise vary accordingly.
A single-ended blur estimation scheme was proposed by Jiuhuai Lu in the Proceedings SPIE 4301—Machine Vision Applications in Industrial Inspection—San Jose, Calif., January 2001 in a paper entitled “Image Analysis for Video Artifact Estimation and Measurement”. The scheme has several steps, including pre-processing to eliminate artifacts that produce spurious edges, evaluation point selection to choose appropriate places for blur estimation, blur estimating at each selected evaluation point and averaging to provide a frame-based blur estimate. For blur estimation edges of blocking boundaries may be reduced by simple lowpass filtering. The evaluation point selection determines a set of image edge points on the basis of edge intensity and connectivity to eliminate blurring due to other than quantization in compression. Finally a statistical approach is used to estimate the extent of picture blur by extracting an edge profile spread at the selected edge points using a norm of the edge gradient as follows:
What is desired is to provide an accurate, robust, repeatable and computationally feasible method of measuring blurring in video sequences for use in any application that requires video quality measurement.
Accordingly the present invention provides for measurement of blurring in video sequences by filtering a test video sequence with both an edge definition filter and an edge enhancement filter. The output from the edge definition filter together with block size information is used to determine those blocks within each frame of the test video sequence that contain a valid image edge. The output from the edge enhancement filter together with the block size information, after elimination of block boundary edges induced by video processing if appropriate, is used with the valid image edge blocks to select edge points. Normals to the valid image edges at the edge points as a function of the edge enhancement filter output are used to estimate a blurring value for each frame of the test video sequence.
For reduced-reference or full reference applications a reference blurring value is generated from a reference video sequence corresponding to the test video sequence, the reference blurring value either being generated at a source and transmitted with the test video sequence or being generated at a receiver together with the test video sequence. The reference blurring value is compared with the blurring value for the test video sequence to determine a relative blurring value.
The objects, advantages and other novel features of the present invention are apparent from the following detailed description when read in conjunction with the appended claims and attached drawing.
Referring to
The basic idea is to find the strongest edges and/or lines in an image, or frame, of a video sequence, then to look at the edge profile at these points to see how spread the edges are, thus giving an indication of the blurring of the image. Large spreading at these points indicates that the frame is strongly blurred, while a narrow spread suggests that the image is sharp. Both the luminance frame (Y) and the blockiness size and any offset are inputs. The blockiness information allows the removal of quantization block boundaries, where appropriate, so that only true image edges are used and provides a scaling in which blocks containing valid image edges may be found. The blockiness size and offset may be either directly obtained from information in a decoder, or by running a blockiness detection algorithm, such as that described in U.S. patent application Ser. No. 09/152,495 filed Sep. 10, 1998 entitled “Picture Quality Analysis Using Blockiness” by Bozidar Janko et al. In the case where the video sequence contains no blockiness, i.e., it was not compressed by a block-based encoder, the blockiness removal process is skipped and a default block size is used when finding blocks with valid image edges in the selector block 16.
The removal of edges in the blockiness removal block 18 may be achieved by replacing the output from the Sobel filter 14 at block boundaries with a Sobel output interpolated from nearest neighbors. The detection of blocks that contain valid image edges uses the output from the Canny filter 12 as shown in
Each valid block from the selection block 16 is further tested as shown in
Sflat(n)=S(−N)+(n+N)*(S(N)−S(−N))/(2N)
Snorm(n)=max[0,S(n)−Sflat(n)−kS(0)]
where k is a constant set to remove very small edges, i.e., k=0.2, and n ranges from −N to N.
An objective way of determining the spread of Snorm is required. An autocorrelation on Snorm to give Rnorm works successfully. This autocorrelation Rnorm is scaled so that the sum of its coefficients is equal to one. The spread Sp is then calculated by weighting the coefficients Rnorm proportional to the square of their distance from a weighted central location Pprod.
Pprod=sum[nRnorm(n)]
Sp=sum[(n−Pprod)2Rnorm(n)]
where n ranges from −N to N. In this way a measure of the spread is determined for each valid point in the image. High values of Sp indicate a highly spread edge, and therefore strong blurring, while low values of spread indicate a very sharp edge. For a given value of N a theoretical maximum level of spread may be calculated. This enables the blurring to be represented in a unit based on the maximum possible blurring, which is useful since it allows meaningful comparison across different edges and different scenes.
To calculate the blurring value for an entire image or frame, a histogram of Sp values is taken, and a pth highest percentile is used to indicate the average amount of blurring for the image or frame. Values of p=40–50% provide good results.
Blurring values for an entire video sequence or a specific section of the video sequence may also be calculated. The mean of the frame blurring values provides a good indication of sequence blurring. Other more complex methods, such as Minkowski summation or min-max calculation, may also be used.
As well as outputting a blurring value for each frame, a blurring map is also provided. The blurring map indicates the areas in the image where the blurring is most visible. It is obtained by weighting the blockiness removed Sobel map with the frame blurring measure. Either a linear or a non-linear weighting may be used, depending upon the application for which the map is used. The linear weighting has been tested successfully, as shown in
A reduced-reference blurring measurement works in a very similar way to the single-ended blurring measurement described above. The single-ended blurring is calculated on a reference frame, with the resulting blurring value being passed along with a test frame, perhaps using a different channel or the video header. At a receiver the single-ended measurement is performed on the test frame to produce a test blurring value. The test blurring value is compared with the reference blurring value in order to determine the amount of blurring introduced into the test frame. Once again both linear and non-linear methods may be used to perform this comparison. A simple subtraction of the reference and test blurring values provides good results.
Some slight modifications may be performed when performing double-ended blurring measurement, as shown in
Therefore as shown in
Finally
Thus the present invention provides a blurring measurement for a video sequence by selecting blocks in the image that have valid edges based on a Canny filtered output for the video sequence and removing block boundaries from the video sequence using a Sobel filter, by selecting valid edge points centrally located within the selected valid edge blocks, by estimating spread normal to the edge, and by determining an average for the image or sequence or portion of sequence based on histograms of the estimated spread. Also a blurring map is generated from the block boundary corrected Sobel output weighted by the blurring estimate.
Number | Name | Date | Kind |
---|---|---|---|
4673276 | Yoshida et al. | Jun 1987 | A |
4691366 | Fenster et al. | Sep 1987 | A |
4804831 | Baba et al. | Feb 1989 | A |
4896364 | Lohscheller | Jan 1990 | A |
5706417 | Adelson | Jan 1998 | A |
5710829 | Chen et al. | Jan 1998 | A |
6330372 | Goldstein et al. | Dec 2001 | B1 |
6600517 | He et al. | Jul 2003 | B1 |
6625396 | Sato | Sep 2003 | B1 |
6704451 | Hekstra et al. | Mar 2004 | B1 |
6888564 | Caviedes et al. | May 2005 | B1 |
20030053708 | Kryukov et al. | Mar 2003 | A1 |
20030117511 | Belz et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
0 942 602 | Sep 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20040013315 A1 | Jan 2004 | US |